首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.  相似文献   

2.
This paper deals with hydrodynamic forces of a single semisubmerged circular cylinder containing a concentric cylindrical hole constrained to move in a water domain of finite depth. The fluid domain is divided into inner and outer regions. The Laplace equations governing velocity potentials for the three regions are solved by separation of variables and expressed in terms of eigenfunctions of the resulting equations which satisfy appropriate boundary conditions. Continuity of pressure and velocity at the interface of the regions provides the necessary equations from which the velocity potentials, pressures and forces are obtained. Numerical results are plotted for added mass and damping coefficients for different draft-to-depth and radius-to-depth values and for various wave amplitudes.  相似文献   

3.
We analyze the influence of a rift in an ice field on the propagation of flexural gravitational waves in a basin of finite constant depth. The ice cover is simulated by two floating semiinfinite elastic plates of different thickness. We studied the dependence of the amplitude coefficients of reflection and transmission of waves incident on the rift on the frequency of running waves, the thickness of ice on both sides of the rift, and the type of contact boundary conditions at the rift. Translated by Peter V. Malyshev and Dmitry, V. Malyshev  相似文献   

4.
A radiation and diffraction boundary value problem is investigated. It arises from the interaction of linear water waves with a freely floating rectangular structure in a semi-infinite fluid domain of finite water depth with the leeward boundary being a vertical wall. Analytical expressions for the radiated potentials and the diffracted potential are obtained by use of the method of separation of variables and the eigenfunction expansion method. The added masses and damping coefficients for the structure heaving, swaying and rolling in calm water are obtained by use of the corresponding radiated potentials and the wave excitation forces are calculated by use of the diffracted potential. To verify the correctness of the method, a boundary element method is used. A comparison of the analytical results with those obtained by the boundary element method is made and good agreement is achieved, which shows that the analytical expressions for the radiated and diffracted potentials are correct. By use of the present analytical solution, the added mass, damping coefficients, wave excitation force, together with the hydrodynamic effects of the draft, width of the structure and the clearance between the structure and the sidewall are also investigated.  相似文献   

5.
The interaction of linear waves with a uniform, bottom-mounted, surface-piercing cylinder whose diameter exhibits a cosine-type variation is investigated. Two solution methods are presented. One method is based on a perturbation theory, using a perturbation parameter defined in terms of the surface geometry of the cylinder. The analysis includes terms up to the first-order in this parameter, where the zeroth-order solution corresponds to a circular cylinder. The velocity potentials at the zeroth and first orders are expressed as eigenfunction expansions involving unknown coefficients that are subsequently determined through the cylinder boundary conditions. The second method is based on Green's theorem and gives rise to an integral equation for the fluid velocity potential on the cylinder surface. A comparison between the results of these two methods has proved that they are in good agreement for small values of the perturbation parameter. Numerical results are presented that illustrate the influence of the magnitude and frequency of these perturbations on the resulting hydrodynamic force and the wave runup on the cylinder.  相似文献   

6.
In this study Free vibration analysis of vertical rectangular Mindlin plates resting on Pasternak elastic foundation and fully or partially in contact with fluid on their one side is investigated for different combinations of boundary conditions. The plate is assumed to be one of vertical rectangular walls of a container in contact with fluid. In order to analyze the interaction of the Mindlin plate with the elastic foundation and fluid system, three displacement components of the plate are expressed in the Ritz method by adopting a set of static Timoshenko beam functions satisfying geometric boundary conditions in a Cartesian co-ordinate system. The method of separation of variables and the method of Fourier series expansion is used to model fluid and to obtain the exact expression of the motion of fluid in the form of integral equations. The fluid domain is finite in depth and width but infinite in the length direction. To demonstrate the accuracy of the present solution, convergence study is first carried out and then a few comparison studies are carried out with the available data in the literature. Finally, natural frequencies of rectangular plates are presented in tabular and graphical forms for different fluid levels, foundation parameters, aspect ratios, thickness to width ratios and boundary conditions.  相似文献   

