首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在LA-ICP-MS测量中,样品是否能够均匀地由激光样品池运送到等离子体质谱仪炬管是影响分析数据精度的关键。本研究对样品剥蚀池和剥蚀气溶胶传输进行改进,在LA和ICP-MS之间添加一套激光剥蚀脉冲平滑系统将LA剥蚀气溶胶转化为连续送样模式,并使用多通道旋转式样品池消除样品在激光剥蚀池中的位置效应,显著提高了测量信号的稳定性。在优化条件下,以标准锆石91500作外标,测量锆石标样GJ-1、Pleovice、TEMORA、QH的U-Pb年龄分别为604±3 Ma(2δ,MSWD=1.2)、337±1 Ma(2δ,MSWD=1.18)、419±3 Ma(2δ,MSWD=0.15)和161±1 Ma(2δ,MSWD=0.6),与前人报道结果在误差范围内一致;以NIST610作外标,玻璃标样NIST612和BHVO-2G大部分微量稀土元素的测量值与参考值的相对偏差均在10%以内;测量新疆天山造山带锆石样品的207Pb/206Pb加权年龄与SHRIMP结果基本吻合。本方法可有效降低元素分馏效应,提高测量精度。  相似文献   

2.
探讨了激光剥蚀等离子体质谱固体微区分析中激光剥蚀参数对元素分析信号灵敏度及稳定性的影响。这些参数包括激光功率、脉冲频率、剥蚀孔经、散焦距离、剥蚀方式等。讨论了优化的激光剥蚀等离子体质谱信号采集及数据处理方式。在全质量范围内选用具有代表性的元素作为研究对象,建立了激光剥蚀的一般性特征规律和266nm紫外激光系统的最佳操作条件。在选定的激光剥蚀参数下,大多数被测元素的检出限为22.8~457ng/g,能够满足固体微区分析的要求。  相似文献   

3.
激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)技术广泛用来测量固体样品中的微量元素及同位素比值。然而在缺乏基体匹配校准条件下,发生在激光剥蚀过程中的元素分馏效应使得通常采用外标结合内标的方法很难准确量化待测元素的含量。不同岩石/矿物材料自身密度、表面张力、内部结构、元素成分等物理特性不同,对同一波长激光的吸收系数、反射系数、消光长度不同,导致相同实验条件下的激光对不同岩石/矿物剥蚀速率不同、剥蚀物体积不同、剥蚀后形成气溶胶粒子总数及粒径分布规律不同、在ICP中粒子化程度和效率也不同,最终待测元素分馏效应不同。建立了聚焦脉冲激光剥蚀不同基体材料动态物理模型,理论分析了激光脉冲宽度和能量密度对剥蚀速率影响的物理机制。采用193 nm波长的脉冲激光剥蚀不同地质标样NIST 614、NIST612、NIST610、BHVO-2G、BIR-1G、BCR-2G、橄榄石、石榴石、锆石。激光脉宽15 ns、束斑直径60μm、能量60 m J、频率8 Hz,脉冲数分别为25,50,100,150,200个,线性拟合后直线斜率值分别为0.140 44,0.138 05,0.124 13,0.099 11,0.093 87,0.105 39,0.113 86,0.051 22,0.09 341。实验结果表明,相同参数激光剥蚀不同基体时剥蚀速率(深度/脉冲个数)不同,玻璃标样比其它样品更易剥蚀。5 J/cm2能量条件下,平均剥蚀速率分别为169,159,155,118,104,116,115,62,88 nm/pulse;可见随着激光能量密度增加剥蚀速率缓慢增大,NIST614玻璃和石榴石剥蚀速率分别达到最大和最小。激光剥蚀地质样品剥蚀速率变化规律对理解剥蚀速率对元素分馏效应的影响、约束及校正具有理论意义和实践运用价值。  相似文献   

4.
激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)作为一项实用的技术被广泛应用于原位微区分析。在学者们更为关注的元素空间分布问题上,LA-ICP-MS线扫描较单点剥蚀具有更大的优势。线扫描过程中元素的空间分辨率是影响分析结果准确程度的因素之一。每个脉冲间的信号如果严重叠加会导致较低的空间分辨率。文章通过LA-ICP-MS的单脉冲剥蚀实验,研究了合成硅酸盐玻璃标准样品CGSG中不同元素的信号时间结构,及其对线扫描的空间分辨率的影响。结果表明,当激光束斑40 μm时,应用LA-ICP-MS进行线扫描测量空间分辨率能够满足线扫描技术分析的需求。  相似文献   

