首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
H_∞ drift control of time-delayed seismic structures   总被引:1,自引:1,他引:0  
In this paper,an optimal H∞ control algorithm was applied to the design of an active tendon system installed at the first story of a multi-story building to reduce its interstory drift due to earthquake excitations.To achieve optimal control performance and to guarantee the stability of the control system,an optimum strategy to select control parameters γ and α was developed.Analytical expressions of the upper and the lower bounds of γ and α were obtained for a single degree-of-freedom system with state fee...  相似文献   

2.
磁流变阻尼器作为一种比较典型的半主动控制元件,具有构造简单、响应速度快、耐久性好、阻尼力大且连续可调等优点。即使地震中能源中断,磁流变阻尼器仍可以作为被动耗能装置继续工作发挥作用,可靠性高。设计合理有效的磁流变阻尼器半主动控制方法,对于整体结构的减震效果尤其重要。提出一种改进的磁流变阻尼器的半主动控制策略-改进的Bang-Bang控制策略,对装有磁流变阻尼器的减震控制3层框架结构进行了一系列的实时混合模拟试验,对多种半主动控制方法下的振动控制效果进行试验分析。试验结果表明:磁流变阻尼器对框架结构的减震效果显著,并验证了提出的磁流变阻尼器半主动控制策略的有效性。  相似文献   

3.
The majority of the recent research effort on structural control considers two‐dimensional plane structures. However, not all buildings can be modelled as plane structures, thus limiting the capability of the proposed procedures only to regular and symmetrical structures. A new procedure is developed in this paper to analyse three‐dimensional buildings utilizing passive and active control devices. In the building model, the floors are assumed rigid in their own plane resulting in three degrees of freedom at each floor. Two types of active control devices utilizing an active tuned mass damper and an active bracing system are considered. The effect of passive mass dampers and active control force in the equations of motion is incorporated by using the Hamilton's principle. The passive parameters of the dampers as well as the controller gain is then optimized using a genetic based optimizer where the H2, H and L1 norms are taken as the objective functions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
The authors developed a semi‐active hydraulic damper (SHD) and installed it in an actual building in 1998. This was the first application of a semi‐active structural control system that can control a building's response in a large earthquake by continuously changing the device's damping coefficient. A forced vibration test was carried out by an exciter with a maximum force of 100 kN to investigate the building's vibration characteristics and to determine the system's performance. As a result, the primary resonance frequency and the damping ratio of a building that the SHDs were not jointed to, decreased as the exciting force increased due to the influence of non‐linear members such as PC curtain walls. The equivalent damping ratio was estimated by approximating the resonance curves using the steady‐state response of the SDOF bilinear hysteretic system. After the eight SHDs were jointed to the building, the system's performance was identified by a response control test for steady‐state vibration. The elements that composed the semi‐active damper system demonstrated the specified performance and the whole system operated well. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
In many finite element platforms, a classical global damping matrix based on the elastic stiffness of the system (including isolators) is usually developed as part of the solution to the equations of motion of base-isolated buildings. The conducted analytical and numerical investigations illustrate that this approach can lead to the introduction of unintended damping to the first and higher vibration modes and the spurious suppression of the respective structural responses. A similar shortcoming might be observed even when a nonclassical damping model (ie, an assembly of the superstructure and isolation system damping sub-matrices) is used. For example, the use of Rayleigh damping approach to develop the superstructure damping sub-matrix can lead to the undesired addition of damping to the isolated mode arising from the mass-proportional component of the superstructure damping. On the other hand, the improper use of nonclassical stiffness-proportional damping (eg, determining the proportional damping coefficient, βk , based on the first mode) can result in assigning significant damping to the higher-modes and the unintended mitigation of the higher-mode responses. Results show that a nonclassical stiffness-proportional model in which βk is determined based on the second modal period of a base-isolated building can reasonably specify the intended damping to the higher modes without imparting undesirable damping to the first mode. The nonclassical stiffness-proportional damping can be introduced to the numerical model through explicit viscous damper elements attached between adjacent floors. In structural analysis software such as SAP2000®, the desired nonclassical damping can be also modeled through specifying damping solely to the superstructure material.  相似文献   

