首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
对采自Faulty Towers(47°57.447'N,129°6.568'W)硫化物烟囱群一个不再活动的烟囱体硫化物开展了详细的矿物学和地球化学研究。样品从外壁往内壁方向可划分为4个矿物组合带,分别为重晶石-无定形硅-铁氧羟化物带;白铁矿-黄铁矿-无定形硅-重晶石带;白铁矿-黄铁矿-闪锌矿-纤锌矿带;纤锌矿-黄铜矿-白铁矿带。从底部到顶部,样品通道形态主要有3种:不规则、不连续的多通道;椭圆形单通道;封闭的通道。矿物学研究证实,烟囱体以低温矿物组合白铁矿、纤锌矿为主,高温矿物黄铜矿少见,仅局限分布在流体通道附近。210Pb定年结果表明,烟囱壁形成经历较短时间(约3 a),而通道的闭合则经历了相对长的过程(约17 a)。结合矿物学研究,最终恢复了整个尖塔结构的生长历史。  相似文献   

2.
对采自Faulty Towers(47°57.447'N,129°6.568'W)硫化物烟囱群一个不再活动的烟囱体硫化物开展了详细的矿物学和地球化学研究。样品从外壁往内壁方向可划分为4个矿物组合带,分别为重晶石-无定形硅-铁氧羟化物带;白铁矿-黄铁矿-无定形硅-重晶石带;白铁矿-黄铁矿-闪锌矿-纤锌矿带;纤锌矿-黄铜矿-白铁矿带。从底部到顶部,样品通道形态主要有3种:不规则、不连续的多通道;椭圆形单通道;封闭的通道。矿物学研究证实,烟囱体以低温矿物组合白铁矿、纤锌矿为主,高温矿物黄铜矿少见,仅局限分布在流体通道附近。210Pb定年结果表明,烟囱壁形成经历较短时间(约3 a),而通道的闭合则经历了相对长的过程(约17 a)。结合矿物学研究,最终恢复了整个尖塔结构的生长历史。  相似文献   

3.
In fold-and-thrust belts, shortening is mainly accommodated by thrust faults which are preferential zones for recrystallisation and mass transfer. This study focuses on a detachment fault related to the emplacement of the Monte Perdido thrust unit in the southern Pyrenees. The studied fault zone consists of a 10 m thick intensively foliated phyllonite developed within the Millaris marls, of Eocene age. The lithological homogeneity of the hanging wall and footwall allows us to compare the Millaris marls outside the fault zone with the highly deformed marls located in the fault zone and to quantify the chemical, mineralogical and volumetric changes related to deformation processes along the fault.The Millaris marls are composed of detrital quartz, illite, chlorite, minor albite and pyrite, in a micritic calcite matrix. In the fault zone, the cleavage planes are marked by clay minerals and calcite ± chlorite veins attest to fluid–mineral interactions during deformation.The mineral proportions in all samples from both the fault zone and Millaris marls have been quantified by two methods: (1) X-ray diffraction and Rietveld refinement, and (2) bulk chemical analyses as well as microprobe analyses to calculate modal composition. The excellent agreement between the results of these two methods allows us to estimate mineralogical variations using a modification of the Gresens' equation. During fault activation, up to 45 wt% of calcite was lost while the amounts of quartz and chlorite remained unchanged. Illite content remained constant to slightly enriched. The mineralogical variations were coupled with a significant volume loss (up to 45%) mostly due to the dissolution of micritic calcite grains. Deformation was accompanied by pressure solution and phyllosilicates recrystallisation. These processes accommodated slip along the fault. They required fluids as catalyst, but they did not necessitate major chemical transfers.  相似文献   