5.
激光能量密度对LA-ICP-MS分析数据质量的影响研究   总被引:3,自引:2,他引:1  
LA-ICP-MS分析矿物元素含量时激光能量密度会影响样品的剥蚀速率,从而影响测试过程的信号强度。激光能量密度变化对测试数据精确度的影响,以及不同天然矿物对激光能量密度的响应尚需进一步明确。本文测定了不同莫氏硬度天然矿物可稳定剥蚀的最小激光能量密度,评估了193nm ArF准分子激光系统中能量密度对地质标准样品(NIST SRM614、USGS BCR-2G、USGS GSC-1G)和天然矿物测试数据质量的影响。研究结果表明:①稳定剥蚀石英和萤石所需的最小激光能量密度为4~5J/cm~2,低于前人的报道值(10J/cm~2),而稳定剥蚀其他矿物(如滑石、磷灰石、刚玉等)所需的最小能量密度一般在1~2J/cm~2;②不同激光能量密度剥蚀条件下,标准样品中大部分微量元素测试结果与推荐值的相对误差小于20%,相对标准偏差(RSD)小于10%,而天然矿物中含量1μg/g的大部分微量元素测试数据的RSD小于20%;③在一定范围内,激光能量密度越大,数据平均相对误差越小,整体质量更好。  相似文献   

6.
激光焦平面变化对LA-ICPMS锆石U-Pb定年准确度的影响   总被引:3,自引:0,他引:3  
元素分馏是影响LA-ICPMS锆石U-Pb定年准确度的重要因素之一,通常利用标样进行校正。激光聚焦位置变化会引起剥蚀坑形貌及U-Pb分馏的改变,标样和样品聚焦条件不一致将导致标样难以准确校正样品,并最终影响定年结果的准确性,但影响的程度、机制及可容忍范围目前尚不清楚。为此,文章以91500为标样、GJ-1为样品,详细研究了聚焦偏离30μm范围内剥蚀标样与样品锆石的剥蚀坑形貌变化以及由此导致的U-Pb定年误差。实验表明,在距离锆石表面30μm范围内,标样和样品焦平面同步变化时,二者U-Pb分馏形式及程度基本一致,激光焦平面偏离所引起的样品年龄与TIMS推荐值的偏差小于1%;当二者聚焦不同步时,标样与样品的U-Pb分馏差别显著,年龄偏差最大可超过3%。激光聚焦不同步导致的标样与样品剥蚀坑纵横比差异是引起年龄误差的根本原因,激光焦平面偏离锆石表面超过15μm,剥蚀坑坑口明显变大,纵横比减小,U-Pb分馏形式及程度发生改变。通过预剥蚀锆石,观察剥蚀坑轮廓,使激光焦平面在距离锆石样品表面15μm范围内,可确保标样与样品剥蚀坑形貌及U-Pb分馏状态一致,提高LA-ICPMS定年的准确度。  相似文献   

7.
通过采用激光剥蚀电感耦合等离子质谱仪(LA-ICP-M S)分析方法,对北吴庄5件天然磁铁矿矿物进行激光剥蚀分析。结果表明,所有样品中铁元素、铜元素的含量高;而稀土元素却表现出异常,并且克拉克值较大,Y/Ho比值较高。经太古界后平均澳大利亚页岩(PAAS)标准化呈现重稀土相对富集、轻稀土相对亏损的分馏模式,所有样品都有明显的Eu正异常和Ce负异常,表明了磁铁矿成矿物质主要来源于还原的海水环境;其中Eu和Y也出现正异常,其中富铁含铁带Eu正异常较高,表明了富铁矿具有明显的热液,是在贫铁矿的基础上受热液活动形成的。  相似文献   

8.
陈雪 《地质与勘探》2014,50(Z1):1413-1417
建立了一种利用New Wave UP 213 nm激光和ThermoFisher X Series2四极杆等离子体质谱法直接测定硅酸盐矿物中54种元素的分析方法。该方法以40Ca为内标、玻璃标准参考物质NIST SRM 610为外标,通过调节载气流量、激光频率、激光能量、激光剥蚀斑径降低元素分馏效应,并对NIST SRM 612进行测定,测定结果满足分析要求,54种元素的相对标准偏差大都低于10%,可应用于地质学分析研究。  相似文献   

9.
讨论了采用相对灵敏度系数进行多外标归一校正的可行性。该校正方法应用于激光烧蚀-等离子体质谱同时分析了未知石榴子石样品中主、次、痕量共43个元素,并与内标法结果进行对比,其一致性令人满意。探讨了激光线扫描和单点剥蚀两种取样方式下,相对灵敏度系数间的变化关系,结果表明,在剥蚀深度基本一致的情况下,取样方式对相对灵敏度系数没有显著影响。  相似文献   