7.
The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi-infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory through an analytical solution procedure. The expressions for potentials are obtained by the method of variation separation, in which the unknown coefficients are determined by the boundary condition and matching requirement on the interface. The effects of the position of the hole and the gap between the body and side wall on hydrodynamic characteristics are investigated. Some resonance is observed like piston motion in a moon pool and sloshing in a closed tank because of the existence of restricted fluid domains.  相似文献   

8.
This paper investigates hydrodynamic pressures and forces on submerged vertical cylindrical tanks under the action of harmonic ground excitations. Water is assumed to be imcompressible and inviscid, motion irrotational and waves are of small amplitude. Semi-analytical method is used for the solution, that is, the fluid domain is divided into inner and outer regions. The Laplace equations governing velocity potentials for the two regions are solved by separation of variables and expressed in terms of eigenfunctions of the resulting equations which satisfy appropriate boundary conditions. Continuity of pressure and velocity at the interface of the inner and outer regions provides the necessary equations from which the velocity potentials, pressures and forces are obtained. Numerical results are presented in graphical form for forces and pressures for a range of excitation frequencies for selected proportions of tank geometry and water depth.  相似文献   

9.
The hydrodynamic problem arising form the interaction of linear water waves with a wave energy device consisting of two coaxial vertical cylinders of different radii is investigated. One cylinder is riding in waves, while another is submerged in fluid. By use of the method of separation of variables and the method of matched eigenfunction expansion, analytical expressions for the potentials are obtained. Using the expressions for the potentials, analytical expressions for the hydrodynamic coefficients and exciting forces/moments on the device are obtained. Numerical results of the hydrodynamic coefficients and exciting forces/moments are presented for some ratios of the radius of the submerged cylinder to that of the riding one. It is found that the radius of the submerged cylinder has a significant influence on the hydrodynamic coefficients and exciting forces/moments for relatively bigger radius of the submerged cylinder at low frequencies.  相似文献   

10.
A numerical solution is developed to investigate the generation and propagation of small-amplitude water waves in a semi-infinite rectangular wave basin. The three-dimensional wave field is produced by the prescribed “snake-like” motion of an array of segmented wave generators located along the wall at one end of the tank. The solution technique is based on the boundary element approach and uses an appropriate three-dimensional Green function which explicitly satisfies the tank-wall boundary conditions. The Green function and its derivatives which appear in the integral equation formulation can be shown to be slowly convergent when the source and field points are in close proximity. Therefore, when computing the velocity potentials on the wave generators, the source points are chosen outside the fluid domain, thereby ensuring the rapid convergence of these functions and rendering the integral equations non-singular. Numerical results are shown which illustrate the influence of the various wavemaker and basin parameters on the generated wave field. Finally, the complete wave field produced by the diffraction of oblique waves by a vertical circular cylinder in a basin is presented.  相似文献   

11.
When the shock wave of underwater explosion propagates to the surfaces of different boundaries, it gets reflected. Then, a negative pressure area is formed by the superposition of the incident wave and reflected wave. Cavitation occurs when the value of the negative pressure falls below the vapor pressure of water. An improved numerical model based on the spectral element method is applied to investigate the cavitation effect of underwater shock near different boundaries, mainly including the feature of cavitation effect near different boundaries and the influence of different parameters on cavitation effect. In the implementation of the improved numerical model, the bilinear equation of state is used to deal with the fluid field subjected to cavitation, and the field separation technique is employed to avoid the distortion of incident wave propagating through the mesh and the second-order doubly asymptotic approximation is applied to simulate the non-reflecting boundary. The main results are as follows. As the peak pressure and decay constant of shock wave increases, the range of cavitation domain increases, and the duration of cavitation increases. As the depth of water increases, the influence of cavitation on the dynamic response of spherical shell decreases.  相似文献   