4.
Deeply buried (4500–7000 m) Ordovician carbonate reservoirs in the Tazhong area, Tarim Basin, NW China show obvious heterogeneity with porosity from null in limestones and sweet dolostones to 27.8% in sour dolostones, from which economically important oils, sour gas and condensates are currently being produced. Petrographic features, C, O, Sr isotopes were determined, and fluid inclusions were analyzed on diagenetic calcite, dolomite and barite from Ordovician reservoirs to understand controls on the porosity distribution. Ordovician carbonate reservoirs in the Tazhong area are controlled mainly by initial sedimentary environments and eo-genetic and near-surface diagenetic processes. However, vugs and pores generated from eogenetic and telogenetic meteoric dissolution were observed to have partially been destroyed due to subsequent compaction, filling and cementation. In some locations or wells (especially ZG5-ZG7 Oilfield nearby ZG5 Fault), burial diagenesis (e.g. thermochemical sulfate reduction, TSR) probably played an important role in quality improvement towards high-quality reservoirs. C2 calcite and dolomite cements and barite have fluid inclusions homogenization temperatures (Ths) from 86 to 113 °C, from 96 to 128 °C and from 128 to 151 °C, respectively. We observed petrographically corroded edges of these high-temperature minerals with oil inclusions, indicating the dissolution must have occurred under deep-burial conditions. The occurrence of TSR within Ordovician carbonate reservoirs is supported by C3 calcite replacement of barite, and the association of sulfur species including pyrite, anhydrite or barite and elemental sulfur with hydrocarbon and 12C-rich (as low as −7.2‰ V-PDB) C3 calcite with elevated Ths (135–153 °C). The TSR may have induced burial dissolution of dolomite and thus probably improved porosity of the sour dolostones reservoirs at least in some locations. In contrast, no significant burial dissolution occurred in limestone reservoirs and non-TSR dolostone reservoirs. The deeply buried sour dolostone reservoirs may therefore be potential exploration targets in Tarim Basin or elsewhere in the world.  相似文献   

5.
Eocene–Oligocene dolomite concretions and beds from the Grybów and Dukla units of the Polish Outer Carpathians were studied. These rocks occur in the organic carbon-rich, marine and fine-grained deposits of hemipelagic or turbiditic origin. Mineralogic, elemental and stable C and O isotopic composition of the dolomites was determined. Results indicate that the rocks were formed by precipitation of predominantly Fe-rich dolomite cement close to the sediment-water interface prior to significant compaction. The main source of bicarbonate for dolomite formation was bacterial methanogenesis as evidenced by the high δ13C values up to 16.6‰. The main source of alkalinity was probably weathering of silicate minerals which might have also liberated Ca and Mg ions for the dolomites to form. The distribution of these dolomites indicates that microbial methane production was widespread in the Silesian basin. Moreover, formation of some dolomites in the Eastern part of the Dukla unit was probably associated with gas hydrates as suggested by the elemental and oxygen isotopic composition of dolomitic matrix. Therefore, the dolomites may serve as a proxy of areas where biogenic methane was produced, where the rocks had high hydrocarbon potential, and where hydrates could have existed.Detailed mineralogic and petrographic analyses allowed for the reconstruction of the diagenetic sequence and the evolution of pore fluids. Textural relationships between successive cement generations indicate that the central parts of the composite dolomite crystals experienced corrosion and that the latest ankerite cement filled the secondary intragranular cavities within those crystals. This observation shows that reconstructions of pore fluid evolution based on core-to-rim analyses of such composite crystals may lead to wrong interpretations. Septarian cracks developed in the dolomites are often filled with multistage cements. The earliest generations are ferroan dolomite and ankerite cements which precipitated within the cracks simultaneously to the ferroan dolomite and ankerite cements from the matrix of the dolomitic rocks which shows that septarian cracking occurred very early, during the final stages of concretionary formation. These cements were followed by the late-diagenetic precipitates, mainly quartz, kaolinite and blocky calcite. This calcite is commonly associated with bitumen which shows that it precipitated during or after oil migration in the decarboxylation zone.  相似文献   

