首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the homogeneity of and provide the first Sr‐Nd‐Hf‐Pb isotopic reference values for the Chinese Geological Standard Glasses CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5, we measured these isotopes in several measurement sessions over the course of nearly 3 years. The results were obtained by high‐precision MC‐ICP‐MS and TIMS. Our investigation indicates that these CGSG glass reference materials are homogenous with regard to Sr‐Nd‐Hf‐Pb isotopic distribution and are therefore suitable geochemical materials for Sr‐Nd‐Hf‐Pb isotope measurements. Clear differences in Sr‐Nd‐Hf‐Pb isotopic composition were observed between the glasses and the original powdered rock reference materials (CGSG‐2 and GSR‐7, and especially CGSG‐5 and GSR‐2) because of flux addition during preparation of the glasses. The new Sr‐Nd‐Hf‐Pb isotope data provided here might be useful to the geochemical community for in situ and bulk analysis.  相似文献   

2.
Silicon isotope determination of sulfur‐rich samples by MC‐ICP‐MS can be challenging because cation‐exchange chromatography used for Si purification does not efficiently remove anionic sulfur species. Results for pure Si standard solutions with addition of sulfate showed shifts of up to +1.04 ± 0.10‰ (2s) in δ30Si. Doping of both standard solutions and samples with S to a fixed S/Si ratio can eliminate the relative change in instrumental mass fractionation due to variable S/Si in samples and also boosts the relative sensitivity of Si by up to 66%. Moreover, Fe hydroxide precipitation during sample processing adsorbs Si resulting in isotopic fractionations. Tests using Fe‐rich samples showed that this could be a major factor for observed shifts in δ30Si. Acidification of the sample and standard solutions to a pH < 1 aggressively dissolved any Fe hydroxide precipitates, even in relatively Fe‐rich samples such as chondrite meteorites. The pH values of the sample solutions were subsequently adjusted to a range of 2–3 by adding ultra‐pure NaOH solutions. The combination of sulfur doping and the pH adjustment protocol ensured a full recovery of Si and proved to be an efficient and reliable method for Si isotope determination of S‐ and Fe‐rich materials.  相似文献   

3.
We report an improved procedure for the determination of the platinum‐group elements (PGE) and Re, and Os isotopes from a single sample aliquot by isotope dilution (ID) using inductively coupled plasma‐mass spectrometry (ICP‐MS) and negative thermal ionisation mass spectrometry (N‐TIMS), respectively. A two‐stage column method was used to purify PGE‐Re from their sample matrix and interfering elements (e.g., Mo, Zr and Hf) after Os had been separated by CCl4 solvent extraction. The first column separation step used cation exchange resin (AG50W‐X8) to concentrate PGE‐Re and some potential interfering elements (e.g., Mo, Zr and Hf). In the second step, N‐benzoyl‐N‐phenylhydroxylamine (BPHA) extraction resin was used to separate PGE‐Re from the remaining interfering elements, which all remained strongly absorbed to the resin. The method was used to determine the PGE and rhenium, and Os isotope ratios in a range of geochemical reference materials (TDB‐1, WGB‐1, BHVO‐2 and UB‐N). The obtained results agree well with those previously published. This new method enables PGE‐Re abundances and Os isotopic ratios to be determined on the same sample digestion, and circumvents the problems created by sample heterogeneity when comparing PGE and Re‐Os isotope data.  相似文献   

4.
Bastnäsite is the end member of a large group of carbonate–fluoride minerals with the common formula (REE) CO3F·CaCO3. This group is generally widespread and, despite never occurring in large quantities, represents the major economic light rare earth element (LREE) mineral in deposits related to carbonatite and alkaline intrusions. Since bastnäsite is easily altered and commonly contains inclusions of earlier‐crystallised minerals, in situ analysis is considered the most suitable method to measure its U‐Th‐Pb and Sr‐Nd isotopic compositions. Electron probe microanalysis and laser ablation (multi‐collector) inductively coupled plasma‐mass spectrometry of forty‐six bastnäsite samples from LREE deposits in China, Pakistan, Sweden, Mongolia, USA, Malawi and Madagascar indicate that this mineral typically has high Th and LREE and moderate U and Sr contents. Analysis of an in‐house bastnäsite reference material (K‐9) demonstrated that precise and accurate U‐Th‐Pb ages could be obtained after common Pb correction. Moreover, the Th‐Pb age with its high precision is preferable to the U‐Pb age because most bastnäsites have relatively high Th rather than U contents. These results will have significant implications for understanding the genesis of endogenous ore deposits and formation processes related to metallogenic geochronology research.  相似文献   

