首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measuring Hg Isotopes in Bio-Geo-Environmental Reference Materials   总被引:1,自引:0,他引:1  
With the emergence of new analytical techniques and the expansion of scientific fields explored by using mercury isotopes, the community needs reference materials (RM) to validate and assure the accuracy of the results. The present work investigates (1) the characterisation of secondary RM in order to validate analytical systems, (2) the effects of two complex matrices on isotopic determination using stannous chloride cold vapour generation coupled to MC-ICP-MS (CV-MC-ICP-MS), (3) the effects of multiple digestion techniques for total Hg extraction and (4) the characterisation of nine geo-bio-environmental RM. Two secondary mono-elemental RMs analysed using two different analytical setups yielded isotopic compositions on δ202Hg of −3.54 ± 0.27‰ (CRPG-F65A, 2SD, n = 38) and +2.59 ± 0.19‰ (CRPG-RL24H, 2SD, n = 30) relative to the CRM NIST SRM 3133. These two RMs cover the whole range of Hg isotopic fractionation in natural samples and are made available to the scientific community. Complex fly ash and hydroxysulfate green rust matrices were synthesised, spiked with NIST SRM 3133, then digested and finally analysed versus the mono-elemental NIST SRM 3133 to show potential effect of these complex matrices during CV-MC-ICP-MS. Three digestions techniques, including traditional acid digestion, microwave digestion and high pressure-high temperature digestion, were applied to the lichen RM BCR-482 in order to compare advantages and drawbacks of these methods. Finally, the isotopic compositions of nine RMs including soils (NIST SRM 2711; GXR-2; GSS-4), sediment (GSD-10), jasperoid (GXR-1), ore deposit (GXR-3), fly ashes (BCR-176; BCR-176R) and lichen (BCR-482) are reported. These selected materials have δ202Hg values ranging from −1.75‰ to +0.11‰. Some RMs also presented mass-independent fractionation with Δ199Hg and Δ201Hg of up to −0.6‰.  相似文献   

2.
The commonly used, but no longer available, reference materials NIST SRM 976 (Cu) and ‘JMC Lyon’ (Zn) were calibrated against the new reference materials ERM®‐AE633, ERM®‐AE647 (Cu) and IRMM‐3702 (Zn), certified for isotope amount ratios. This cross‐calibration of new with old reference materials provides a continuous and reliable comparability of already published with future Cu and Zn isotope data. The Cu isotope amount ratio of NIST SRM 976 yielded δ65/63Cu values of ?0.01 ± 0.05‰ and ?0.21 ± 0.05‰ relative to ERM®‐AE633 and ERM®‐AE647, respectively, and a δ66/64ZnIRMM‐3702 value of ?0.29 ± 0.05‰ was determined for ‘JMC Lyon’. Furthermore, we separated Cu and Zn from five geological reference materials (BCR‐2, BHVO‐2, BIR‐1, AGV‐1 and G‐2) using a two‐step ion‐exchange chromatographic procedure. Possible isotope fractionation of Cu during chromatographic purification and introduction of resin‐ and/or matrix‐induced interferences were assessed by enriched 65Cu isotope addition. Instrumental mass bias correction for the isotope ratio determinations by MC‐ICP‐MS was performed using calibrator‐sample bracketing with internal Ni doping for Cu and a double spike approach for Zn. Our results for the five geological reference materials were in very good agreement with literature data, confirming the accuracy and applicability of our analytical protocol.  相似文献   

3.
A HF‐free sample preparation method was used to purify silicon in twelve geological RMs. Silicon isotope compositions were determined using a Neptune instrument multi‐collector‐ICP‐MS in high‐resolution mode, which allowed separation of the silicon isotope plateaus from their interferences. A 1 μg g‐1 Mg spike was added to each sample and standard solution for online mass bias drift correction. δ30Si and δ29Si values are expressed in per mil (‰), relative to the NIST SRM 8546 (NBS‐28) international isotopic RM. The total variation of δ30Si in the geological reference samples analysed in this study ranged from ‐0.13‰ to ‐0.29‰. Comparison with δ29Si values shows that these isotopic fractionations were mass dependent. IRMM‐17 yielded a δ30Si value of ‐1.41 ± 0.07‰ (2s, n = 12) in agreement with previous data. The long‐term reproducibility for natural samples obtained on BHVO‐2 yielded δ30Si = ‐0.27 ± 0.08‰ (2s, n = 42) on a 12 month time scale. An in‐house Si reference sample was produced to check for the long‐term reproducibility of a mono‐elemental sample solution; this yielded a comparable uncertainty of ± 0.07‰ (2s, n = 24) over 5 months.  相似文献   