12.
The radiation and the diffraction of linear water waves by an infinitely long floating rectangular structure submerged in water of finite depth with leeward boundary being a vertical wall are analyzed in this paper by using the method of separation of variables. Analytical expressions for the radiated and diffracted potentials are derived as infinite series with unknown coefficients determined by the eigenfunction expansion matching method. The expressions for wave forces and hydrodynamic coefficients are given. A comparison is made between the results obtained by the present analytical solution and those obtained by the boundary element method. By using the present analytical solution, the hydrodynamic influences of the submergence, the width, the thickness of the structure, and the distance between the structure and the wall on the wave forces and hydrodynamic coefficients are discussed in detail.  相似文献   

13.
The problem of a uniform current passing through a circular cylinder submerged below an ice sheet is considered. The fluid flow is described by the linearized velocity potential theory, while the ice sheet is modelled through a thin elastic plate floating on the water surface. The Green function due to a source is first derived, which satisfies all the boundary conditions apart from that on the body surface. Through differentiating the Green function with respect to the source position, the multipoles are obtained. This allows the disturbed velocity potential to be constructed in the form of an infinite series with unknown coefficients which are obtained from the boundary condition. The result shows that there is a critical Froude number which depends on the physical properties of the ice sheet. Below this number there will be no flexural waves propagating to infinity and above this number there will be two waves, one on each side of the body. When the depth based Froude number is larger than 1, there will always be a wave at far upstream of the body. This is similar to those noticed in the related problem and is different from that in the free surface problem without ice sheet. Various results are provided, including the properties of the dispersion equation, resistance and lift, ice sheet deflection, and their physical features are discussed.  相似文献   

14.
The problem of coherent reflection of an acoustic plane wave from a rough seabed with a randomly inhomogeneous sediment layer overlying a uniform elastic basement is considered in this analysis. The randomness of the sound field is attributable to the roughness of the seabed and the sound-speed perturbation in the sediment layer, resulting in a joint rough surface and volume scattering problem. An approach based upon perturbation theory, combined with a derived Green's function for a slab bounded above and below by a fluid and an elastic half-space, respectively, is employed to obtain an analytic solution for the coherent field in the sediment layer. Furthermore, a boundary perturbation theory developed by Kuperman and Schmidt (1989) is applied to treat the problem of rough surface scattering. A linear system is then established to facilitate the computation of the coherent reflection field. The coherent reflection coefficients for various surface roughness, sediment randomness, frequency, sediment thickness, and basement elasticity have been generated numerically and analyzed. It was found that the higher/larger size of surface and/or medium randomness, frequency, thickness, and shear-wave speed, the lower the coherent reflection. Physical interpretations of the various results are provided.  相似文献   

15.
Kumar  Prashant  Priya  Prachi  Rajni 《中国海洋工程》2021,35(5):662-675

A mathematical model has been developed to analyze the influence of extreme water waves over multiconnected regions in Visakhapatnam Port, India by considering an average water depth in each multiconnected regions. In addition, partial reflection of incident waves on coastal boundary is also considered. The domain of interest is divided mainly into two regions, i.e., open sea region and harbor region namely as Region-I and Region-II, respectively. Further, Region-II is divided into multiple connected regions. The 2-D boundary element method (BEM) including the Chebyshev point discretization is utilized to solve the Helmholtz equation in each region separately to determine the wave amplification. The numerical convergence is performed to obtain the optimum numerical accuracy and the validation of the current numerical approach is also conducted by comparing the simulation results with existing studies. The four key spots based on the moored ship locations in Visakhapatnam Port are identified to perform the numerical simulation. The wave amplification at these locations is estimated for monochromatic incident waves, considering approximate water depth and different reflection coefficients on the wall of port under the resonance conditions. In addition, wave field analysis inside the Visakhapatnam Port is also conducted to understand resonance conditions. The current numerical model provides an efficient tool to analyze the amplification on any realistic ports or harbors.