6.
The Basque–Cantabrian Basin (NE Spain) has been considered one of the most interesting areas for hydrocarbon exploration in the Iberian Peninsula since the 60th to 70th of last century. This basin is characterized by the presence of numerous outcrops of tar sands closely associated with fractures and Triassic diapirs. The aims of this work is to establish the diagenetic evolution of the Upper Cretaceous reservoir rocks with special emphasis in the emplacement of oil and their impact on reservoir quality. The studied rocks are constituted of carbonates and sandstones that contain massive quantities of bitumen filling vugs and fractures.Petrographic results indicate that the carbonate rocks from Maestu outcrops are bioclastic grainstones and wackestones, whereas the tar sandstones from Atauri and Loza outcrops are dominated by quartzarenites and subordinated subarkoses. The paragenetic sequence of the main diagenetic phases and processes include, pyrite, bladed and drusy calcite cement, calcite overgrowths, silicification of bioclasts and microcrystalline rhombic dolomite cement, and first stage of oil emplacement, blocky calcite cement, coarse crystalline calcite cement, calcitized dolomite, calcite veins, saddle dolomite and stylolites filled by the second phase of oil entrance. Together with the above mentioned diagenetic alterations, the arenites are affected by early kaolinitization of feldspars and the scarce formation of clay rim and epimatrix of illite. All sandstones and dolomitized carbonate rocks show high intercrystalline and intergranular porosity which is full by biodegraded hydrocarbons (solid bitumen). The biodegradation affects alkanes, isoprenoids and partially hopanes and steranes saturated hydrocarbons. Aromatics hydrocarbons, like naphthalenes, phenanthrenes, dibenzothiophenes and triaromatics are also affected by biodegradation. Results indicate that the first HC emplacement corresponds to early stage of calcite and dolomite cementation, and the second and more important emplacement is related to fracturation processes resulting in the formation of excellent reservoirs.  相似文献   

7.
Calcareous concretions are widely distributed over the shallow sea (the Bohai Sea, the Huanghai Sea and the East China Sea) along the coast of China. Both their numerous quantity and vast distribution are all the first on the continental shelf over the world. X-ray diffraction and electron micro-probe analysis show that the authigenic component in the calcareous concretions is calcite. The distributive pattern, mineralogical composition, texture, trace chemical component, and data of carbon-oxygen isotope of the calcareous concretions all prove that the concretions of the area have been formed in a continental environment.  相似文献   

8.
On the passive margin of the Nile deep-sea fan, the active Cheops mud volcano (MV; ca. 1,500 m diameter, ~20–30 m above seafloor, 3,010–3,020 m water depth) comprises a crater lake with hot (up to ca. 42 °C) methane-rich muddy brines in places overflowing down the MV flanks. During the Medeco2 cruise in fall 2007, ROV dives enabled detailed sampling of the brine fluid, bottom lake sediments at ca. 450 m lake depth, sub-surface sediments from the MV flanks, and carbonate crusts at the MV foot. Based on mineralogical, elemental and stable isotope analyses, this study aims at exploring the origin of the brine fluid and the key biogeochemical processes controlling the formation of these deep-sea authigenic carbonates. In addition to their patchy occurrence in crusts outcropping at the seafloor, authigenic carbonates occur as small concretions disseminated within sub-seafloor sediments, as well as in the bottom sediments and muddy brine of the crater lake. Aragonite and Mg-calcite dominate in the carbonate crusts and in sub-seafloor concretions at the MV foot, whereas Mg-calcite, dolomite and ankerite dominate in the muddy brine lake and in sub-seafloor concretions near the crater rim. The carbonate crusts and sub-seafloor concretions at the MV foot precipitated in isotopic equilibrium with bottom seawater temperature; their low δ13C values (–42.6 to –24.5‰) indicate that anaerobic oxidation of methane was the main driver of carbonate precipitation. By contrast, carbonates from the muddy lake brine, bottom lake concretions and crater rim concretions display much higher δ13C (up to –5.2‰) and low δ18O values (down to –2.8‰); this is consistent with their formation in warm fluids of deep origin characterized by 13C-rich CO2 and, as confirmed by independent evidence, slightly higher heavy rare earth element signatures, the main driver of carbonate precipitation being methanogenesis. Moreover, the benthic activity within the seafloor sediment enhances aerobic oxidation of methane and of sulphide that promotes carbonate dissolution and gypsum precipitation. These findings imply that the coupling of carbon and sulphur microbial reactions represents the major link for the transfer of elements and for carbon isotope fractionation between fluids and authigenic minerals. A new challenge awaiting future studies in cold seep environments is to expand this work to oxidized and reduced sulphur authigenic minerals.  相似文献   