5.
6.
Analytical solutions are presented for linear finite‐strain one‐dimensional consolidation of initially unconsolidated soil layers with surcharge loading for both one‐ and two‐way drainage. These solutions complement earlier solutions for initially unconsolidated soil layers without surcharge and initially normally consolidated soil layers with surcharge. Small‐strain solutions for the consolidation of initially unconsolidated soil layers with surcharge loading are also presented, and the relationship between the earlier solutions for initially unconsolidated soil without surcharge and the corresponding small‐strain solutions, which was not addressed in the earlier work, is clarified. The new solutions for initially unconsolidated soil with surcharge loading can be applied to the analysis of low stress consolidation tests and to the partial validation of numerical solutions of non‐linear finite‐strain consolidation. They also clarify a formerly perplexing aspect of finite‐strain solution charts first noted in numerical solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
8.
In both nature and synthetic experiments, the common iron oxide haematite (α‐Fe2O3) can incorporate significant amounts of U into its crystal structure and retain radiogenic Pb over geological time. Haematite is a ubiquitous component of many ore deposit types and, therefore, represents a valuable hydrothermal mineral geochronometer, allowing direct constraints to be placed on the timing of ore formation and upgrading. However, to date, no suitable natural haematite reference material has been identified. Here, a synthetic haematite U‐Pb reference material (MR‐HFO) is characterised using LA‐ICP‐MS and ID‐TIMS. Centimetre‐scale ‘chips’ of synthesised α‐Fe2O3 were randomly microsampled via laser ablation‐extraction and analysed using ID‐TIMS. Reproducible U/Pb and Pb/Pb measurements were obtained across four separate chips (n = 13). Subsequently, an evaluation of the suitability MR‐HFO in constraining U‐Pb data via LA‐ICP‐MS is presented using a selection of natural samples ranging from Cenozoic to Proterozoic in age. The MR‐HFO normalised U‐Pb ratios are more concordant and ages more accurate versus the same LA‐ICP‐MS spot analyses normalised to zircon reference material, when compared with independently acquired ID‐TIMS data from the same natural haematite grains. Results establish MR‐HFO as a suitable reference material for LA‐ICP‐MS haematite U‐Pb geochronology.  相似文献   

9.
10.
Atmospheric dust is an integral component of the Earth system with major implications for the climate, biosphere and public health. In this context, identifying and quantifying the provenance and the processes generating the various types of dust found in the atmosphere is paramount. Isotopic signatures of Pb, Nd, Sr, Zn, Cu and Fe are commonly used as sensitive geochemical tracers. However, their combined use is limited by the lack of (a) a dedicated chromatographic protocol to separate the six elements of interest for low‐mass samples and (b) specific reference materials for dust. Indeed, our work shows that USGS rock reference materials BHVO‐2, AGV‐2 and G‐2 are not applicable as substitute reference materials for dust. We characterised the isotopic signatures of these six elements in dust reference materials ATD and BCR‐723, representatives of natural and urban environments, respectively. To achieve this, we developed a specific procedure for dust, applicable in the 4–25 mg mass range, to separate the six elements using a multi‐column ion‐exchange chromatographic method and MC‐ICP‐MS measurements.  相似文献   