10.
无球粒陨石的主、微量元素组成对于类地行星壳-幔分异和岩浆研究演化具有重要意义。但由于样品稀缺,使用传统方法分析无球粒陨石的全岩主、微量元素组成有较大局限。本文在样品粉末压片的基础上,采用激光熔融制取玻璃,并结合电子探针和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)对标样和Eucrite样品进行原位分析。结果表明,主量元素中除少数元素(Na、K和P等)外,绝大多数元素的分析准确度都优于5%;微量元素除少数元素外(Ni、Ga、Tb、Tl和U等),绝大多数元素的分析准确度都在5%~10%范围。本方法为低损耗(~30 mg)、快速准确获取具有较高Mg、Fe含量的玄武质无球粒陨石样品全岩的主、微量元素组成提供了一种新的途径。  相似文献   

11.
探究LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率,可为激光参数设定、基体匹配选择、数据质量保证等方面提供重要参考。本文研究了193 nm ArF准分子激光系统对人工合成/地质样品玻璃、常见矿物和粉末压片的剥蚀行为,同时探究了激光参数(束斑直径、能量密度和剥蚀频率)对剥蚀速率的影响情况。从剥蚀坑形貌可知,193nm ArF激光对玻璃和绝大多数矿物的剥蚀行为良好,但对石英相对较差,这可能与石英内含有微观包裹体,剥蚀过程中局部受热不均有关。粉末压片的剥蚀行为呈现出不可控,可通过提高粉末压片的压制压力或降低粉末颗粒的粒径来改善剥蚀行为;当剥蚀深度大于1.5倍束斑直径时,剥蚀速率随剥蚀深度的增加而逐渐减小,剥蚀深度最多可达束斑直径的两倍左右(RESOlution M-50型号激光系统,3.0 J/cm2激光能量密度);剥蚀速率随激光能量密度的增加而增大,但基本不受剥蚀频率(2~20 Hz)影响。不同基体具有特征的剥蚀速率,本文报道了43种基体的剥蚀速率参数,总体而言,NIST系列玻璃的剥蚀速率大于地质样品玻璃,碳酸盐矿物和硫化物矿物大于硅酸岩矿物,粉末压片大于玻璃和常见矿物。  相似文献   

12.
激光剥蚀-等离子体质谱(LA-ICPMS)已成为地球化学、宇宙化学和环境研究领域元素和同位素原位分析最重要的技术之一。文章介绍了多种类型的质谱仪及其使用的激光器。用途最广的LA-ICPMS仪器之一是单接收器扇形磁场质谱仪,配有Nd:YAG激光剥蚀系统(激光波长分为193 nm和213 nm两种),MPI Mainz实验室使用的就是这套系统,文章对此作一详细介绍。文中阐述了数据优化技术及其多种校正过程;介绍LA-ICPMS在痕量元素和同位素分析领域的一些应用,包括参考物质的研制,Hawaiian玄武岩、Martian陨石、生物骨针和珊瑚虫中痕量元素分析及熔融包裹体和富钙-铝碳质球粒陨石中的铅和锶同位素测量。  相似文献   

13.
<正>503激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展作者:吴石头,王亚平*,许春雪导读撰文:本刊编辑部激光剥蚀电感耦合等离子体质谱技术促进了微区分析研究领域的发展,由于元素微区分析标准物质不齐全,在实际应用方面受到限制,已经不能很好地满足现今的分析需求,研制不同基体的标准物质是当前亟需开展的工作。本文总结了当前现有的元素微区标准物质,评述了这些标准物质在实际应用方面的局限性。微区分析标准物质的制备手段有哪些新进展?制备方法的瓶颈问题是什么?未来亟需的标准物质集中在哪些方面?相信读者能从本文了解到最新的研究进展。  相似文献   

14.
锂、铍是当前全球战略性关键金属,采用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)建立分析方法可以实现微区原位定量分析天然矿物样品中的锂、铍元素含量,为锂铍资源高效利用以及赋存状态的研究提供分析技术支撑。锂辉石和绿柱石等矿物是提取锂、铍元素的主要原料,微区分析常用的电子探针方法对于能量较低的轻元素难以准确定量,而LA-ICP-MS方法亟待改进降低非基体匹配校准带来的基体效应提高分析的准确度和精密度。本文探讨了仪器工作条件(同位素选择及计数模式、载气He气流速、样品气Ar气流速、束斑直径、能量密度大小)和数据处理方法(外部标准物质、内标元素)对定量结果精密度和准确度的影响。实验结果表明:He和Ar气体流速不仅会影响锂、铍信号强度,而且适当降低载气He流速(0.6L/min)可以减小相对误差。增加束斑直径虽可以将数据精密度提高10%以上,但是对于准确度影响不大;对于绿柱石这类硬度高的透明矿物应提高能量密度(相对强度>75%,通量>2.7J/cm2)以保证产生稳定剥蚀信号。测定7Li时选择现有标准物质中含量较高的GSE-1G校准、9Be选择NIST610...  相似文献   