9.
Authigenic barite nodules associated with modestly 13C-depleted calcium carbonate concretions and 34S-enriched pyrite at the bottom of the Upper Devonian Hanover Shale of western New York provide evidence of sulfate reduction coupled with anaerobic oxidation of methane (AOM). The methane, much of it biogenic in origin, may have diffused upward from Middle Devonian Marcellus Shale and perhaps the Upper Ordovician Utica Shale. Strong 34S enrichment and high δ34S/δ18O values of the barite nodules reflect: (1) substantial kinetic fractionation induced by microbial sulfate reduction perhaps intensified by a low seawater sulfate recharge rate and (2) upward delivery of Ba2+- and CH4- bearing pore fluid sourced within underlying sulfate-depleted deposits. However, the association of authigenic calcium carbonate and barite in the same stratigraphic interval, especially the presence of barite overgrowths on carbonate concretions, is not consistent with what is known of AOM-related mineralization of a sediment column passing downward through the sulfate–methane transition (SMT). The documented early formation of authigenic carbonate followed by barite observed relations may reflect a diminished rate of methanogenesis and/or CH4 supply. The tempered methane flux would have induced the SMT to descend the sediment column enabling barite to form within the same stratigraphic horizon that 13C-depleted calcium carbonate had most recently precipitated. Diminished methane flux may have been caused by burial-related passage of the organic-rich Marcellus Shale below the depth of peak biogenic methane generation and its replacement at that depth interval by organic-lean deposits of the upper part of the Hamilton Group. Subsidence of the SMT would have increased the preservation potential of authigenic barite. However, continued survival of the labile barite as it eventually moved through the SMT suggests that the underlying sulfate-depleted zone was strongly enriched in Ba2+.  相似文献   

10.
苏北浅滩钙结核的特征及其环境指示意义   总被引:1,自引:0,他引:1  
刘颖  韩喜球  刘杜娟 《海洋学报》2014,36(12):103-110
对采自苏北浅滩的钙结核样品进行了岩石学、矿物学和碳氧同位素的分析。样品富含石英和长石砂屑,碳酸钙胶结,其碳和氧同位素组成分别为-8.38‰~-8.19‰V-PDB及-5.23‰~-5.03‰V-PDB。根据样品的氧同位素组成,利用碳酸盐-水体系氧同位素方程,结合现今底层水温度,并考虑可能存在的温度变化,计算得到古沉淀流体的δ18 O水范围为-4.72‰~-4.52‰VSMOW,较正常海水偏负,认为钙结核的形成可能受到了淡水影响。根据结核中碎屑矿物的成分及其成熟度,判断其包含的碎屑矿物源自古黄河,认为这些结核样品可能形成于海陆交互环境,形成时间约为7~6.5ka BP左右,当时古海平面高度比现今低10m左右,古黄河河道可能位于苏北浅滩附近。  相似文献   

11.
Two authigenic carbonate chimneys were recovered from the Shenhu area in the northern South China Sea at approximately 400 m water depth. The chimneys’ mineralogy, isotopic composition, and lipid biomarkers were studied to examine the biogeochemical process that induced the formation of the chimneys. The two chimneys are composed mostly of dolomite, whereas the internal conduits and semi-consolidated surrounding sediments are dominated by aragonite and calcite. The specific biomarker patterns (distribution of lipids and their depleted δ13C values) indicate the low occurrence of methanotrophic archaea ANME-1 responsible for the chimneys’ formation via anaerobic oxidation of methane. A significant input of bacteria/planktonic algae and cyanobacteria to the carbon pool during the precipitation of the carbonate chimneys is suggested by the high contributions of short-chain n-alkanes (69% of total hydrocarbons) and long-chain n-alcohols (on average 56% of total alcohols). The oxygen isotopic compositions of the carbonate mixtures vary from 3.1‰ to 4.4‰ in the dolomite-rich chimneys, and from 2.1‰ to 2.5‰ in the internal conduits, which indicates that they were precipitated from seawater-derived pore waters during a long period covering the last glacial and interglacial cycles. In addition, the mixture of methane and bottom seawater dissolved inorganic carbon could be the carbon sources of the carbonate chimneys.  相似文献   

