首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Open boundaries are important when simulating water waves. In this study, a transparent boundary condition at an open boundary was developed for simulating nonlinear water waves propagating to a distant area using the Moving Particle Semi-implicit method. The novelty of this study is that the technique of wave analysis used in the experiment was introduced into the particle simulation to absorb incident waves; the simulation cost was reduced by employing inflow and outflow regions instead of a long dissipation region. Incident waves in front of the boundary were evaluated using Fourier analysis, and the particles on the transparent boundary were forced to move at the velocity of the analytical solution for Stokes waves in order to absorb the incident waves. The analysis was restricted to periodic waves. Wave propagation was simulated for two wave periods using the developed transparent boundary condition. The results showed that this transparent boundary transmitted the incident waves with small reflection and the simulation cost was lower than that for wave damping by a conventional highly viscous region.  相似文献   

2.
Propagation of a solitary wave over rigid porous beds   总被引:1,自引:0,他引:1  
The unsteady two-dimensional Navier–Stokes equations and Navier–Stokes type model equations for porous flows were solved numerically to simulate the propagation of a solitary wave over porous beds. The free surface boundary conditions and the interfacial boundary conditions between the water region and the porous bed are in complete form. The incoming waves were generated using a piston type wavemaker set up in the computational domain. Accuracy of the numerical model was verified by comparing the numerical results with the theoretical solutions. The main characteristics of the flow fields in both the water region and the porous bed were discussed by specifying the velocity fields. Behaviors of boundary layer flows in both fluid and porous bed regions were also revealed. Effects of different parameters on the wave height attenuation were studied and discussed. The results of this numerical model indicate that for the investigated incident wave as the ratio of the porous bed depth to the fluid depth exceeds 10, any further increase of the porous bed depth has no effect on wave height attenuation.  相似文献   

3.
基于非静压单相流模型NHWAVE建立了高精度二维数值波浪水槽,采用日本2011年实测真实海啸波型系统研究了海啸波在岛礁上传播变形的规律,并且分析了波高、礁坪淹没水深和礁前斜坡坡度等因素对孤立波和真实海啸传播变形的影响。结果表明,相比孤立波,类海啸波的波长明显大于孤立波波长,在测点处引起的水面变化持续时间更长,同等波高情况下真实海啸波型比孤立波能够携带更多的能量,与岛礁的相互作用也更为复杂,在礁坪上形成的淹没水深约为孤立波的两倍。礁前斜坡坡度和礁坪淹没水深均对类海啸波的反射和透射系数有显著影响。随着礁前斜坡坡度的增加,反射系数和透射系数均逐渐增加。随着礁坪淹没水深的增加,反射系数逐渐减小,而透射系数逐渐增大。但是,反射系数和透射系数均随着入射波高的增加而逐渐减小。  相似文献   

4.
港域波浪数学模型的改进与验证   总被引:2,自引:0,他引:2  
通过物理模型对改进的港内波浪传播变形数学模型进行验证。该数学模型以推广的时变缓坡方程为控制方程,采用含松弛因子的ADI法求解,并对波浪反射和透射边界模拟方法进行改进。先通过物理模型试验确定斜向浪入射条件下抛石防波堤前的波浪反射系数,作为数学模型中部分反射边界模拟的依据。然后进行了一个典型港口内波浪折射、绕射和反射的模型试验,测量港内波浪分布。对比模型试验和数学模型计算的结果表明,数学模型可较好地模拟港内复杂地形和边界条件下规则波和不规则波的传播变形。  相似文献   

5.
A numerical irregular wave flume with active absorption of re-reflected waves is simulated by use of volume of fluid (VOF) method. An active 'absorbing wave-maker based on linear wave theory is set on the left boundary of the wave flume. The progressive waves and the absorbing waves are generated simultaneously at the active wave generating-absorbing boundary. The absorbing waves are generated to eliminate the waves coming back to the generating boundary due to reflection from the outflow boundary and the structures. SIRW method proposed by Frigaard and Brorsen (1995) is used to separate the incident waves and reflected waves. The digital filters are designed based on the surface elevation signals of the two wave gauges. The corrected velocity of the wave-maker paddle is the output from the digital filter in real time. The numerical results of regular and irregular waves by the active absorbing-generating boundary are compared with the numerical results by the ordinary generating boundary to verify the performance of the active absorbing-generator boundary. The differences between the initial incident waves and the estimated incident waves are analyzed.  相似文献   