15.
新书介绍     
电感耦合等离子体质谱原理和应用李冰杨红霞编著内容简介:本书全面介绍了电感耦合等离子体质谱(ICP-MS)的仪器结构和基本原理,以四极杆ICP-MS为主,同时对近年来发展的其他类型的ICP-MS仪器进行了简要介绍。以地质应用为主,介绍了几种痕量超痕量元素分析方法及应用全书共分12章:绪论,包括ICP-MS的起源、现状与发展趋势;ICP-QMS仪器结构和基本原理;ICP-MS分析性能与基本概念;扇形磁场等离子体质谱仪;飞行时间等离子体质谱;激光剥蚀电感耦合等离子体质谱;ICP-MS中的干扰;常用的地质样品处理方法;地质样品中痕量超痕量元素分析;…  相似文献   

16.
激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)作为一种原位微区分析方法,已被广泛的应用于地质研究的各个领域。LA-ICP-MS法避免了传统溶液进样分析中繁琐、费时的湿法化学消解过程,并且具有低背景、低氧化物和氢氧化物干扰的特点,因此适用于地质全岩样品的元素分析。本文阐述了LA-ICP-MS用于全岩样品元素分析现状,在总结了现有研究成果的同时,对目前存在的问题进行了评述,并展望了该方面研究的发展方向。  相似文献   

17.
激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)应用于测定金属镀锡层的厚度时激光脉冲能量的大小及其稳定性会影响分析结果的准确度。本文采用一款自制的皮秒激光剥蚀固体进样系统(ps LA),与ICP-MS联用建立了一种测定金属镀锡层厚度的方法。在激光脉冲能量为12μJ,散焦距离为625μm的条件下采集锡和镀锡层基材元素检测同位素的时间分辨图,根据提出的边界确定规则确定了剥蚀镀锡层的时间,同时根据厚度标准片计算单位脉冲剥蚀量。该方法的单位脉冲剥蚀量为88 nm/pulse,厚度分辨率为0.40μm,应用于测定钢镀锡厚度标准片、铜镀锡厚度标准片、有涂层马口铁和镀锡不锈钢带等样品,测定值与认定值的最大偏差为0.5μm。本方法避免了激光脉冲能量的不稳定使得单位脉冲剥蚀量发生变化的问题,提高了镀层厚度测定的准确度,适用于各种形态、各种规格金属镀层厚度的测定,也可应用于生命科学、考古、环境、司法等领域。  相似文献   

18.
郭伟  林贤  胡圣虹 《地球科学》2020,45(4):1362-1374
独立封存的单个流体包裹体,能够准确地反演被捕获时期的流体信息.激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)是单个流体包裹体微区分析的重要手段,展现了原位、实时、高空间分辨率、高灵敏度、高精密度、低检出限、多元素同时检测的优点.单个流体包裹体组成信息的LA-ICP-MS测定技术,在单个流体包裹体选取、激光剥蚀采样方式、气溶胶传输与电离、质谱瞬时信号采集效率、定量校准与内标元素准确测定等方面逐步突破,且该技术应用于成矿元素来源及分配、成矿流体来源及特征、建立成矿模式等方面的研究广泛.因此提高单个流体包裹体分析成功率、降低小体积流体包裹体元素检出限、测定矿石矿物流体包裹体成分等成为该分析技术亟待解决的问题.   相似文献   

19.
<正>原位微区微束分析技术提供了固体物质的元素及同位素组成的空间分布信息,已在地质、环境、考古和材料科学等领域获得了重要的应用。现有的原位微区微束分析技术包括电子探针,同步辐射,全反射微区分析,激光剥蚀-电感耦合等离子体质谱等。原位微区微束分析技术包括点分析和面扫描两种重要的技术,对于点的分析目前相对比较成熟,而对微束面扫描,目前仍存在一些问题。本文拟就地球科学中常用的三种微束(电子探针EMPA、激光剥蚀-电感耦合等离子体质谱LA ICP-MS和X  相似文献   

20.
极薄(<10μm)或易剥蚀样品的分析可通过低频(≤2 Hz)LA-ICPMS实验来获得足够长度的有效数据,从而克服高频激光实验对此类样品采集有效数据不足的缺点。由于低频LA-ICPMS分析实验信号强度低,数据离散度较大,因此很少被应用。本文分析了激光剥蚀过程中气溶胶的管道传输状态,设计了一套叠加积分匀化处理算法。虽然低频激光获得的灵敏度有待提高,但该方法仍可以极大地降低低频分析数据的离散度,提高分析精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号