首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In the realm of the numerical simulation, finite difference method and finite element method are more intuitive and effective than other simulation methods. In the process of simulating seismic wave propagation, the finite differences method is widely used because of its high computational efficiency and the advantage of the algorithm is more efficient. With the demand of precision, more and more researchers have proposed more effective methods of finite differences, such as the high-order staggered-grid finite differences method, which can restore the actual process of wave propagation on the premise of ensuring accuracy and improving the efficiency of operation. In the past numerical simulation of seismic wave field, different models of isotropic medium are mostly used, but it is difficult to reflect the true layer situation. With the research demand of natural seismology and seismic exploration, the research on anisotropic media is more and more extensive. Transversely isotropic(TI)media can well simulate the seismic wave propagation in the formation medium, such as gas-bearing sandstone, mudstone, shale et al., the character of TI media is reflected by introducing the Thomsen parameters to reflect its weak anisotropy of vertical direction by using Thomson parameter. Therefore, studying the process of seismic wave propagation in TI media can restore the true information of the formation to the greatest extent, and provide a more reliable simulation basis for the numerical simulation of seismic wave propagation. In the geodynamic simulation and the numerical simulation of the seismic wave field, under the limited influence of the calculation area, if no boundary conditions are added, a strong artificial boundary reflection will be generated, which greatly reduces the validity of the simulation. In order to minimize the influence of model boundaries on the reflection of seismic waves, it is often necessary to introduce absorbing boundary conditions. At present, there are three types of absorption boundary conditions: one-way wave absorption boundary, attenuation absorption boundary, and perfectly matched layer(PML)absorption boundary. In terms of numerical simulation of seismic waves, the boundary absorption effect of PML is stronger than the first two, which is currently the most commonly used method, and it also represents the cutting-edge development direction of absorption boundary technology. The perfectly matched layer absorbing boundary is effectively applied to eliminating the reflective waves from model boundaries, but for transversely isotropic medium, the effect of the absorbing is not very well. For this reason, the elastic dynamic wave equations in transversely isotropic media are derived, and we describe a second-order accurate time, tenth-order accurate space, formulation of the Madariaga-Virieux staggered-grid finite difference methods with the perfectly matched layer(PML)are given. In addition, we have established vertical transversely isotropic(VTI)media and arbitrary inclined tilted transversely isotropic(TTI)media models, using a uniform half-space velocity model and a two-layer velocity model, respectively. By combining the actual geoscience background, we set the corresponding parameters and simulation conditions in order to make our model more research-oriented. When setting model parameters, different PML thickness, incident angle, source frequency and velocity layer models were transformed to verify the inhibition of boundary reflection effect by PML absorption boundary layer. The implementations of this simulation show that the formula is correct and for the transversely isotropic(TI)media of any angular symmetry axis, when the thickness of the PML layer reaches a certain value, the seismic wave reflection effect generated by the artificial boundary can be well suppressed, and the absorption effect of PML is not subject to changes in incident angle and wave frequency. Therefore, the results of our study indicate that our research method can be used to simulate the propagation process of seismic waves in the transversely isotropic(TI)media without being affected by the reflected waves at the model boundary to restore the actual formation information and more valuable geological research.  相似文献   

2.
We derive a governing second-order acoustic wave equation in the time domain with a perfectly matched layer absorbing boundary condition for general inhomogeneous media. Besides, a new scheme to solve the perfectly matched layer equation for absorbing reflections from the model boundaries based on the rapid expansion method is proposed. The suggested scheme can be easily applied to a wide class of wave equations and numerical methods for seismic modelling. The absorbing boundary condition method is formulated based on the split perfectly matched layer method and we employ the rapid expansion method to solve the derived new perfectly matched layer equation. The use of the rapid expansion method allows us to extrapolate wavefields with a time step larger than the ones commonly used by traditional finite-difference schemes in a stable way and free of dispersion noise. Furthermore, in order to demonstrate the efficiency and applicability of the proposed perfectly matched layer scheme, numerical modelling examples are also presented. The numerical results obtained with the put forward perfectly matched layer scheme are compared with results from traditional attenuation absorbing boundary conditions and enlarged models as well. The analysis of the numerical results indicates that the proposed perfectly matched layer scheme is significantly effective and more efficient in absorbing spurious reflections from the model boundaries.  相似文献   