4.
This study explores the effects of cation composition on mass bias (i.e., the matrix effect), which is a major component of instrumental mass fractionation (IMF) in the microanalyses of δ13C and δ18O by SIMS in carbonates of the magnesite–siderite solid‐solution series (MgCO3–FeCO3). A suite of twelve calibration reference materials (RMs) was developed and documented (calibrated range: Fe# = 0.002–0.997, where Fe# = molar Fe/[Mg + Fe]), along with empirical expressions for regressing calibration data (affording residuals < 0.5‰ relative to certified reference material NIST‐19). The calibration curves of both isotope systems are non‐linear and have, over a 2‐year period, fallen into one of two distinct but largely self‐consistent shape categories (data from ten measurement sessions), despite adherence to well‐established analytical protocols for carbonate δ13C and δ18O analyses at WiscSIMS (CAMECA IMS 1280). Mass bias was consistently most sensitive to changes in composition near the magnesite end‐member (Fe# 0–0.2), deviating by up to 4.5‰ (δ13C) and 14‰ (δ18O) with increasing Fe content. The cause of variability in calibration curve shapes is not well understood at present and demonstrates the importance of having available a sufficient number of well‐characterised RMs so that potential complexities of curvature can be adequately delineated and accounted for on a session‐by‐session basis.  相似文献   

5.
Chromium (Cr) isotopes have been widely used in various fields of Earth and planetary sciences. However, high‐precision measurements of Cr stable isotope ratios are still challenged by difficulties in purifying Cr and organic matter interference from resin using double‐spike thermal ionisation mass spectrometry. In this study, an improved and easily operated two‐column chemical separation procedure using AG50W‐X12 (200–400 mesh) resin is introduced. This resin has a higher cross‐linking density than AG50W‐X8, and this higher density generates better separation efficiency and higher saturation. Organic matter from the resin is a common cause of inhibition of the emission of Cr during analysis by TIMS. Here, perchloric and nitric acids were utilised to eliminate organic matter interference. The Cr isotope ratios of samples with lower Cr contents could be measured precisely by TIMS. The long‐term intermediate measurement precision of δ53/52CrNIST SRM 979 for BHVO‐2 is better than ± 0.031‰ (2s) over one year. Replicated digestions and measurements of geological reference materials (OKUM, MUH‐1, JP‐1, BHVO‐1, BHVO‐2, AGV‐2 and GSP‐2) yield δ53/52CrNIST SRM 979 results ranging from ?0.129‰ to ?0.032‰. The Cr isotope ratios of geological reference materials are consistent with the δ53/52CrNIST SRM 979 values reported by previous studies, and the measurement uncertainty (± 0.031‰, 2s) is significantly improved.  相似文献   

6.
Iron, Cu and Zn stable isotope systems are applied in constraining a variety of geochemical and environmental processes. Secondary reference materials have been developed by the Institute of Geology, Chinese Academy of Geological Sciences (CAGS), in collaboration with other participating laboratories, comprising three solutions (CAGS‐Fe, CAGS‐Cu and CAGS‐Zn) and one basalt (CAGS‐Basalt). These materials exhibit sufficient homogeneity and stability for application in Fe, Cu and Zn isotopic ratio determinations. Reference values were determined by inter‐laboratory analytical comparisons involving up to eight participating laboratories employing MC‐ICP‐MS techniques, based on the unweighted means of submitted results. Isotopic compositions are reported in per mil notation, based on reference materials IRMM‐014 for Fe, NIST SRM 976 for Cu and IRMM‐3702 for Zn. Respective reference values of CAGS‐Fe, CAGS‐Cu and CAGS‐Zn solutions are as follows: δ56Fe = 0.83 ± 0.07 and δ57Fe = 1.20 ± 0.13, δ65Cu = 0.57 ± 0.06, and δ66Zn = ?0.79 ± 0.12 and δ68Zn = ?1.65 ± 0.24, respectively. Those of CAGS‐Basalt are δ56Fe = 0.15 ± 0.07, δ57Fe = 0.22 ± 0.10, δ65Cu = 0.12 ± 0.08, δ66Zn = 0.17 ± 0.13, and δ68Zn = 0.34 ± 0.26 (2s).  相似文献   

