首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
利用美国国家环境预报中心/美国国家大气研究中心 (NCEP/NCAR) 的再分析资料, 通过合成分析、对比分析等方法, 对南海夏季风的年代际变化的划分、不同年代际阶段平均场的差异及其成因进行研究。分析表明:南海夏季风强度具有显著的年代际变化特征, 在20世纪70年代末出现了年代际时间尺度的转折, 可将其分成两个阶段, 1960—1976年 (简称第一阶段) 和1980—1998年 (简称第二阶段), 第二阶段与第一阶段相比, 南海地区夏季西南风强度显著减弱, 年际变化的方差显著变大, 变化周期变短, 但是南海中南部地区的上升运动却有所加强。夏季, 从低层到对流层高层, 中国大陆上空的气温显著降低, 海洋上空的气温有所升高, 在热力作用下, 导致大陆中低层位势高度增加比海洋上大, 形成大陆地区反气旋性环流加强, 从而减弱了南海中北部地区的西南风。从辐散风场来看, 赤道东太平洋地区海温显著增加可能对南海中南部地区上升运动的加强起着重要的作用。  相似文献   

2.
孟加拉湾热源对亚洲夏季风环流系统的影响   总被引:8,自引:5,他引:8  
利用 1951—2000年NCEP/NCAR再分析逐日及月平均资料和我国 160个测站 1951—2000年月降水量资料,计算了夏季大气热源气候分布,分析了夏季孟加拉湾地区热源年际异常及亚洲季风环流系统的响应,以及夏季孟加拉湾地区热源与中国夏季降水的年际关系。结果表明:夏季亚洲季风区最强的热源中心位于孟加拉湾东北部一带。当孟加拉湾热源异常强 (弱 )时,南亚高压偏西 (东 ),西太平洋副热带高压位置偏东(西);印度夏季风偏强 (弱),东亚热带季风偏弱 (强 )。孟加拉湾热源异常对南亚高压、南亚季风、副热带高压的影响显著,对东亚热带季风的影响不显著。夏季孟加拉湾热源与同期长江以南、华南东部部分地区降水呈明显负相关,而与西南到华南西部地区降水呈明显正相关。  相似文献   

3.
印度洋偶极子对东亚季风区天气气候的影响   总被引:18,自引:1,他引:17  
利用NCEP/NCAR 40年再分析资料和中国科学院大气物理研究所的IAPAGCM-Ⅱ大气环流模式,分析和模拟了印度洋偶极子对东亚季风区天气气候的影响.结果表明,印度洋偶极子对东亚季风区天气气候,特别是夏季,影响显著.印度洋正偶极子位相期间,东亚地区的西南季风爆发偏晚,强度增强,我国大陆降水增多;而印度洋负偶极子位相期间,东亚地区的西南季风爆发偏早,强度减弱,我国的东南部地区有丰富的降水.  相似文献   

4.
热带环流演变与南海季风爆发   总被引:3,自引:0,他引:3  
利用1958-1997年的NCEP/NCAR再分析资料,分析了南、北半球中低纬环流的气候特征,并讨论了南海夏季风爆发与大尺度环流的关系。研究发现阿拉伯海经向环流管的上升气流和南半球纬向环流管的上升气流在5月份同时到达南海,经向环流管低层的偏西风和纬向环管低层的偏南风共同组成西南风,于是5月份西南季风在南海地区首先爆发。此外,由于青藏高原地形及各经度海陆分布的影响,造成太阳辐射加热不均,是热带夏季风爆发的直接原因,也是南海季风早于印度风爆发的重要原因。  相似文献   