3.
Seismic anisotropy has an important influence on seismic data processing and interpretation. Although the frequency-domain seismic wavefield simulation has a problem of solving the large scale linear sparse matrix due to the computational limitations, it has some advantages over the time-domain seismic wavefield simulation including efficient inversion using only a limited number of frequency components and easy implementation of multiple sources. To accurately simulate seismic wave propagation in the frequency domain, we also need to choose the absorbing boundary conditions to absorb artificial reflections from edges of the model as we do in the time domain. Compared with the classical boundary conditions including the perfectly matched layer and complex frequency-shifted perfectly matched layer, the complex frequency-shifted multi-axial perfectly matched layer has been proven to effectively suppress the unwanted reflections at grazing incidence and solve the instability problem in the time-domain seismic numerical modelling in anisotropic elastic media. In this paper, we propose to extend the complex frequency-shifted multi-axial perfectly matched layer absorbing boundary condition to the frequency-domain seismic wavefield simulation in anisotropic elastic media. To test the validity of our proposed algorithm, we compare the results (snapshots and seismograms) of the frequency-domain seismic wavefield simulation with those of the time-domain modelling. The model studies indicate that the complex frequency-shifted multi-axial perfectly matched layer absorbing boundary condition is stable in the frequency-domain seismic wavefield simulation in anisotropic media, and provides better absorbing performance than the complex frequency-shifted perfectly matched layer boundary condition.  相似文献   

4.
Recently, an effective and powerful approach for simulating seismic wave propagation in elastic media with an irregular free surface was proposed. However, in previous studies, researchers used the periodic condition and/or sponge boundary condition to attenuate artificial reflections at boundaries of a computational domain. As demonstrated in many literatures, either the periodic condition or sponge boundary condition is simple but much less effective than the well‐known perfectly matched layer boundary condition. In view of this, we intend to introduce a perfectly matched layer to simulate seismic wavefields in unbounded models with an irregular free surface. We first incorporate a perfectly matched layer into wave equations formulated in a frequency domain in Cartesian coordinates. We then transform them back into a time domain through inverse Fourier transformation. Afterwards, we use a boundary‐conforming grid and map a rectangular grid onto a curved one, which allows us to transform the equations and free surface boundary conditions from Cartesian coordinates to curvilinear coordinates. As numerical examples show, if free surface boundary conditions are imposed at the top border of a model, then it should also be incorporated into the perfectly matched layer imposed at the top‐left and top‐ right corners of a 2D model where the free surface boundary conditions and perfectly matched layer encounter; otherwise, reflections will occur at the intersections of the free surface and the perfectly matched layer, which is confirmed in this paper. So, by replacing normal second derivatives in wave equations in curvilinear coordinates with free surface boundary conditions, we successfully implement the free surface boundary conditions into the perfectly matched layer at the top‐left and top‐right corners of a 2D model at the surface. A number of numerical examples show that the perfectly matched layer constructed in this study is effective in simulating wave propagation in unbounded media and the algorithm for implementation of the perfectly matched layer and free surface boundary conditions is stable for long‐time wavefield simulation on models with an irregular free surface.  相似文献   

5.
本文建立了无分裂复频移卷积完全匹配层(CFS-CPML)吸收边界条件,利用交错网格下的高精度有限差分格式对黏弹性介质中的勒夫波场进行了数值模拟;分析了松弛机制个数对品质因子拟合精度的影响,验证了CFS-CPML边界条件对大角度掠射波的吸收效果.数值结果表明:本文方法所使用的5个松弛机制和空间4阶差分精度,即可在保证计算效率的前提下满足目前理论研究的需要;随着品质因子的减小,频散特征曲线的相速度逐渐向增高的方向偏离理论频散特征曲线的相速度,且各模式的高频能量也随之减弱.本文结果可为发展高精度的面波反演方法提供必要的理论依据.   相似文献   