7.
Isotope ratios of heavy elements vary on the 1/10000 level in high temperature materials, providing a fingerprint of the processes behind their origin. Ensuring that the measured isotope ratio is precise and accurate depends on employing an efficient chemical purification technique and optimised analytical protocols. Exploiting the disparate speciation of Cu, Fe and Zn in HCl and HNO3, an anion exchange chromatography procedure using AG1‐×8 (200–400 mesh) and 0.4 × 7 cm Teflon columns was developed to separate them from each other and matrix elements in felsic rocks, basalts, peridotites and meteorites. It required only one pass through the resin to produce a quantitative and pure isolate, minimising preparation time, reagent consumption and total analytical blanks. A ThermoFinnigan Neptune Plus MC‐ICP‐MS with calibrator‐sample bracketing and an external element spike was used to correct for mass bias. Nickel was the external element in Cu and Fe measurements, while Cu corrected Zn isotopes. These corrections were made assuming that the mass bias for the spike and analyte element was identical, and it is shown that this did not introduce any artificial bias. Measurement reproducibilities were ± 0.03‰, ± 0.04‰ and ± 0.06‰ (2s) for δ57Fe, δ65Cu and δ66Zn, respectively.  相似文献   

8.
To enable quality control of measurement procedures for determinations of Mg isotope amount ratios, expressed as δ26Mg and δ25Mg values, in Earth‐surface studies, the δ26Mg and δ25Mg values of eight reference materials (RMs) were determined by interlaboratory comparison between five laboratories and considering published data, if available. These matrix RMs, including river water SLRS‐5, spring water NIST SRM 1640a, Dead Sea brine DSW‐1, dolomites JDo‐1 and BCS‐CRM 512, limestone BCS‐CRM 513, soil NIST SRM 2709a and vegetation NIST SRM 1515, are representative of a wide range of Earth‐surface materials from low‐temperature environments. The interlaboratory variability, 2s (twice the standard deviation), of all eight RMs ranges from 0.05 to 0.17‰ in δ26Mg. Thus, it is suggested that all these materials are suitable for validation of δ26Mg and δ25Mg determinations in Earth‐surface geochemical studies.  相似文献   

9.
This study presents high-precision W isotopic measurement results using the 180W-183W double spike technique with MC-ICP-MS. The effects of isobaric and polyatomic interferences on W isotopic measurements were evaluated. The δ186/184W values were not significantly affected when the solution had Hf/W ≤ 3 × 10-4, Ta/W ≤ 1, Os/W ≤ 0.06, Ce/W ≤ 0.0075, Nd/W ≤ 3.5 and Sm/W ≤ 5. The intermediate measurement precisions of both standard solutions (NIST SRM 3163 and Alfa Aesar W) and geological reference materials (NOD-A-1) were better than ±0.024‰ (2s). We also obtained a precision of 0.026‰ for a minimum sample loading mass of 5 ng, allowing the analysis of samples with low W contents. Replicated measurements of geological reference materials (AGV-2, BCR-2, BHVO-2, GSP-2, RGM-1, SDC-1, NOD-A-1 and NOD-P-1) yielded δ186/184W values ranging from 0.017‰ to 0.144‰. The δ186/184W values of two major tungsten ore minerals (scheelite and wolframite) were reported and compared herein. Scheelites had systematically slightly heavier W isotopic compositions than wolframites, which may reflect differences in the crystal structure. The resolvable variations of stable/mass-dependent W isotopic compositions in rocks and ore minerals make W isotopes a novel tool for studying hydrothermal mineralisation processes and the W cycle of geological reservoirs.  相似文献   

10.
Recent analytical developments in germanium stable isotope determination by multicollector ICP‐MS have provided new perspectives for the use of Ge isotopes as geochemical tracers. Here, we report the germanium isotope composition of the NIST SRM 3120a elemental reference solution that has been calibrated relative to internal isotopic standard solutions used in the previous studies. We also intercalibrate several geological reference materials as well as geological and meteoritic samples using different techniques, including online hydride generation and a spray chamber for sample introduction to MC‐ICP‐MS, and different approaches for mass bias corrections such as sample–calibrator bracketing, external mass bias correction using Ga isotopes and double‐spike normalisation. All methods yielded relatively similar precisions at around 0.1‰ (2s) for δ74/70Ge values. Using igneous and mantle‐derived rocks, the bulk silicate Earth (BSE) δ74/70Ge value was re‐evaluated to be 0.59 ± 0.18‰ (2s) relative to NIST SRM 3120a. Several sulfide samples were also analysed and yielded very negative values, down to ?4.3‰, consistent with recent theoretical study of Ge isotope fractionation. The strong heavy isotope depletion in ore deposits also contrasts with the generally positive Ge isotope values found in many modern and ancient marine sediments.  相似文献   