5.
Using the NCAR/NCEP (National Center for Atmospheric Research/National Centers for Environmental Prediction) reanalysis and the NOAA Climate Prediction Center's merged analysis of precipitation (CMAP)during 1981-2000, we investigated the seasonal evolution of the southwesterly wind and associated precipitation over the eastern China-subtropical western North Pacific area and its relationship with the tropical monsoon and rainfall, and analyzed the reasons responsible for the onset and development of the wind. It was found that the persistent southwesterly wind appears over southern China and the subtropical western Pacific the earliest in early spring, and then expands southwards to the tropics and advances northward to the midlatitudes. From winter to summer, the seasonal variation of surface heating over western China and the subtropical western Pacific may result in an earlier reversal of the westward tropospheric temperature gradient over the subtropics relative to the tropics, which may contribute to the earliest beginning of the subtropical southwesterly wind. Additionally, the strengthening and eastward expanding of the trough near the eastern Tibetan Plateau as well as the strengthening and westward moving of the western Pacific subtropical high also exert positive influences on the beginning and development of the subtropical southwesterly wind.In early summer,the northward expansion of the southwesterly wind over southern China is associated with a northward shift of the subtropical high, while the southward stretch of the southwesterly wind is associated with a southward stretch of the trough in the eastern side of the plateau. With the beginning and northward expansion of the subtropical southwesterly wind (namely southwest monsoon), convergences of the low-level air and water vapor and associated upward motion in front of the strongest southwesterly wind core also strengthen and move northward, leading to an increase in rainfall intensity and a northward shift of the rain belt. Accordingly, the subtropical rainy season occurs the earliest over southern China in spring, moves northward to the Yangtze-Huaihe River valley in early summer, and arrives in North China in mid summer.Compared with the subtropical rainy season, the tropical rainy season begins later and stays mainly over the tropics, not pronouncedly moving into the subtropics. Clearly, the Meiyu rainfall over the Yangtze-Huaihe River valley in early summer results from a northward shift of the spring rain belt over southern China,instead of a northward shift of the tropical monsoon rain belt. Before the onset of the tropical monsoon,water vapor over the subtropical monsoon region comes mainly from the coasts of the northern Indo-China Peninsula and southern China. After the onset, one branch of the water vapor flow comes from the Bay of Bengal, entering into eastern China and the subtropical western Pacific via southwestern China and the South China Sea, and another branch comes from the tropical western North Pacific, moving northwestward along the west edge of the western Pacific subtropical high and entering into the subtropics.  相似文献   

6.
利用1979—2014年ERA-Interim逐月的风场、海平面气压场和位势高度场等再分析资料以及中国160站降水观测资料,采用回归分析等方法分析了盛夏(7、8月)南海(South China Sea, SCS)低空越赤道气流(Cross-Equatorial Flow,CEF)的变化及其与东亚夏季风的联系,结果表明:盛夏南海低空越赤道气流(SCEF)强度指数与南海夏季风强度指数呈显著的正相关关系,与东亚副热带夏季风强度指数呈显著的负相关关系。当盛夏SCEF偏强(弱)时,亚洲热带低压及西太平洋赤道辐合带增强(减弱),西太平洋副热带高压强度减弱(增强)、东撤(西伸),南海北部和西北太平洋地区为明显的气旋式(反气旋式)环流异常,使得南海夏季风增强(减弱)和东亚副热带夏季风减弱(增强)。此外,当盛夏SCEF偏强时,由于东亚副热带夏季风减弱,我国华南地区为东北风异常,华北地区为偏南风异常,受其影响,我国华南地区为显著的水汽辐合区,华中地区为显著的水汽辐散区,使得盛夏华南地区降水增多,华中地区降水减少;反之亦然。   相似文献   

7.
National Meteorological Information Center (NMIC) rainfall data and NCEP/NCAR daily circulation reanalysis data are employed to establish the onset-pentad time index of the spring persistent rains (SPR) and the decay-pentad time index of the South China Sea (SCS) sub-high. These indexes are used to study the relationship between the factors in SPR period and their relations to the circulation and precipitation of the East Asian summer monsoon (EASM). Results show that, the summer rainfall over southeastern China decreases when SPR onset is late. For then EASM strengthens and the cyclonic circulation around the Tibetan Plateau (TP) strengthens, which makes abnormal anti-cyclonic circulation (cyclonic convergent circulation weakens) appear over southeastern China. When the decay of SCS sub-high delays, abnormal flood prevails over the middle and lower reaches of the Yangtze River (MLYR) and to the south. That is mainly caused by EASM weakening while SCS sub-high strengthening, then the abnormal southwesterly over South China and the abnormal northerlies of anti-cyclonic circulation around the TP converge over the Yangtze Valley. The two indexes have high correlations with multivariate ENSO index (MEI) in March, indicating that the climate abnormity in East Asia is related to global climate abnormity tightly. The two time indexes are independent of each other, which is favorable for the prediction of the anomalies of the circulation and precipitation of EASM. From this point of view, we must take the global climate background into account when we analyze and predict the East Asian summer circulation and precipitation.  相似文献   