6.
This paper proposes a hybrid control strategy combining passive and semi‐active control systems for seismic protection of cable‐stayed bridges. The efficacy of this control strategy is verified by examining the ASCE first‐generation benchmark problem for a seismically excited cable‐stayed bridge, which employs a three‐dimensional linearized evaluation bridge model as a testbed structure. Herein, conventional lead–rubber bearings are introduced as base isolation devices, and semi‐active dampers (e.g., variable orifice damper, controllable fluid damper, etc.) are considered as supplemental damping devices. For the semi‐active dampers, a clipped‐optimal control algorithm, shown to perform well in previous studies involving controllable dampers, is considered. Because the semi‐active damper is a controllable energy‐dissipation device that cannot add mechanical energy to the structural system, the proposed hybrid control strategy is fail‐safe in that the bounded‐input, bounded‐output stability of the controlled structure is guaranteed. Numerical simulation results show that the performance of the proposed hybrid control strategy is quite effective in protecting seismically excited cable‐stayed bridges. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the seismic response control of a 20-story nonlinear benchmark building with a new recentering variable friction device (RVFD). The RVFD combines energy dissipation capabilities of a variable friction damper (VFD) with the recentering ability of shape memory alloy (SMA) wires. The VFD that is the first subcomponent of the hybrid device consists of a friction generation unit and piezoelectric actuators. The clamping force of the VFD can be adjusted according to the current level of ground motion by adjusting the voltage level of piezoelectric actuators. SMA wires that exhibit a unique hysteretic behavior and full shape recovery after experiencing large strains is the second subcomponent of the hybrid device. Numerical simulations of a seismically excited 20-story benchmark building are conducted to evaluate the performance of the hybrid device. A continuous hysteretic model is used to capture frictional behavior of the VFD and a neuro-fuzzy model is employed to describe highly nonlinear behavior of the SMA components of the hybrid device. A fuzzy logic controller is developed to adjust the voltage level of VFDs for favorable performance in an RVFD hybrid application. Results show that the RVFD modulated with a fuzzy logic control strategy can effectively reduce interstory drifts and permanent deformations without increasing acceleration response of the benchmark building for most cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In active control, the control force execution time delay cannot be avoided or eliminated even with present technology, which can be critical to the performance of the control system. This paper investigates the influence of time delay on the stability of an SDOF system with an optimal direct output feedback controlled mass damper. An active mass damper system can take the form of a hybrid mass damper (HMD) or a fully active mass damper (AMD) depending upon imposed design constraints resulting from space, strength and power limitations. Explicit formulas and numerical solutions to determine the maximum delay time which causes onset of system instability are obtained. The control effect of the two‐DOF HMD/AMD benchmark system with and without time delay is illustrated quantitatively in a continuous‐time approach. In order to fit the digital implementation of the computer‐controlled system in practice, the control gains will be compensated by using their discrete‐time version to overcome the degradation of control effect due to time delay. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
A discrete model to represent the unbounded soil (halfspace) in a soil–structure interaction analysis in the time domain is developed. For each dynamic degree of freedom of the foundation node, the discrete model consists of a mass M0 which is attached to a rigid support with a spring K and with a damper C0. In addition, a free node with the mass M1 is introduced, which is connected to the foundation node with a damper C1. All coefficients are frequency-independent. The discrete model is semi-empirical. It is based on a semi-infinite truncated cone, whereby, after enforcing the static stiffness, the remaining parameters are modified to achieve an optimal fit of the dynamic-stiffness coefficient in the frequency domain. The spring K is equal to the static stiffness. The coefficients appearing in the equations for the dampers C0, C1 and the masses M0, M1 are specified (assuming a homogeneous halfspace) for the disc, the embedded cylinder, the rectangle (also embedded) and the strip. A square on a layer whose stiffness increases with depth resting on a homogeneous halfspace is also treated. For an embedded foundation, eccentricities arise. Material damping increases the damper C0 and the mass M0.  相似文献   