11.
We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = ?0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.  相似文献   

12.
Molybdenum concentration and δ98/95Mo values for NIST SRM 610 and 612 (solid glass), NIST SRM 3134 (lot 891307; liquid) and IAPSO seawater reference material are presented based on comparative measurements by MC‐ICP‐MS performed in laboratories at the Universities of Bern and Oxford. NIST SRM 3134 and NIST SRM 610 and 612 were found to have identical and homogeneous 98Mo/95Mo ratios at a test portion mass of 0.02 g. We suggest, therefore, that NIST SRM 3134 should be used as reference for the δ–Mo notation and to employ NIST SRM 610 or 612 as solid silicate secondary measurement standards, in the absence of an isotopically homogeneous solid geological reference material for Mo. The δ98/95MoJMC Bern composition (Johnson Matthey ICP standard solution, lot 602332B as reference) of NIST SRM 3134 was 0.25 ± 0.09‰ (2s). Based on five new values, we determined more precisely the mean open ocean δ98/95MoSRM 3134 value of 2.09 ± 0.07‰, which equals the value of δ98/95MoJMC Bern of 2.34 ± 0.07‰. We also refined the Mo concentration data for NIST SRM 610 to 412 ± 9 μg g?1 (2s) and NIST SRM 612 to 6.4 ± 0.7 μg g?1 by isotope dilution. We propose these concentration data as new working values, which allow for more accurate in situ Mo determination using laser ablation ICP‐MS or SIMS.  相似文献   

13.
A double‐spike method in combination with MC‐ICP‐MS was applied to obtain molybdenum (Mo) mass fractions and stable isotope compositions in a suite of sedimentary silicate (marine, lake, stream, estuarine, organic‐rich sediment, shales, slate, chert) and carbonate reference materials (coral, dolomite, limestones, carbonatites), and a manganese nodule reference material, poorly characterised for stable Mo isotope compositions. The Mo contents vary between 0.076 and 364 μg g?1, with low‐Mo mass fractions (< 0.29 μg g?1) found almost exclusively in carbonates. Intermediate Mo contents (0.73–2.70 μg g?1) are reported for silicate sediments, with the exception of chert JCh‐1 (0.24 μg g?1), organic‐rich shale SGR‐1b (36.6 μg g?1) and manganese nodule NOD‐A‐1 (364 μg g?1). The Mo isotope compositions (reported as δ98Mo relative to NIST SRM 3134) range from ?1.77 to 1.03‰, with the intermediate precision varying between ± 0.01 and ± 0.12‰ (2s) for most materials. Low‐temperature carbonates show δ98Mo values ranging from 0.21 to 1.03‰ whereas δ98Mo values of ?1.77 and ?0.17‰ were obtained for carbonatites CMP‐1 and COQ‐1, respectively. Silicate materials have δ98Mo values varying from ?1.56 to 0.73‰. The range of δ98Mo values in reference materials may thus reflect the increasingly important relevance of Mo isotope investigations in the fields of palaeoceanography, weathering, sedimentation and provenance, as well as the magmatic realm.  相似文献   

14.
Measurement of Ba isotope ratios of widely available reference materials is required for interlaboratory comparison of data. Here, we present new Ba isotope data for thirty‐four geological reference materials, including silicates, carbonates, river/marine sediments and soils. These reference materials (RMs) cover a wide range of compositions, with Ba mass fractions ranging from 6.4 to 1900 µg g?1, SiO2 from 0.62% to 90.36% m/m and MgO from 0.08% to 41.03% m/m. Accuracy and precision of our data were assessed by the analyses of duplicate samples and USGS rock RMs. Barium isotopic compositions for all RMs were in agreement with each other within uncertainty. The variation of δ138/134Ba in these RMs was up to 0.7‰. The shale reference sample, affected by a high degree of chemical weathering, had the highest δ138/134Ba (0.37 ± 0.03‰), while the stream sediment obtained from a tributary draining carbonate rocks was characterised by the lowest δ138/134Ba (?0.30 ± 0.05‰). Geochemical RMs play a fundamental role in the high‐precision and accurate determination of Ba isotopic compositions for natural samples with similar matrices. Analyses of these RMs could provide universal comparability for Ba isotope data and enable assessment of accuracy for interlaboratory data.  相似文献   