8.
基于1979—2014年ERA-Interim逐月风场和水汽通量资料及GPCP逐月降水率资料,采用相关分析及合成分析等方法研究了夏季南海低空越赤道气流的变化特征及其与亚澳季风区降水异常的联系。结果表明:1)夏季南海低空越赤道气流强度的年际变化特征明显,具有3~4 a的周期。2)夏季南海低空越赤道气流强度变化与热带东印度洋和海洋性大陆区域降水异常具有显著的负相关关系、与热带西太平洋降水异常存在明显的正相关关系、与我国中部地区降水异常存在较好的负相关关系。3)当夏季南海低空越赤道气流强度偏强时,850 hPa上自阿拉伯海向东一直延伸到热带西太平洋为西风异常,这种环流形势有利于热带西太平洋出现水汽辐合,使得该区域降水出现明显偏多,同时热带东印度洋低层为东风异常,受其影响,热带东印度洋和海洋性大陆区域出现水汽辐散,使得该区域降水偏少;此外,在我国东南沿海为一个气旋式风场异常,不利于来自热带海洋的水汽输送到达我国中部地区,使得该地区降水偏少;反之亦然。4)当夏季南海低空越赤道气流偏强时,东亚地区局地Hadley环流表现为异常偏弱,低空偏南越赤道气流异常在20°N附近与来自北半球的冷空气交汇上升,赤道附近及30~40°N地区出现异常下沉运动,使得热带海洋性大陆区域和我国中部地区降水减少;反之亦然。  相似文献   

9.
热带西北太平洋10~30 d振荡对南海夏季风影响   总被引:1,自引:1,他引:0       下载免费PDF全文
采用1958—2011年NCEP/NCAR再分析资料以及ERSST海温资料,分析热带西太平洋夏季对流10~30 d振荡对南海夏季风的影响。在年际变化尺度上,热带西北太平洋夏季10~30 d振荡强度指数 (TWPI) 与南海夏季风强度有很好的正相关关系。在TWPI增强年份,海温主要呈El Ni?o分布,南海周边区域增强的异常西风产生强的正涡度切变,导致异常气旋性环流,为季风槽的增强提供了热量和水汽,从而增强南海夏季风强度。反之,在TWPI减弱年份,海温主要呈La Ni?a分布,南海夏季风强度减弱。在不同的年代际背景下,垂直切变和水汽-对流的总体变化是影响TWPI总体变化的重要因子,但不能影响南海夏季风强度的总体变化。海陆热力对比的总体变化是导致南海夏季风强度总体变化的主要影响因素。  相似文献   

10.
采用NCEP/NCAR再分析月平均资料和NOAA全球逐日降水资料,首先利用EOF方法分析了南海夏季风的垂直结构时空变化特征,然后初步探讨了南海夏季风垂直结构对中国夏季降水的影响和机制。(1)南海夏季风的垂直结构有明显的年际和年代际变化特征。EOF第一模态型主要表现为南海夏季风垂直结构的年际变化特征,为对流层低层西南风和对流层高层东北风同时增强(同时减弱)(简称“低层-高层同时增强”和“低层-高层同时减弱”)两种典型结构变化;EOF第二模态主要表现为南海夏季风垂直结构的年代际变化,为对流低层(高层)西南风(东北风)由下向上的增强到减弱变化和相反的对流层低层(高层)西南风(东北风)减弱到增强的变化(简称“低层强弱-高层强弱”和“低层弱强-高层弱强”)的两个不同年代(时段)的垂直结构变化。(2)南海夏季风垂直结构变化通过改变对流层低层、高层的环流异常变化来影响中国东部夏季降水的异常变化。南海夏季风呈“低层-高层同时增强”垂直结构时,南海低纬热带季风环流异常加强,长江流域低层辐散、高层辐合及异常下沉运动,其南侧的华南地区和北侧的东北地区是低层辐合、高层辐散和异常上升运动,导致华南降水异常偏多、...  相似文献   