10.
In this paper, we propose a new actuator control algorithm that achieves the design flexibility, robustness, and tracking accuracy to give real‐time hybrid‐simulation users the power to achieve highly accurate and robust actuator control. The robust integrated actuator control (RIAC) strategy integrates three key control components: loop shaping feedback control based on H optimization, a linear‐quadratic‐estimation block for minimizing noise effect, and a feed‐forward block that reduces small residual delay/lag. The combination of these components provides flexible controller design to accommodate setup limits while preserving the stability of the H algorithm. The efficacy of the proposed strategy is demonstrated through two illustrative case studies: one using large capacity but relatively slow actuator of 2500 kN and the second using a small‐scale fast actuator. Actuator tracking results in both cases demonstrate that the RIAC algorithm is effective and applicable for different setups. Real‐time hybrid‐simulation validation is implemented using a three‐DOF building frame equipped with a magneto‐rheological damper on both setups. Results using the two very different physical setups illustrate that RIAC is efficient and accurate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
This study uses a semi‐active viscous damper with three different control laws to reshape the structural hysteresis loop and mitigate structural response, referred to as 1–4, 1–3 and 2–4 devices, respectively. The 1–4 control law provides damping in all four quadrants of the force‐displacement graph (it behaves like a standard viscous damper), the 1–3 control law provides resisting forces only in the first and third quadrants, and the 2–4 control law provides damping in the second and fourth quadrants. This paper first outlines the linear single degree of freedom structural performance when the three types of semi‐active viscous dampers are applied. The results show that simultaneous reduction in both displacement and base‐shear demand is only available with the semi‐active 2–4 device. To enable guidelines for adding a 2–4 device into the design procedure, damping reduction factors (RFξs) are developed, as they play an important role and provide a means of linking devices to design procedures. Three methods are presented to obtain RFξ and equivalent viscous damping of a structure with a 2–4 semi‐active viscous damper. In the first method, the relationship between RFξ and the damping of a semi‐active structure can be obtained by calculating the area under the force‐deformation diagram. The second and third method modified the Eurocode8 formula of RFξ and smoothed results from analysis, respectively. Finally, a simple method is proposed to incorporate the design or retrofit of structures with simple, robust and reliable 2–4 semi‐active viscous dampers using standard design approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A reliability‐based output feedback control methodology is presented for controlling the dynamic response of systems that are represented by linear state‐space models. The design criterion is based on a robust failure probability for the system. This criterion provides robustness for the controlled system by considering a probability distribution over a set of possible system models with a stochastic model of the excitation so that robust performance is expected. The control command signal can be calculated using incomplete response measurements at previous time steps without requiring state estimation. Examples of robust structural control using an active mass driver on a shear building model and on a benchmark structure are presented to illustrate the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is computationally demanding, impeding the application of rocking isolation in practice. Therefore, there is an urgent need to develop efficient simplified analysis methods. This paper assesses the robustness of two simplified analysis methods, using (i) a nonlinear and (ii) a bilinear rocking stiffness combined with linear viscous damping. The robustness of the simplified methods is assessed by (i) one-to-one comparison with a benchmark finite element (FE) analysis using a selection of ground motions and (ii) statistical comparison of probability distributions of response quantities, which characterize the time history response of rocking systems. A bridge pier (assumed rigid) supported on a square foundation, lying on a stiff clay stratum, is used as an illustrative example. Nonlinear dynamic FE time history analysis serves as a benchmark. Both methods yield reasonably accurate predictions of the maximum rotation θmax. Their stochastic comparison with respect to the empirical cumulative distribution function of θmax reveals that the nonlinear and the bilinear methods are not biased. Thus, both can be used to estimate probabilities of exceeding a certain threshold value of θ. Developed in this paper, the bilinear method is much easier to calibrate than the nonlinear, offering similar performance.  相似文献   

14.
Guo  Wei  Wu  Jun  Hu  Yao  Li  Yunsong  Yang  T. Y. 《地震工程与工程振动(英文版)》2019,18(2):433-446
Adding dampers is a commonly adopted seismic risk mitigation strategy for modern buildings, and the corresponding design procedure of dampers has been well established by the Chinese Building Code. Even though all types of dampers are designed by the same procedure, actual seismic performance of the building may differ from one to the others. In this study, a nine-story benchmark steel building is established, and three different and typical types of dampers are designed according to the Chinese Building Code to realize structural vibration control under strong earthquake excitation. The seismic response of the prototype building equipped with a viscoelastic damper, viscous damper and buckling-restrained brace(BRB) subjected to 10 earthquake records are calculated, and Incremental Dynamic Analysis(IDA) is performed to describe progressive damage of the structure under increasing earthquake intensity. In the perspective of fragility, it shows that the viscoelastic damper has the highest collapse margin ratio(CMR), and the viscous damper provides the best drift control. Both the BRB and viscoelastic dampers can effectively reduce the floor acceleration responses in the mid-rise building.  相似文献   