6.
完全匹配层吸收边界在孔隙介质弹性波模拟中的应用   总被引:14,自引:6,他引:14       下载免费PDF全文
模拟弹性波在孔隙介质中传播,需要稳定有效的吸收边界来消除或尽可能的减小由人工边界引起的虚假反射. 本文在前人工作基础上,首次建立了弹性孔隙介质情况下完全匹配层吸收边界的高阶速度-应力交错网格有限差分算法,并详细讨论了完全匹配层的构建及其有限差分算法实现. 首先,本文通过均匀孔隙模型的数值解与解析解的对比,验证所提出的数值方法的正确性;然后,本文考察了完全匹配层对不同入射角度入射波和自由表面上的瑞利波的吸收性能,将完全匹配层与廖氏和阻尼吸收边界进行了对比,研究了这三种吸收边界在不同吸收厚度情况下对弹性波吸收能力. 数值结果表明,在孔隙介质中,完全匹配层作为吸收边界能十分有效地吸收衰减外行波,无论对体波还是面波,是一种高效边界吸收算法.  相似文献   

7.
The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method.  相似文献   

8.
高精度频率域弹性波方程有限差分方法及波场模拟   总被引:18,自引:4,他引:14  
有限差分方法是波场数值模拟的一个重要方法,但常规的有限差分法本身存在着数值频散问题,会降低波场模拟的精度与分辨率,为了克服常规差分算子的数值频散,本文采用25点优化差分算子,再根据最优化理论求取的优化系数,建立了频率空间域中弹性波波动方程的差分格式;为了消除边界反射,引入最佳匹配层,构造了各向同性介质中弹性波方程在不同边界和角点处的边界条件. 最后由弹性波波动方程和边界条件,通过频率域有限差分法,分别利用不同震源对弹性波在均匀各向同性介质、层状介质及凹陷模型中的传播过程进行了数值正演模拟,得到了单频波波场、时间切片和共炮点道集,为下一步的研究工作(如成像、反演)提供了研究基础.  相似文献   

9.
彭菲  陈棋福  刘澜波  陈颙 《地震》2008,28(2):54-64
利用时域有限差分方法进行地震波模拟能够得到丰富的波场信息, 对研究复杂地质构造条件下的地震波波场十分有效。 该文在对时域有限差分方法进行概述的基础上, 以2002年4月施测的安新—宽城地震测深剖面资料为基础, 采用时域有限差分方法对该剖面进行二维全波数值模拟, 同时以理想匹配层作为模拟的吸收边界条件。 将模拟得到的合成地震图, 通过与野外实验得到的记录截面和射线追踪合成记录相比较和讨论, 验证了时域有限差分方法在模拟地震波传播过程的有效性。  相似文献   

10.
弱形式时域完美匹配层   总被引:6,自引:0,他引:6       下载免费PDF全文
谢志南  章旭斌 《地球物理学报》2017,60(10):3823-3831
应用高精度人工边界条件可有效提升近场波动数值模拟计算效率.完美匹配层是吸收层形式高精度人工边界条件,匹配层内场方程和界面条件通常分别采用复坐标延伸技术变换强形式无限域内波动方程和界面条件得到,亦曾将无限域界面条件当作匹配层界面条件.场方程和界面条件构建过程相互独立,可能出现匹配不合理而引发数值失稳、计算精度低下等问题.本文提出采用复坐标延伸技术变换弱形式无限域波动方程以构建完美匹配层的方法.弱形式波动方程耦合了波动方程及界面条件,进而规避了变换后所得场方程与界面条件之间的匹配不合理问题.新方法可直接建立弱形式匹配层,在此基础上亦可给出强形式匹配层.弱形式便于有限元离散,强形式便于有限差分离散.基于弱形式完美匹配层,结合勒让德谱元建立了弹性介质近场波动谱元模拟方案.利用算例验证了新方案的精度及数值稳定性.本文工作可直接推广至多相耦合介质近场波动数值模拟.  相似文献   

11.
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second-order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite-element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.  相似文献   