11.
PeculiarTemporalStructureoftheSouthChinaSeaSummerMonsoonBinWang①andRenguangWuDepartmentofMeteorology,UniversityofHawai,USARec...  相似文献   

12.
西北太平洋夏季风对中国长江流域夏季降水的影响   总被引:11,自引:5,他引:6  
刘芸芸  丁一汇 《大气科学》2009,33(6):1225-1237
利用1979~2005年NCEP/NCAR的环流场再分析资料和降水资料, 通过对季风期降水、 大气环流、 水汽输送及低频振荡等方面的分析, 分别从时间和空间上分析了西北太平洋夏季风与中国长江流域夏季降水的联系。结果表明:(1) 西北太平洋夏季风与中国长江流域夏季降水存在显著的负相关关系, 在西北太平洋夏季风强盛时, 副热带高压异常偏北, 其西侧的偏南气流异常偏弱, 使得我国长江流域形成低层异常环流及水汽输送的辐散区, 从而造成长江流域夏季降水偏少; 而在西北太平洋夏季风减弱的年份, 西太平洋副高异常偏南偏西, 在长江流域以南地区形成异常偏强的偏南风水汽输送, 使得长江流域成为南、 北距平风的汇合区, 其上空对流活动异常活跃, 非常有利于长江流域的降水。 (2) 东亚局地Hadley垂直环流在强、 弱季风年也显著不同, 在强季风年里, Hadley局地环流异常偏弱, 长江流域上空出现的下沉运动距平, 使得该地区降水减弱, 而弱季风年则正好相反。 (3) 西北太平洋夏季风存在显著的气候平均的大气季节内振荡 (CISO), 在西北太平洋夏季风减弱时期, 长江流域降水同时受到源自热带西北太平洋西传CISO和源自热带印度洋东传CISO的共同影响, 可能造成了某种锁相关系, 从而造成降水偏多; 而在强季风年里长江流域只受由西太平洋西传的CISO的影响, 不容易激发降水。  相似文献   

13.
冬季赤道西太平洋环流状况与后期亚洲季风   总被引:4,自引:0,他引:4  
武炳义  黄荣辉 《大气科学》2001,25(5):609-626
基于月平均NCEP再分析资料(1958~1997年)以及中国336个台站月降水总量(195l~1994年),通过合成、相关以及统计显著性检验方法,研究了赤道西太平洋区域冬季环流状况与后期春夏季亚洲(东亚和南亚)季风环流变化的关系.研究结果表明,冬季赤道西太平洋环流状况对后期南亚季风和东亚季风以及我国夏季降水均有显著的滞后影响.冬季赤道西太平洋海域海平面气压偏高(低),对应反气旋(气旋)性环流异常,致使后期东亚和南亚夏季风均偏弱(强)以及我国长江流域夏季降水偏多(少),揭示了实施这种滞后影响的一般特征.  相似文献   

14.
南海夏季风爆发的数值预报模拟实验   总被引:5,自引:0,他引:5  
1998年5月21日00时(UTC),对流层上部200hPa的南亚反气旋中心位于(16oN,94oE)附近,850hPa南海的中南部仍为副热带反气旋控制;到21日12时,200hPa的南亚反气旋中心迅速移到(21oN,94oE)附近,同时850hPa的南海副热带反气旋减弱东撤,南海的中南部由东南风转变为西南风,南海夏季风爆发。本文利用美国国家大气研究中心和宾西法尼亚州大学联合研制的中尺度模式(MM5V2)模拟预报这一过程,同时通过敏感性实验研究了区域边界条件和水平分辨率对季风预报模拟实验的影响。  相似文献   