15.
The high‐precision δ60/58Ni values of twenty‐six geological reference materials, including igneous rocks, sedimentary rocks, stream sediments, soils and plants are reported. The δ60/58Ni values of all samples were determined by double‐spike MC‐ICP‐MS (Nu Plasma III). Isotope standard solution (NIST SRM 986) and geological reference materials (BHVO‐2, BCR‐2, JP‐1, PCC‐1, etc.) were used to evaluate the measurement bias and intermediate precision over a period of six months. Our results show that the intermediate precision of Ni isotope determination was 0.05‰ (2s, n = 69) for spiked NIST SRM 986 and typically 0.06‰ for actual samples, and the δ60/58Ni NIST SRM 986 values were in excellent agreement with previous studies. Eighteen high‐precision Ni isotope ratios of geological reference materials are first reported here, and their δ60/58Ni values varied from ?0.27‰ to 0.52‰, with a mean of 0.13 ± 0.34‰ (2s, n = 18). Additionally, SGR‐1b (0.56 ± 0.04‰, 2s), GSS‐1 (?0.27 ± 0.06‰, 2s), GSS‐7 (?0.11 ± 0.01‰, 2s), GSD‐10 (0.46 ± 0.06‰, 2s) and GSB‐12 (0.52 ± 0.06‰, 2s) could potentially serve as candidate reference materials for Ni isotope fractionation and comparison of Ni isotopic compositions among different laboratories.  相似文献   

16.
In this study the homogeneity of the zinc isotopic composition in the NIST SRM 683 reference material was examined by measuring the Zn isotopic signature in microdrilled sample powders from two metal nuggets. Zinc was purified using AG MP‐1M resin and then measured by MC‐ICP‐MS. Instrumental mass bias was corrected using the “sample‐standard bracketing” method and empirical external normalisation with Cu doping. After evaluating the potential effects of varying acid mass fractions and different matrices, high‐precision Zn isotope data were obtained with an intermediate measurement precision better than ± 0.05‰ (δ66Zn, 2s) over a period of 5 months. The δ66ZnJMC‐Lyon mean values of eighty‐four and fourteen drilled powders from two nuggets were 0.11 ± 0.02‰ and 0.12 ± 0.02‰, respectively, indicating that NIST SRM 683 is a good isotopic reference material with homogeneous Zn isotopes. The Zn isotopic compositions of seventeen rock reference materials were also determined, and their δ66Zn values were in agreement with most previously published data within 2s. The δ66Zn values of most of the rock reference materials analysed were in the range 0.22–0.36‰, except for GSP‐2 (1.07 ± 0.06‰, n = 12), NOD‐A‐1 (0.96 ± 0.03‰, = 6) and NOD‐P‐1 (0.78 ± 0.03‰, = 6). These comprehensive data should serve as reference values for quality assurance and interlaboratory calibration exercises.  相似文献   

17.
This study presents a high‐precision method to measure barium (Ba) isotope compositions of international carbonate reference materials and natural carbonates. Barium was purified using chromatographic columns filled with cation exchange resin (AG50W‐X12, 200–400 mesh). Barium isotopes were measured by MC‐ICP‐MS, using a 135Ba–136Ba double‐spike to correct mass‐dependent fractionation during purification and instrumental measurement. The precision and accuracy were monitored by measuring Ba isotope compositions of the reference material JCp‐1 (coral) and a synthetic solution obtained by mixing NIST SRM 3104a with other matrix elements. The mean δ137/134Ba values of JCp‐1 and the synthetic solution relative to NIST SRM 3104a were 0.21 ± 0.03‰ (2s,= 16) and 0.02 ± 0.03‰ (2s,= 6), respectively. Replicate measurements of NIST SRM 915b, COQ‐1, natural coral and stalagmite samples gave average δ137/134Ba values of 0.10 ± 0.04‰ (2s,= 18), 0.08 ± 0.04‰ (2s,= 20), 0.27 ± 0.04‰ (2s,= 16) and 0.04 ± 0.03‰ (2s,= 20), respectively. Barium mass fractions and Ba isotopes of subsamples drilled from one stalagmite profile were also measured. Although Ba mass fractions varied significantly along the profile, Ba isotope signatures were homogeneous, indicating that Ba isotope compositions of stalagmites could be a potential tool (in addition to Ba mass fractions) to constrain the source of Ba in carbonate rocks and minerals.  相似文献   