  相似文献   

16.
海—气相互作用与海流、风暴潮   总被引:3,自引:4,他引:3  
秦曾灏 《海洋学报》1979,1(1):17-38
从方法论上说,除潮汐以外,通常在处理海洋动力学问题时,大多撇开海洋对大气的影响,强调大气对海洋的主导作用,把大气运动当作诱发海水运动的唯一原动力,视海面风场为给定条件,而后用经验或半经验公式算出海面风应力场,作为施加于海水的强迫力。因此,一个成功的海浪、海流或风暴潮的预报,除了具备反映海水运动的主要物理性能的数学模型外,还必须以客观的、准确的海面风场的数值计算和预报为前提。由于问题的复杂性,迄今为止似乎还不能说在实用上已经提供了海面风的一种足够精确的估算或预报方法。海上气象观测资料,尤其是测风资料的稀少,给海面风应力的实际计算带来不少困难。  相似文献   

17.
The paper presents a multi-resolution MPS (Moving Particle Semi-implicit)-based FSI (Fluid-Structure Interaction) solver for efficient and accurate simulations of incompressible fluid flows interacting with elastic structures. The fluid model is founded on the projection-based MPS solution of continuity and Navier-Stokes equations. The structure model is set based on MPS-based discretization of linear and angular momenta corresponding to an isotropic elastic solid. Fluid-structure coupling is conducted in a mathematically-physically consistent manner along with implementation of a multi-resolution scheme comprising of common radius of influence, revised weight function, revised number density and potential number density concepts to enhance i) consistency of particle-based discretizations, ii) imposition of boundary conditions and iii) volume conservation at fluid-structure interface. A set of previously developed enhanced schemes are also adopted for the fluid model. The robustness and efficiency of proposed Enhanced Multi-resolution MPS-MPS FSI solver are investigated through a set of ocean engineering-related benchmark tests. To the best knowledge of authors, this study presents the first multi-resolution particle method for FSI corresponding to incompressible fluid and elastic structures.  相似文献   

18.
The hydrodynamic properties of long rigid floating pontoon interacting with linear oblique waves in water of finite arbitrary depth are examined theoretically. The flow is idealized as linearized, velocity potentials are expressed in the form of eigen-function expansions with unknown coefficients. The fluid domain is split into three regions, region (1) wave-ward of the structure, region (2) in the lee of the structure, and region (3) beneath the structure. The different hydrodynamic quantities of interest such as the exciting forces, added mass and damping coefficients, reflection and transmission coefficients were studied for an applicable range of wave/structure parameters. Assuming rigid body motions, dynamic responses of the moored structure is approximately calculated through three equations of motion. Floating pontoons proved to be a convenient alternative for protection from waves in shallow water. The present method of solution was found to be computationally efficient, and results are comparable to those obtained through other techniques.  相似文献   

19.
The boundary integral element method based on Green's formula is applied to the analysis of transient flow problem in corrugated bottom tanks. The problem is formulated as a two-dimensional linear, initial boundary value problem in terms of a velocity potential. The Laplace equation and the boundary conditions, except the dynamic boundary condition on the free surface, are transformed into an integral equation by the application of Green's formula. Finite Difference discretization is applied timewise. Initially a triangular wave on the free surface is assumed to be formed. The height of the triangular corrugated bottom is varied between 1/10 and 1/5 of the tank depth. The form of the free surface and the equipotential lines for the flow in the tank are presented at different time steps. An accuracy analysis is performed and distortion in time is considered. Proper coefficients for solutions are derived and presented. The results show that utilization of triangular corrugated bottoms may help to regulate the flow in tanks.  相似文献   

20.
The radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas of finite depth is investigated. The analytical expressions for the radiated and diffracted potentials are derived as infinite series by use of the method of separation of variables. The unknown coefficients in the series are determined by the eigenfunction expansion matching method. The expressions for wave forces, hydrodynamic coefficients and reflection and transmission coefficients are given and verified by the boundary element method. Using the present analytical solution, the hydrodynamic influences of the angle of incidence, the submergence, the width and the thickness of the structure on the wave forces, hydrodynamic coefficients, and reflection and transmission coefficients are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号