12.
Data on the mineral composition of sedimentary matter and its fluxes in the sediment system of the Caspian Sea are presented. River runoff, aerosols, particulate matter from sediment traps, and the upper layer (0–1 cm) of bottom sediments are considered. The contents of detrital minerals (quartz, albite, and K-feldspar), clay minerals (illite, chlorite, and kaolinite), and carbonates (calcite, Mg-calcite, dolomite, aragonite, and rhodochrosite) are determined. Gypsum was found in bottom sediments but is absent in the other object of the sediment system.  相似文献   

13.
Authigenic carbonates from active methane seeps offshore southwest Africa   总被引:2,自引:1,他引:1  
The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2–5?m length indicates a maximum age of about 60,000–80,000?years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (–61.0?<?δ13C ‰ V-PDB?<?–40.1) suggest anaerobic oxidation of methane (AOM) as the main process controlling carbonate precipitation. The oxygen isotopic signatures (+2.4?<?δ18O ‰ V-PDB?<?+6.2) lie within the range in equilibrium under present-day/interglacial to glacial conditions of bottom seawater; alternatively, the most positive δ18O values might reflect the contribution of 18O-rich water from gas hydrate decomposition. The frequent occurrence of diagenetic gypsum crystals suggests that reduced sulphur (hydrogen sulphide, pyrite) from sub-seafloor sediments has been oxidized by oxygenated bottom water. The acidity released during this process can potentially induce the dissolution of carbonate, thereby providing enough Ca2+ ions for pore solutions to reach gypsum saturation; this is thought to be promoted by the bio-irrigation and burrowing activity of benthic fauna. The δ18O–δ13C patterns identified in the authigenic carbonates are interpreted to reflect variations in the rate of AOM during the last glacial–interglacial cycle, in turn controlled by variably strong methane fluxes through the pockmarks. These results complement the conclusions of Kasten et al. in this special issue, based on authigenic barite trends at the Hydrate Hole and Worm Hole pockmarks which were interpreted to reflect spatiotemporal variations in AOM related to subsurface gas hydrate formation–decomposition.  相似文献   

14.
利用X射线衍射物相分析方法,对不同生长阶段的中国皱纹盘鲍壳体矿物组成进行了分析,结果表明,中国皱纹盘鲍壳体矿物成分包括文石、方解石、白云石3种,文石属于主要成分,另两者属于次要组分;从皱纹盘鲍生长的幼体到成体,壳体的矿物组成中文石所占的比例逐渐降低,方解石的比例逐渐增加,而白云石含量基本保持恒定。  相似文献   

15.
Thick Upper Cambrian-Lower Ordovician carbonates were deposited on a shallow marine platform in the northern Tarim Basin, which were extensively dolomitized, particularly for the Upper Cambrian carbonates. The resulting dolomite rocks are predominantly composed of matrix dolomites with minor cement dolomites. Based on petrographic textures, matrix dolomites consist of very finely to finely crystalline, nonplanar-a to planar-s dolomite (Md1), finely to medium crystalline, planar-e(s) dolomite (Md2), and finely to coarsely crystalline, nonplanar-a dolomite (Md3). Minor cement dolomites include finely to medium crystalline, planar-s(e) dolomite (Cd1) and coarsely crystalline, nonplanar saddle dolomite (Cd2), which partially or completely fill dissolution vugs and fractures; these cements postdate matrix dolomites but predate later quartz and calcite infills. Origins of matrix and cement dolomites and other diagenetic minerals are interpreted on the basis of petrography, isotopic geochemistry (O, C and Sr), and fluid inclusion microthermometry. Md1 dolomite was initially mediated by microbes and subsequently precipitated from slightly modified brines (e.g., evaporated seawater) in near-surface to very shallow burial settings, whereas Md2 dolomite was formed from connate seawater in association with burial dissolution and localized Mg concentration (or cannibalization) in shallow burial conditions. Md3 dolomite, however, was likely the result of intense recrystallization (or neomorphism) upon previously-formed dolomites (e.g., Md1 or Md2 dolomite) as the host carbonates were deeply buried, and influenced by later hydrothermal fluids. Subsequent cement dolomite and quartz crystals precipitated from higher-temperature, hydrothermal fluids, which were contributed more or less by the extensive Permian large igneous province (LIP) activity in Tarim Basin as evidenced by less radiogenic Sr in the cement and parts of matrix dolomites. This extensive abnormal hydrothermal activity could also have resulted in recrystallization (or neomorphism) on the previous matrix dolomites. Faults/fractures likely acted as important conduit networks which could have channeled the hydrothermal fluids from depths. However, the basin uplift triggered by the Late Hercynian Orogeny from the Late Permian would have facilitated downward infiltration of meteoric water and dilution of hydrothermal fluids, resulting in precipitation of later calcites in which lighter C and more radiogenic Sr components demonstrate such a switch of fluid properties. This study provides a useful analogue to understand the complicated dolomitizing processes and later hydrothermal alteration intimately related to the Permian LIP activity within Tarim Basin and elsewhere.  相似文献   