18.
Molybdenum isotopes are increasingly widely applied in Earth Sciences. They are primarily used to investigate the oxygenation of Earth's ocean and atmosphere. However, more and more fields of application are being developed, such as magmatic and hydrothermal processes, planetary sciences or the tracking of environmental pollution. Here, we present a proposal for a unifying presentation of Mo isotope ratios in the studies of mass‐dependent isotope fractionation. We suggest that the δ98/95Mo of the NIST SRM 3134 be defined as +0.25‰. The rationale is that the vast majority of published data are presented relative to reference materials that are similar, but not identical, and that are all slightly lighter than NIST SRM 3134. Our proposed data presentation allows a direct first‐order comparison of almost all old data with future work while referring to an international measurement standard. In particular, canonical δ98/95Mo values such as +2.3‰ for seawater and ?0.7‰ for marine Fe–Mn precipitates can be kept for discussion. As recent publications show that the ocean molybdenum isotope signature is homogeneous, the IAPSO ocean water standard or any other open ocean water sample is suggested as a secondary measurement standard, with a defined δ98/95Mo value of +2.34 ± 0.10‰ (2s).  相似文献   

19.
We report mass‐independent and mass‐dependent Ca isotopic compositions for thirteen geological reference materials, including carbonates (NIST SRM 915a and 915b), Atlantic seawater as well as ten rock reference materials ranging from peridotite to sandstone, using traditional ε and δ values relative to NIST SRM 915a, respectively. Isotope ratio determinations were conducted by independent unspiked and 43Ca‐48Ca double‐spiked measurements using a customised Triton Plus TIMS. The mean of twelve measurement results gave ε40/44Ca values within ± 1.1, except for GSP‐2 that had ε40/44Ca = 4.04 ± 0.15 (2SE). Significant radiogenic 40Ca enrichment was evident in some high K/Ca samples. At an uncertainty level of ± 0.6, all reference materials had the same ε43/44Ca and ε48/44Ca values. We suggest the use of δ44/42Ca to report mass‐dependent Ca isotopic compositions. The precision under intermediate measurement conditions for δ44/42Ca over eight months in our laboratory was ± 0.03‰ (with n ≥ 8 repeat measurements). Measured igneous reference materials gave δ44/42Ca values ranging from 0.27‰ to 0.54‰. Significant Ca isotope fractionation may occur during magmatic and metasomatism processes. Studied reference materials with higher (Dyn/Ybn) tend to have lower δ44/42Ca, implying a potential role of garnet in producing magmas with low δ44/42Ca. Sandstone GBW07106 had a δ44/42Ca value of 0.22‰, lower than all igneous rocks studied so far.  相似文献   

20.
The boron isotopic ratio of 11B/10B (δ11BSRM951) and trace element composition of marine carbonates are key proxies for understanding carbon cycling (pH) and palaeoceanographic change. However, method validation and comparability of results between laboratories requires carbonate reference materials. Here, we report results of an inter‐laboratory comparison study to both assign δ11BSRM951 and trace element compositions to new synthetic marine carbonate reference materials (RMs), NIST RM 8301 (Coral) and NIST RM 8301 (Foram) and to assess the variance of data among laboratories. Non‐certified reference values and expanded 95% uncertainties for δ11BSRM951 in NIST RM 8301 (Coral) (+24.17‰ ± 0.18‰) and NIST RM 8301 (Foram) (+14.51‰ ± 0.17‰) solutions were assigned by consensus approach using inter‐laboratory data. Differences reported among laboratories were considerably smaller than some previous inter‐laboratory comparisons, yet discrepancies could still lead to large differences in calculated seawater pH. Similarly, variability in reported trace element information among laboratories (e.g., Mg/Ca ± 5% RSD) was often greater than within a single laboratory (e.g., Mg/Ca < 2%). Such differences potentially alter proxy‐reconstructed seawater temperature by more than 2 °C. These now well‐characterised solutions are useful reference materials to help the palaeoceanographic community build a comprehensive view of past ocean changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号