12.
Mesh-free discretization, flexibly distributing nodes without computationally expensive meshing process, is able to deal with staircase problem, oversampling and undersampling problems and saves plenty of nodes through distributing nodes suitably with respect to irregular boundaries and model parameters. However, the time-domain mesh-free discretization usually exhibits poorer stability than that in regular grid discretization. In order to reach unconditional stability and easy implementation in parallel computing, we develop the frequency-domain finite-difference method in a mesh-free discretization, incorporated with two perfectly matched layer boundary conditions. Furthermore, to maintain the flexibility of mesh-free discretization, the nodes are still irregularly distributed in the absorbing zone, which complicates the situation of artificial boundary reflections. In this paper, we implement frequency-domain acoustic wave modelling in a mesh-free system. First, we present the perfectly matched layer boundary condition to suppress spurious reflections. Moreover, we develop the complex frequency shifted–perfectly matched layer boundary condition to improve the attenuation of grazing waves. In addition, we employ the radial-basis-function-generated finite difference method in the mesh-free discretization to calculate spatial derivatives. The numerical experiment on a rectangle homogeneous model shows the effectiveness of the perfectly matched layer boundary condition and the complex frequency shifted–perfectly matched layer boundary condition, and the latter one is better than the former one when absorbing large angle incident waves. The experiment on the Marmousi model suggests that the complex frequency shifted–perfectly matched layer boundary condition works well for complicated models.  相似文献   

13.
间断Galerkin有限元法(DG-FEM)作为一种有效的高阶有限元法受到了国内外学者的广泛关注.本文基于任意高阶间断Galerkin有限元法对弹性波方程进行空间离散,并将离散后所得的非齐次线性常微分方程系统齐次化,最后结合针对齐次问题的强稳定性保持龙格库塔(SSP Runge-Kutta)算法,将DG-FEM推广至时间任意高阶精度.另外,借鉴近最佳匹配层(NPML)的思想,基于复频移(CFS)拉伸坐标变换推导了一种新的PML吸收边界条件(简称为CFS-NPML),该CFS-NPML能够与DG-FEM算法很好地结合,形成有效的起伏地表地震波传播数值模拟技术.数值试验结果表明,DG-FEM具有高阶精度,可以适应任意复杂起伏地表和复杂构造情况下的弹性波传播数值模拟.同时,CFS-NPML对包括面波等震相的人为边界反射都具有良好的吸收效果.  相似文献   

14.
黄建平  杨宇  李振春  田坤 《地震学报》2014,36(5):964-977
传统的完全匹配层技术是一种能够较为有效地消除边界反射的边界条件,但是当表层为泊松比较高的自由表面时,该技术可能会产生不稳定的现象.针对传统的完全匹配层技术固有的不稳定和掠射情况下吸收效果不佳等缺陷,发展了多轴完全匹配层、卷积完全匹配层以及将两者结合的多轴卷积完全匹配层等3种边界条件.本文介绍了水平自由表面的不同处理方法以及传统、多轴、卷积和多轴卷积等4种完全匹配层条件的原理,通过二维半无限空间模型的交错网格有限差分正演模拟对比,分析了几种自由边界实施方法在这几种完全匹配层条件下的稳定性,并通过提取单道波形与解析解进行对比,定性分析了水平自由表面几种不同处理方法的准确性以及各自的适用条件. 结果表明,泊松比和水平自由表面实施方法对波场模拟效果及其稳定性有重要影响.   相似文献   

15.
本文在前人工作的基础上,建立了一种基于Shannon奇异核的交错网格褶积微分算子方法.文中不仅详细讨论了影响算子精度的各种因素,同时也着重分析了其在弹性波模拟中的频散关系和稳定性条件.通过和交错网格有限差分算子比较,发现该算子即使在高波数域也具有较高的精度.均匀介质中的数值试验也表明,该方法9点格式就基本上达到了解析解精度.而分层均匀介质和复杂介质中的地震波数值模拟也同时证实了该方法精度高,稳定性好,是一种研究复杂介质中地震波传播的有效数值方法.  相似文献   

16.
在地震波场数值模拟过程中,边界反射是影响其模拟结果的一个重要因素。实际地下介质具有各向异性特征,传统的完全匹配层边界(PML)对于小入射角地震波具有良好效果,但该方法并不能有效地吸收低频波和大角度入射波。针对VTI介质边界反射的问题,本文提出在频率-空间域有限差分法数值模拟中采用卷积完全匹配层(CPML)和特征分析法的组合边界条件,并对该组合边界条件进行数值模拟实验和边界反射吸收效果分析,验证所提方法是一种可靠的人工吸收边界条件,能够有效地压制波场模拟过程中产生的边界反射。   相似文献   