6.
《Coastal Engineering》2005,52(4):331-351
The development of an analytic model (Axisymmetric 3-D Step Model) for the propagation of linear water waves over an axisymmetric bathymetric anomaly in arbitrary water depth is presented. The Axisymmetric 3-D Step Model is valid in a region of uniform depth containing an axisymmetric bathymetric anomaly with gradual transitions in depth allowed as a series of steps approximating arbitrary slopes. The velocity potential is calculated by applying matching conditions at the interface between regions of constant depth. The velocity potential obtained determines the wave field in the domain for monochromatic incident waves of linear form. A second analytic model (3-D Shallow Water Exact Model) is developed for comparison within the shallow water limit.The Axisymmetric 3-D Step Model determines the wave transformation caused by the processes of wave refraction, diffraction and reflection. Wave transformation is demonstrated in plots of the relative amplitude for bathymetric anomalies in the form of pit or a shoal, highlighting areas of wave sheltering and wave focusing. Anomalies of constant volume, but variable cross-section are employed to isolate the effect of the transition slope on the wave transformation.Comparisons to a shallow water model, numerical models, and experimental data verify the results of the Axisymmetric 3-D Step Model for several bathymetries including both pits and shoals. Also included are estimates of the energy reflection induced by an axisymmetric depth anomaly. The 3-D Axisymmetric Step Model has been applied previously to account for nearshore transformation (sloping bathymetry) and associated shoreline changes [C.J. Bender, R.G. Dean, Coastal Engineering 51 (2004) 1143].  相似文献   

7.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2007,34(10):1449-1458
A numerical approach based on desingularized boundary element method and mixed Eulerian–Lagrangian formulation [Zhang et al., 2006. Wave propagation in a fully nonlinear numerical wave tank: a desingularized method. Ocean Engineering 33, 2310–2331] is extended to solve the water wave propagation over arbitrary topography in a three-dimensional wave tank. A robust damping layer applicable for regular and irregular incident waves is employed to minimize the outgoing wave reflection back into the wave tank. Numerical results on the propagation of regular and irregular incident waves over the flat bottom and linear incident waves over an elliptical shoal show good concurrence with the corresponding analytical solutions and experimental data.  相似文献   

8.
滕斌  崔杰 《海洋工程》2022,40(1):1-9
应用基于势流理论的频域边界元方法,研究了波浪在有限长正弦周期地形上的传播问题.开展了网格收敛性分析,并与物理模型试验结果做了对比,验证了数值方法的准确性.研究了正弦地形长度和幅度对水波反射率的影响,以及波浪在周期性地形上传播时的沿程波幅变化.研究发现,波浪反射系数随波数的变化及波浪幅值沿程的变化均呈包络状;当频率处于布拉格共振区域边缘且反射率为零时,周期地形上会出现极大的波幅;随海床波幅增大,第一布拉格共振带变宽且向低频移动.  相似文献   

9.
Numerical Wave Channel with Absorbing Wave-Maker   总被引:2,自引:0,他引:2  
The numerical wave channel has been developed based on the volume of fluid method (VOF) in conjunction with the Navier-Stokes equations. The absorbing wave-maker boundary on the left side of the channel is presented by prescribing velocity reference to linear wave-maker theory. The principle of which is that the numerical wave-maker is designed to move in a way that generates the required incident wave and cancels out any reflected wave that reach it at the same time. On the right side of the channel, the open boundary is set to permit incident waves to be transmitted freely. The parametric studies have been carried out at a range of ratios of water depth to wave length d/ L from 0.124 to 0.219, with wave height in the front of paddle/water depth ratio (H0 / d) from 0.1 to 0.3. Wave height, wave pressure distribution along the channel and velocity field are obtained for both open boundary condition and reflective boundary condition at the other end of the channel. For a reflective case, it is shown that  相似文献   