16.
Evidence of hydrocarbon venting within slumped bodies associated with the siliciclastic, dominantly turbiditic, Marnoso-arenacea Formation (Umbria-Romagna structural domain, Romagna Apennine, northern Italy) is documented with sedimentological, faunal, and geochemical data. Specifically,13C-depleted carbonate concretions and limestones and clusters of chemosynthetic clams (Vesicomyidae) have been identified in the marls of the Le Caselle Olistostrome and other slumped bodies contained within the Early Serravallian section of the Marnoso-arenacea Fm. Most of the olistostrome marls and limestones are extrabasinal and must have slid from a source area located several kilometers southwest of their present position. Thus, they presumably pertain to the Vicchio Marls Formation of the northeastern (outer) Tuscan structural domain, with possible minor contributions from the epi-Ligurian Bismantova Fm. It is suggested that venting of methane in the source area of the olistostromes permitted the establishment of exotic chemosynthetic communities and promoted the precipitation of carbonate concretions and limestones. According to the field evidence, these materials were later subjected to multistep downslope remobilization and were eventually carried into the Marnoso-arenacea basin through gravity mass transport.  相似文献   

17.
In the Kopet-Dagh Basin of Iran, deep-sea sandstones and shales of the Middle Jurassic Kashafrud Formation are disconformably overlain by hydrocarbon-bearing carbonates of Upper Jurassic and Cretaceous age. To explore the reservoir potential of the sandstones, we studied their burial history using more than 500 thin sections, supplemented by heavy mineral analysis, microprobe analysis, porosity and permeability determination, and vitrinite reflectance.The sandstones are arkosic and lithic arenites, rich in sedimentary and volcanic rock fragments. Quartz overgrowths and pore-filling carbonate cements (calcite, dolomite, siderite and ankerite) occluded most of the porosity during early to deep burial, assisted by early compaction that improved packing and fractured quartz grains. Iron oxides are prominent as alteration products of framework grains, probably reflecting source-area weathering prior to deposition, and locally as pore fills. Minor cements include pore-filling clays, pyrite, authigenic albite and K-feldspar, and barite. Existing porosity is secondary, resulting largely from dissolution of feldspars, micas, and rock fragments, with some fracture porosity. Porosity and permeability of six samples averages 3.2% and 0.0023 mD, respectively, and 150 thin-section point counts averaged 2.7% porosity. Reflectance of vitrinite in eight sandstone samples yielded values of 0.64-0.83%, in the early mature to mature stage of hydrocarbon generation, within the oil window.Kashafrud Formation petrographic trends were compared with trends from first-cycle basins elsewhere in the world. Inferred burial conditions accord with the maturation data, suggesting only a moderate thermal regime during burial. Some fractures, iron oxide cements, and dissolution may reflect Cenozoic tectonism and uplift that created the Kopet-Dagh Mountains. The low porosity and permeability levels of Kashafrud Formation sandstones suggest only a modest reservoir potential. For such tight sandstones, fractures may enhance the reservoir potential.  相似文献   