15.
Summary Interannual variations of the summer monsoon onset over the South China Sea (SCS) have been studied using data from over seventeen years (1979–1995) of NMC global analysis and of Outgoing Longwave Radiation (OLR) observed with NOAA polar-orbitting satellites. It was found that the summer monsoon onset in the SCS occurs abruptly with a sudden change of zonal wind direction from easterly to westerly and an exploding development of deep convection in the whole SCS region in the middle of May. Based on the criteria defined in this paper for the SCS summer monsoon onset, the average onset date over the SCS from 1979 to 1995 is around the fourth pentad of May. The airflow and general circulation over the SCS changes dramatically after the onset. The ridge of the subtropical high in the western Pacific in the lower troposphere weakens and retreats eastward from the SCS region with an establishment of westerly winds over the whole region. During the SCS monsoon onset, the most direct impact in the vicinity of the SCS are the equatorial westerlies in the Bay of Bengal through their eastward extension and northward movement. An indirect influence on the SCS onset is also caused by the enhancement of the Somali cross-equatorial flow and the vanishing Arabian High over the sea; the latter may be a signal for the SCS onset. There are quite significant interannual variations in the SCS onset. In the years of a delayed onset, the most profound feature is that the easterly winds stay longer in the SCS than on average. Deep convection activities are suppressed. The direct cause is the abnormal existence of the western Pacific subtropical high over the SCS region. Moreover, compared to the average, the equatorial westerlies in the Bay of Bengal are also weaker in the years of a delayed onset. No significant changes for the cross-equatorial flow at 105 °E are observed for these years. It has also been found that the interannual variations of the SCS onset are closely related with the ENSO events. In the years of a delay, the Walker circulation is weaker, and the sea surface temperature (SST) anomalies in the western Pacific are negative. Received April 14, 1997 Revised July 11, 1997  相似文献   

16.
夏季广东降水异常变化与夏季风   总被引:19,自引:14,他引:19  
利用广东省36个地面站降水量资料和NCEP850hPa再分析资料,采用相关分析和合成对比分析方法,探讨了广东降水变化与夏季季风活动的关系。发现广东夏季降水量变化与南海北部西南风大小成显著正相关,但并不能由此得出南海北部西南季风强广东降水多的结论。前汛期(4-6月),西南季风可以给广东带来降水,但降水的变化与西南季风强度变化关系不显著,5-6月份甚至出现热带西南季风弱广东降水反而强的情况,其主要的影响来自于副热带季风的加强。后汛期(7-9月),当西南季风在南海中北部地区加强,副热带季风对广东影响减弱时,广东降水增大。  相似文献   

17.
Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China Peninsula-South China Sea on the formation of the Asian summer monsoon circulation (ASMC). The results show that the thermal difference between African or Indian Subcontinent and nearby areas including the Indian Ocean, Arabian Sea, and part of BOB is the primary mechanism that maintains the Indian monsoon circulation. In the experiment getting rid of these two continents, the Indian monsoon system (IMS) members, i.e., the Somali cross-equatorial jet (40°E) and the southwesterly monsoon over the Arabian Sea and BOB, almost disappear. Moreover, the Hadley circulation weakens dominantly. It also proves that Africa has greater effect than Indian Subcontinent on the IMS. However, the existence of Indo-China Peninsula and Australia strengthens the East Asian monsoon system (EAMS). The thermal contrast between Indo-China Peninsula and SCS, Australia and western Pacific Ocean plays an important role in the formation of the tropical monsoon to the south of the EAMS. When the Indo-China Peninsula is masked in the experiment, the cross-equatorial flow (105°E and 125°E) vanishes, so does the southwesterly monsoon usually found over East Asia, and EAMS is enfeebled significantly. In addition, the impacts of these thermal contrasts on the distribution of the summer precipitation and surface temperature are investigated.  相似文献   