10.
A numerical model is developed that can predict the interaction of regular waves normally incident upon a curtainwall-pile breakwater; the upper part of which is a vertical wall and the lower part consists of an array of vertical piles. The numerical model is based on an eigenfunction expansion method, and utilizes a boundary condition nearby the vertical piles that accounts for wave energy dissipation. Numerical solution comprises a finite number of terms, which is a superposition of propagating waves and a series of evanescent waves. The modeling is validated by comparison with previous experimental studies and overall agreement between measurement and calculation is fairly good. The numerical results are related to reflection, transmission, and dissipation coefficient; wave run-up, wave force, and wave overturning moment are also presented. Effect of porosity, relative draft, and relative water depth are discussed; the choice of suitable range of them is described. The relative draft is more effective for shallow water waves. Model shows decrease in relative draft and leads to reduction of relative wave force, overturning moment, and runup. It is shown that curtainwall-pile breakwaters can operate both effectively and efficiently in the range of relative draft between 0.15 and 0.75. The range 0.5 to 0.2 is also recommended for porosity.  相似文献   

11.
潜堤后高阶自由谐波的研究   总被引:1,自引:1,他引:0  
基于高阶边界元方法的完全非线性数值水槽模型模拟潜堤地形上波浪的传播变形,通过与实验值进行比较,考察数学模型的正确性.采用两点法分离得到堤后高倍频自由波来研究入射波参数、水深对堤后高倍频自由波的影响.研究发现:基频波、二阶和三阶自由波幅值分别与入射波波幅成线性、二次和三次函数关系,基频波幅值基本不随波浪周期变化,而二阶和...  相似文献   

12.
-Wave refraction-diffraction due to a large ocean structure and topography in the presence of a 'current are studied numerically. The mathematical model is the mild-slope equation developed by Kirby (1984). This equation is solved using a finite and boundary element method. The physical domain is devid-ed into two regions: a slowly varying topography region and a constant water depth region. For waves propagating in the constant water depth region, without current interfering, the mild- slope equation is then reduced to the Helmholtz equation which is solved by boundary element method. In varying topography region, this equation will be solved by finite element method. Conservation of mass and energy flux of the fluid between these two regions is required for composition of these two numerical methods. The numerical scheme proposed here is capable of dealing with water wave problems of different water depths with the main characters of these two methods.  相似文献   

13.
Interaction Between Waves and A Comb-Type Breakwater   总被引:2,自引:1,他引:2  
DONG  Guo-hai 《中国海洋工程》2003,17(4):517-526
The characteristics of wave transmission, reflection and energy dissipation of comb-type caisson breakwaters are studied through laboratory physical model tests. Regular and irregular waves, with a wide range of wave heights and periods and a constant water depth, are considered. Different dimensions of each portion of the comb-type caisson breakwater are tested. Empirical formulae for calculating the reduction coefficient k, which is the ratio of horizontal wave force on unit length of the comb-type breakwater to that on unit length of the vertical wall breakwater, and for calculating the reflection coefficient of waves k, are obtained from the measurements. The comb-type caisson breakwater has been found to be very efficient in dissipating incident wave energy and in reducing wave reflection, and has already been used for the construction of an island breakwater in the Dayao Bay of Dalian Port, Liaoning Province, China. Compared with the cost of a common caisson breakwater, about 24. 5% of the investm  相似文献   

14.
《Ocean Engineering》1999,26(4):287-323
A set of Boussinesq-type equations with improved linear frequency dispersion in deeper water is solved numerically using a fourth order accurate predictor-corrector method. The model can be used to simulate the evolution of relatively long, weakly nonlinear waves in water of constant or variable depth provided the bed slope is of the same order of magnitude as the frequency dispersion parameter. By performing a linearized stability analysis, the phase and amplitude portraits of the numerical schemes are quantified, providing important information on practical grid resolutions in time and space. In contrast to previous models of the same kind, the incident wave field is generated inside the fluid domain by considering the scattered wave field in one part of the fluid domain and the total wave field in the other. Consequently, waves leaving the fluid domain are absorbed almost perfectly in the boundary regions by employment of damping terms in the mass and momentum equations. Additionally, the form of the incident regular wave field is computed by a Fourier approximation method which satisfies the governing equations accurately in water of constant depth. Since the Fourier approximation method requires an Eulerian mean current below wave trough level or a net mass transport velocity to be specified, the method can be used to study the interaction of waves and currents in closed as well as open basins. Several computational examples are given. These illustrate the potential of the wave generation method and the capability of the developed model.  相似文献   