18.
Petrographic, petrophysical and fracture analyses were carried out on middle Cretaceous platform carbonates of the southern Apennines (Italy) that represent an outcrop analogue of the Val d’Agri and Tempa Rossa reservoirs of the Basilicata region. The studied outcrops, which are made of interlayered limestones and dolomites of inner platform environment, were selected to study the impact of dolomitization on reservoir properties and the control of dolomite texture on fracture development. Two types of dolomites – both formed during very early diagenesis – were found interlayered, at a metre scale, with micrite-rich limestones (mainly mudstones and wackestones). Dolomite A is fine-to medium crystalline and makes non-planar mosaics. Dolomite B is coarse-crystalline and makes planar-s and planar-e mosaics. The intercrystalline space of the planar-e subtype of dolomite B is either open or filled by un-replaced micrite or by late calcite or saddle dolomite cement. Dolomite A and dolomite B have similar average porosities of 3.7 and 3.1% respectively, which are significantly higher than the average porosity of limestones (1.4%). Their poro-perm relationships are similar, with the notable exception of planar-e type B dolomites, which generally display higher permeability values.The intensity of top bounded fractures is distinctly lower in coarse-crystalline dolomites than in fine-crystalline dolomites and limestones, both at the macro- and the micro-scale. On the other hand neither lithology (i.e. limestone vs. dolomite) nor dolomite crystal size control the intensity of perfect bed-bounded fractures, which is strictly controlled by the fracture layer thickness.Our results provide information that could be used as guidance for the characterization and modelling of fractured carbonate reservoirs made of interlayered limestones and dolomites.  相似文献   

19.
本文对南海北部陆坡九龙甲烷礁采集的两个冷泉碳酸盐岩样品TVG-1和TVG-11进行了矿物学、岩石学和碳氧同位素分析研究。X射线衍射分析(XRD)结果表明,自生矿物主要为文石、白云石和高镁方解石等,碎屑矿物含量较少。TVG-11中存在大量的文石,而TVG-1只保留了已转化为方解石的文石假象,据此可以推断TVG-1的形成要早于TVG-11。扫描电镜(SEM)显微结构特征显示,自生矿物主要是通过细菌的厌氧氧化作用,直接从冷泉中沉淀出来的。碳、氧同位素测试结果显示,碳酸盐岩具有强δ^13C亏损和一定程度的δ^18O富集的特征,TVG-1和TVG-11的δ^13C值分别为-46.22%。和-52.88%,均低于-40%,表明碳源于微生物作用的甲烷厌氧氧化,是指示该海域存在冷泉的重要证据;TVG-1和TVG-11的δ^18O值分别为3.19‰和4.07‰,存在一定程度的δ^18O富集。碳氧同位素和矿物的显微结构特征都说明九龙甲烷礁碳酸盐岩是烃类渗漏微生物作用而形成的自生碳酸盐岩,可能是天然气水合物分解引起的沉积,显示该区存在水合物的可能性很大。  相似文献   

20.
In Zakynthos Island (Greece), authigenic cementation of marine sediment has formed pipe-like, disc and doughnut-shaped concretions. The concretions are mostly composed of authigenic ferroan dolomite accompanied by pyrite. Samples with >80% dolomite, have stable isotope compositions in two groups. The more indurated concretions have δ18O around +4‰ and δ13C values between −8 and −29‰ indicating dolomite forming from anaerobic oxidation of thermogenic methane (hydrocarbon seep), in the sulphate-methane transition zone. The outer surfaces of some concretions, and the less-cemented concretions, typically have slightly heavier isotopic compositions and may indicate that concretion growth progressed from the outer margin in the ambient microbially-modified marine pore fluids, inward toward the central conduit where the isotopic compositions were more heavily influenced by the seep fluid. Sr isotope data suggest the concretions are fossil features, possibly of Pliocene age and represent an exhumed hydrocarbon seep plumbing system. Exposure on the modern seabed in the shallow subtidal zone has caused confusion, as concretion morphology resembles archaeological stonework of the Hellenic period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号