17.
Based on the pure quasi-P wave equation in transverse isotropic media with a vertical symmetry axis (VTI media), a quasi-P wave equation is obtained in transverse isotropic media with a tilted symmetry axis (TTI media). This is achieved using projection transformation, which rotates the direction vector in the coordinate system of observation toward the direction vector for the coordinate system in which the z-component is parallel to the symmetry axis of the TTI media. The equation has a simple form, is easily calculated, is not influenced by the pseudo-shear wave, and can be calculated reliably when δ is greater than ε. The finite difference method is used to solve the equation. In addition, a perfectly matched layer (PML) absorbing boundary condition is obtained for the equation. Theoretical analysis and numerical simulation results with forward modeling prove that the equation can accurately simulate a quasi-P wave in TTI medium.  相似文献   

18.
本文基于Kjartansson常Q模型理论,推导了常Q衰减介质中黏声波和黏弹性波的速度-应力方程,并采用基于二项式窗函数的优化交错网格有限差分方法进行了数值模拟,同时引入不分裂的复频移卷积完全匹配层(CPML)吸收边界条件,以消除边界反射.使用基于自适应时间步长记忆方法的中心差分近似时间分数阶导数,与常用的短时记忆方法相比,提高了波动方程的离散化精度和计算效率.通过对比均匀模型下声波的数值解与解析解,验证了算法的精确性,并进一步分析了不同品质因子下地震波的频散及衰减特征.对BP盐丘模型的数值模拟结果可以较好地反映本文数值方法对复杂介质的适应性及频散压制效果.   相似文献   

19.
将作者最近发展的多人工波速优化透射边界(记为ca j-MTF)应用于高精度谱元法的地震波动模拟中,并与经典的廖氏透射(MTF)边界、完美匹配层(PML)边界、黏弹性边界以及一阶旁轴近似边界进行了比较分析.结果显示:①ca j-MTF边界与MTF边界在形式上非常接近,它继承了后者公式简单、易于实现、精度可控、计算量低以及...  相似文献   

20.
Scattering attenuation in short wavelengths has long been interesting to geophysicists. Ultrasonic coda waves, observed as the tail portion of ultrasonic wavetrains in laboratory ultrasonic measurements, are important for such studies where ultrasonic waves interact with small-scale random heterogeneities on a scale of micrometers, but often ignored as noises because of the contamination of boundary reflections from the side ends of a sample core. Numerical simulations with accurate absorbing boundary can provide insight into the effect of boundary reflections on coda waves in laboratory experiments. The simulation of wave propagation in digital and heterogeneous porous cores really challenges numerical techniques by digital image of poroelastic properties, numerical dispersion at high frequency and strong heterogeneity, and accurate absorbing boundary schemes at grazing incidence. To overcome these difficulties, we present a staggered-grid high-order finite-difference (FD) method of Biot’s poroelastic equations, with an arbitrary even-order (2L) accuracy to simulate ultrasonic wave propagation in digital porous cores with strong heterogeneity. An unsplit convolutional perfectly matched layer (CPML) absorbing boundary, which improves conventional PML methods at grazing incidence with less memory and better computational efficiency, is employed in the simulation to investigate the influence of boundary reflections on ultrasonic coda waves. Numerical experiments with saturated poroelastic media demonstrate that the 2L FD scheme with the CPML for ultrasonic wave propagation significantly improves stability conditions at strong heterogeneity and absorbing performance at grazing incidence. The boundary reflections from the artificial boundary surrounding the digital core decay fast with the increase of CPML thicknesses, almost disappearing at the CPML thickness of 15 grids. Comparisons of the resulting ultrasonic coda Q sc values between the numerical and experimental ultrasonic S waveforms for a cylindrical rock sample demonstrate that the boundary reflection may contribute around one-third of the ultrasonic coda attenuation observed in laboratory experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号