15.
Internal wave generation in an improved two-dimensional Boussinesq model   总被引:1,自引:0,他引:1  
A set of Boussinesq-type equations with improved linear frequency dispersion in deeper water is solved numerically using a fourth order accurate predictor-corrector method. The model can be used to simulate the evolution of relatively long, weakly nonlinear waves in water of constant or variable depth provided the bed slope is of the same order of magnitude as the frequency dispersion parameter. By performing a linearized stability analysis, the phase and amplitude portraits of the numerical schemes are quantified, providing important information on practical grid resolutions in time and space. In contrast to previous models of the same kind, the incident wave field is generated inside the fluid domain by considering the scattered wave field in one part of the fluid domain and the total wave field in the other. Consequently, waves leaving the fluid domain are absorbed almost perfectly in the boundary regions by employment of damping terms in the mass and momentum equations. Additionally, the form of the incident regular wave field is computed by a Fourier approximation method which satisfies the governing equations accurately in water of constant depth. Since the Fourier approximation method requires an Eulerian mean current below wave trough level or a net mass transport velocity to be specified, the method can be used to study the interaction of waves and currents in closed as well as open basins. Several computational examples are given. These illustrate the potential of the wave generation method and the capability of the developed model.  相似文献   

16.
In the present study, the effect of shear current on the propagation of flexural gravity waves is analyzed under the assumptions of linearized shallow-water theory. Explicit expressions for the reflection and transmission coefficients associated with flexural gravity wave scattering by a step discontinuity in both water depth and current speed are derived. Further, trapping and scattering of flexural gravity waves by a jet-like shear current with a top-hat profile are examined and certain limiting conditions for the waves to exist are derived. The effects of change in water depth, current speed, incident wavelength and the angle of incidence on the group and phase velocities as well as on the reflection and transmission characteristics are analyzed through different numerical results.  相似文献   

17.
Diffraction of obliquely incident waves by a floating structure near a wall with step-type bottom topography is investigated under the three-dimensional small amplitude wave theory. Full solution of the problem under the potential flow approach is obtained by the matched eigenfunction expansion method. The wave-induced forces on the structure and on the wall, the reflection and transmission characteristics and the wave elevations in the free surface regions are studied for different incident wave angles, water depth ratios and dimension of the structure and the distance of the wall from the center of the structure. The problem is reformulated under shallow water approximations and results are compared with the finite depth results.  相似文献   

18.
淹没矩形防波堤透反射系数特性研究   总被引:2,自引:1,他引:2  
采用解析方法研究了斜向入射波作用下淹没矩形防波堤的透反射系数特性.首先利用特征函数展开法导出了绕射势函数的分析解和透反射系数的计算公式,然后利用边界元方法验证了解析解,在此基础上利用解析解分析了若干工况下的防波堤透反射特性.计算结果表明,淹没矩形防波堤截面的宽度、高度和相对位置以及入射角的改变都不同程度影响反射系数和透射系数.在中等深度条件下,对于一定频率的波浪,位置和尺寸适当的淹没矩形堤可以反射大部分斜向入射波.研究结果对设计淹没的矩形防波堤具有重要的参考价值.  相似文献   

19.
Wave interaction with partially immersed twin vertical barriers   总被引:3,自引:0,他引:3  
The wave transmission, reflection and energy dissipation characteristics of partially immersed twin vertical barriers and the water surface fluctuations in between the barriers were studied using physical models. Regular and random waves of wide ranges of wave heights and periods, nine different immersions of the barriers and a constant water depth were used for the investigation. The coefficient of transmission, and the coefficient of reflection were obtained from the measurements and coefficient of energy dissipation is estimated using the law of conservation of energy. It is found in general that the twin barrier is better in reducing the coefficient of transmission and increasing the coefficient of dissipation in random waves than with the regular waves, especially for increasing incident wave energy levels. The coefficient of transmission reduces significantly with the increased relative water depth. Increase of relative water depth from 0.09 to 0.45 resulted in reduction of transmission coefficient from 0.65 to 0.05. It is possible to achieve a transmission coefficient less than 0.20 for six immersion configurations with relative depth of immersions of the barrier less than (0.28, 0.43), especially in the region closer to deep water conditions. Coefficient of dissipation ranging from 0.65 to 0.85 can be obtained due to random wave interaction.  相似文献   

20.
A numerical model for wave propagation in a harbour is verified by use of physical models.The extended time-dependent mild slope equation is employed as the governing equation,and the model is solved by use of ADI method containing the relaxation factor.Firstly,the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests,and it is regarded as the basis for simulating partial reflection boundaries of the numerical model.Then model tests on refraction,diffraction and reflection of waves in a harbour are performed to measure wave height distribution.Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号