11.
In this study, a technique for high precision in situ Fe and Mg isotope determinations by femtosecond‐laser ablation‐multi collector‐ICP‐MS (fs‐LA‐MC‐ICP‐MS) was developed. This technique was employed to determine reference values for a series of common reference glasses that may be used for external standardisation of in situ Fe and Mg isotope determinations in silicates. The analysed glasses are part of the MPI‐DING and United States Geological Survey (USGS) reference glass series, consisting of basaltic (BIR‐1G, BCR‐2G, BHVO‐2G, KL2‐G, ML3B‐G) and komatiitic (GOR128‐G and GOR132‐G) compositions. Their Fe and Mg isotope compositions were determined by in situ fs‐LA‐MC‐ICP‐MS and by conventional solution nebulisation multi‐collector ICP‐MS. We determined δ56Fe values for these glasses ranging between ‐0.04‰ and 0.10‰ (relative to IRMM‐014) and δ26Mg values ranging between ‐0.40‰ and ‐0.15‰ (relative to DSM‐3). Our fs‐LA‐MC‐ICP‐MS results for both Fe and Mg isotope compositions agreed with solution nebulisation analyses within analytical uncertainties. Furthermore, the results of three USGS reference glasses (BIR‐1G, BHVO‐2G and BCR‐2G) agreed with previous results for powdered and dissolved aliquots of the same reference materials. Measurement reproducibilities of the in situ determinations of δ56Fe and δ26Mg values were usually better than 0.12‰ and 0.13‰ (2s), respectively. We further demonstrate that our technique is a suitable tool to resolve isotopic zoning in chemically‐zoned olivine crystals. It may be used for a variety of different applications on isotopically‐zoned minerals, e.g., in magmatic or metamorphic rocks or meteorites, to unravel their formation or cooling rates.  相似文献   

12.
Two Co‐rich seamount crust reference materials, MCPt‐1 and MCPt‐2, were prepared using ultra‐fine particle size milling technique and characterised for the platinum‐group elements (PGEs). The raw material for these two reference materials was collected separately from the Magellan seamounts of the western Pacific Ocean and the seamounts of the central Pacific Ocean by Russian and Chinese scientists. First, they were ground by ball mill to a ?200 mesh powder, then further processed by ultra‐fine jet mill and well‐mixed. The particle size distributions of the samples were tested by a laser particle analyser; the average particle size was 1.8 and 1.5 μm (equal to about 2000 mesh) respectively. The homogeneity of six major and minor elements in these two materials was tested at the milligram level of sampling mass by high‐precision wavelength dispersive X‐ray fluorescence (XRF) spectrometry and at the microgram level of sampling mass by electron probe microanalyser. The homogeneity of more than forty trace elements, including Pt, was tested at the microgram level of sampling mass by LA‐ICP‐MS. Except for Rh, all PGEs were determined by isotope dilution‐ICP‐MS. Platinum in MCPt‐1 and MCPt‐2 was characterised as certified values, whereas the other five PGEs in MCPt‐1 and MCPt‐2 were reported as reference values. In addition, the information values of sixty‐two major, minor and trace elements were obtained by XRF, ICP‐AES and ICP‐MS. The minimum sampling mass for the determination of PGEs was 1 g, while the minimum sampling mass for the determination of the other elements was 2–5 mg.  相似文献   

13.
Gilbert‐type deltas are sensitive recorders of short‐term base‐level changes, but the delta‐front record of a base‐level rise tends to be erased by fluvial erosion during a subsequent base‐level fall, which renders the bulk record of base‐level changes difficult to decipher from the delta‐front deposits. The present detailed study of three large Pleistocene Gilbert‐type deltas uplifted on the southern coast of the Gulf of Corinth, Greece, indicates a genetic link between the delta‐front morphodynamic responses to base‐level changes and the delta‐slope sedimentation processes. Sigmoidal delta‐brink architecture signifies a base‐level rise and is accompanied by a debrite‐dominated assemblage of delta foreset deposits, thought to form when the aggrading delta front stores sediment and undergoes discrete gravitational collapses. Oblique delta‐brink architecture tends to be accompanied by a turbidite‐dominated assemblage of foreset deposits, which are thought to form when the delta‐front accommodation decreases and the sediment carried by hyperpycnal effluent bypasses the front. This primary signal of the system response to base‐level changes combines further with the secondary ‘noise’ of delta autogenic variation and possible allogenic fluctuations in fluvial discharge due to regional climatic conditions. Nevertheless, the evidence suggests that the facies trends of delta foreset deposits may be used to decipher the delta ‘hidden’ record of base‐level changes obliterated by fluvial topset erosion. Early‐stage bayhead deltas may be an exception from the hypothetical model, because their narrow front tends to be swept by river floods irrespective of base‐level behaviour and their subaqueous slope deposits are thus mainly turbidites.  相似文献   