18.
基于1979—2020年逐日的NOAA向外长波辐射资料、NCEP/NCAR再分析风场资料,以及全球CMAP再分析降水资料,探讨了气候态亚洲热带夏季风涌的传播过程及与我国夏季相应的降水联系。分析结果表明,主汛期亚洲热带气候态夏季风季节内振荡(CISO)活动是亚洲夏季风活动的主要特征,随时间北传的亚洲热带夏季风CISO称为亚洲热带夏季风涌,主要有南亚夏季风涌和南海夏季风涌。亚洲热带夏季风涌的传播可分为四个阶段。在亚洲热带夏季风涌的发展阶段,印度洋区域低频气旋与对流活跃,孟加拉湾和南海热带区域被低频东风控制,我国大部分地区无降水发生,降水中心位于两广地区。当进入亚洲热带夏季风涌活跃阶段,孟加拉湾和南海热带地区低频气旋和对流活跃,东亚低频“PJ”波列显著,我国降水中心北移到长江以南的附近区域。亚洲热带夏季风涌减弱阶段,孟加拉湾与南海低频气旋消亡,对流减弱,低频西风加强,日本南部附近为低频反气旋控制,我国长江中下游低频南风活跃,降水中心也北移到长江中下游地区,而华南地区已基本无降水,此阶段的大气低频环流场与亚洲热带夏季风涌发展阶段基本相反。进入亚洲热带夏季风涌间歇阶段时,孟加拉湾和南海热带地区低...  相似文献   

19.
Multi-scale contributions are involved in the South China Sea (SCS) summer monsoon (SCSSM) onset process. The relative roles of intraseasonal oscillation and above-seasonal component in the year-to-year variation of the SCSSM onset are evaluated in this study. The 30-90-day and above-90-day components are major contributors to the year-to-year variation of the SCSSM onset, and the former contributes greater portion, while the 8-30-day component has little contribution to the onset. In the early onset cases, the 30-90-day westerly winds move and extend eastward from the tropical Indian Ocean (TIO) to the SCS monsoon region relatively earlier, and replace the easterly winds over the SCS with the cooperation of the 30-90-day cyclone moving southward from northern East Asia. The westerly anomalies of the above-90-day component in spring jointly contribute to the early SCSSM onset. In the late onset cases, the late eastward expansion of 30-90-day westerly wind over the TIO, accompanied by the late occurrence and weakening of the 30-90-day anticyclone over the SCS, and its late withdraw from the SCS, as well as the persistent easterly anomalies of above-90-day component, suppress the SCSSM onset. However, the SCSSM outbreaks in the obvious weakening stage of 30-90-day easterly anomalies. The easterlies-to-westerlies transition of the 30-90-day 850- hPa zonal wind over the SCS in spring is closely associated with sea surface temperature in the tropical western Pacific in preceding winter and spring, while the interannual variation of the above-90-day zonal wind in April-May is closely related to the decaying stage of the El Ni?o-Southern Oscillation events.  相似文献   

20.
东亚副热带西风急流位置变化与亚洲夏季风爆发的关系   总被引:1,自引:0,他引:1  
张耀存  况雪源 《湖北气象》2008,27(2):97-103
利用1961~2000年的NCEP/NCAR候平均再分析资料,初步探讨了季节转换期间东亚副热带西风急流南北和东西向位置变化与亚洲季风爆发之间的联系。结果表明,亚洲夏季风爆发伴随着东亚副热带西风急流轴线的北跳和急流中心西移,急流轴北跳至35°N以北的青藏高原上空,南支西风急流消失,亚洲季风环流形势建立。南海季风爆发早年,低纬的东风向北推进的时间早,到达的纬度偏北,中纬的西风急流强度偏弱,季风爆发晚年则相反。同时,南海夏季风爆发早年,青藏高原上空急流核出现较早,西太平洋上空急流核减弱较快,急流中心“西移”较早。而在南海夏季风爆发晚年,西太平洋上空的急流核减弱较迟,青藏高原上空急流核形成偏晚,急流中心“西移”较迟。此外,急流中心东西向位置和强度变化与江淮流域梅雨的开始和结束也有密切关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号