14.
This paper presents parallel and serial viscoelasto‐plastic models to simulate the rate‐independent and the rate‐dependent permanent deformation of stone‐based materials, respectively. The generalized Maxwell viscoelastic and Chaboche's plastic models were employed to formulate the proposed parallel and serial viscoelasto‐plastic constitutive laws. The finite element (FE) implementation of the parallel model used a displacement‐based incremental formulation for the viscoelastic part and an elastic predictor—plastic corrector scheme for the elastoplastic component. The FE framework of the serial viscoelasto‐plastic model employed a viscoelastic predictor—plastic corrector algorithm. The stone‐based materials are consisted of irregular aggregates, matrix and air voids. This study used asphalt mixtures as an example. A digital sample was generated with imaging analysis from an optically scanned surface image of an asphalt mixture specimen. The modeling scheme employed continuum elements to mesh the effective matrix, and rigid bodies for aggregates. The ABAQUS user material subroutines defined with the proposed viscoelasto‐plastic matrix models were employed. The micromechanical FE simulations were conducted on the digital mixture sample with the viscoelasto‐plastic matrix models. The simulation results showed that the serial viscoelasto‐plastic matrix model generated more permanent deformation than the parallel one by using the identical material parameters and displacement loadings. The effect of loading rates on the material viscoelastic and viscoelasto‐plastic mixture behaviors was investigated. Permanent deformations under cyclic loadings were determined with FE simulations. The comparison studies showed that the simulation results correctly predicted the rate‐independent and rate‐dependent viscoelasto‐plastic constitutive properties of the proposed matrix models. Overall, these studies indicated that the developed micromechanical FE models have the abilities to predict the global viscoelasto‐plastic behaviors of the stone‐based materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
16.
17.
18.
19.
A two‐step Th isolation protocol, involving micro‐columns of TRU‐Spec extraction chromatography material and AG1 resin, was evaluated. The MC‐ICP‐MS procedure included 232Th tailing characterisation and correction, and calibrator bracketing using an in‐house standard solution (ThS1) to correct for instrumental mass bias and Faraday cup to secondary electron multiplier relative gain. Repeated analyses of reference solutions (UCSC Th ‘A’, WUN, OU Th ‘U’, IRMM‐36) were consistent with published data. Six reference materials (A‐THO, BCR‐2, AGV‐2, BHVO‐2, BE‐N and BIR‐1) were processed. The average 230Th/232Th values obtained for these samples are in excellent agreement with published data. In addition, we report the first 230Th/232Th values for BE‐N and BIR‐1. The intermediate precisions for rock samples ranged from ± 0.24 to ± 0.49% (2 RSD) and were similar to those achieved for synthetic solutions, thereby supporting the overall validity of the chemical separation, data acquisition and reduction procedures. Counting statistics on the 230Th isotope was the most significant source of uncertainty. The intermediate precision of the mean 230Th/232Th for the Th‐depleted BIR‐1 (5.64 × 10?6 ± 0.27%, 2 RSD) is in the range of the analyses of other reference materials analysed in this study.  相似文献   

20.
We present a revised alkali fusion method for the determination of trace elements in geological samples. Our procedure is based on simple acid digestion of powdered low‐dilution (flux : sample ≈ 2 : 1) glass beads where large sample dilution demanded by high total dissolved solids, a main drawback of conventional alkali fusion, could be circumvented. Three geological reference materials (G‐3 granite, GSP‐2 granodiorite and SGD‐1a gabbro) decomposed by this technique and routine tabletop acid digestion were analysed for thirty trace elements using a quadrupole ICP‐MS. Results by conventional acid digestion distinctly showed poor recoveries of Zr, Hf and rare earth elements due to incomplete dissolution of resistant minerals. On the other hand, results obtained by our method were in reasonable agreement with reference data for most analytes, indicating that refractory minerals were efficiently dissolved and volatile loss was insignificant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号