15.
A fuzzy‐logic control algorithm, based on the fuzzification of the MR damper characteristics, is presented for the semiactive control of building frames under seismic excitation. The MR damper characteristics are represented by force–velocity and force–displacement curves obtained from the sinusoidal actuation test. The method does not require any analytical model of MR damper characteristics, such as the Bouc‐Wen model, to be incorporated into the control algorithm. The control algorithm has a feedback structure and is implemented by using the fuzzy‐logic and Simulink toolboxes of MATLAB. The performance of the algorithm is studied by using it to control the responses of two example buildings taken from the literature—a three‐storey building frame, in which controlled responses are obtained by clipped‐optimal control and a ten‐storey building frame. The results indicate that the proposed scheme provides nearly the same percentage reduction of responses as that obtained by the clipped‐optimal control with much less control force and much less command voltage. Position of the damper is found to significantly affect the controlled responses of the structure. It is observed that any increase in the damper capacity beyond a saturation level does not improve the performance of the controller. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
为改善传统连梁钢板阻尼器的适用性,提出了一种新型耗能连梁钢板阻尼器的设计方法,通过对阻尼器工作区域的划分与设计,使新型阻尼器充分发挥耗能作用,有效地提高了结构整体耗能能力。基于有限元软件ABAQUS模拟低周反复荷载作用下墙肢与阻尼器的应力应变状态,以验证所提出的新型阻尼器的设计方法及端部嵌固区的可靠性,并通过对原结构和实施耗能连梁钢板阻尼器结构进行弹塑性时程分析,探讨其改进后的抗震性能。研究结果表明,新型嵌固区构造不仅能够保证阻尼器与墙肢协同工作良好,还能大大降低施工难度;通过实施该阻尼器,可形成耗能连梁及抗震多道防线,在连梁钢筋混凝土部分损伤较为严重的情况下,仍能保证连梁具有一定的延性和耗能能力。  相似文献   

17.
18.
Experimental verifications of a recently developed active structural control method using neural networks are presented in this paper. The experiments were performed on the earthquake simulator at the University of Illinois at Urbana—Champaign. The test specimen was a 1/4 scale model of a three-storey building. The control system consisted of a tendon/pulley system controlled by a single hydraulic actuator at the base. The control mechanism was implemented through four active pre-tensioned tendons connected to the hydraulic actuator at the first floor. The structure modelling and system identification has been presented in a companion paper. (Earthquake Engng. Struct. Dyn. 28 , 995–1018 (1999)). This paper presents the controller design and implementation. Three controllers were developed and designed: two neurocontrollers, one with a single sensor feedback and the other with three sensor feedback, and one optimal controller with acceleration feedback. The experimental design of the neurocontrollers is accomplished in three steps: system identification, multiple emulator neural networks training and finally the neurocontrollers training with the aid of multiple emulator neural networks. The effectiveness of both neurocontrollers are demonstrated from experimental results. The robustness and the relative stability are presented and discussed. The experimental results of the optimal controller performance is presented and assessed. Comparison between the optimal controller and neurocontrollers is presented and discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
This paper proposes a semiactive control system to reduce the coupled lateral and torsional motions in asymmetric buildings subjected to horizontal seismic excitations. Magnetorheological (MR) dampers are applied as semiactive control devices and the control input determination is based on a clipped‐optimal control algorithm which uses absolute acceleration feedback. The performance of this method is studied experimentally using a 2‐story building model with an asymmetric stiffness distribution. An automated system identification methodology is implemented to develop a control‐oriented model which has the natural frequencies observed in the experimental system. The parameters for the MR damper model are identified using experimental data to develop an integrated model of the structure and MR dampers. To demonstrate the performance of this control system on the experimental structure, a shake table is used to reproduce an El Centro 1940 N–S earthquake as well as a random white noise excitation. The responses for the proposed control system are compared to those of passive control cases in which a constant voltage is applied to the MR damper. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
This study proposes a new design method for an active mass damper (AMD) that is based on auto‐regressive exogenous models of a building structure. The proposed method uses the results of system identification in the field of active structural control. The uncontrolled structure is identified as auto‐regressive exogenous models via measurements under earthquake excitation and forced vibration. These models are linked with an equation of motion for the AMD to introduce a state equation and output equation for the AMD–structure interaction system in the discrete‐time space; the equations apply modern control theories to the AMD design. In the numerical applications of a 10‐degree‐of‐freedom building structure, linear quadratic regulator control is used to understand the fundamental characteristics of the proposed design procedure. The feedback control law requires the AMD's acceleration, velocity and stroke; the structure's acceleration; and the ground acceleration as vibration measurements. The numerical examples confirm the high applicability and control effectiveness of the proposed method. One remarkable advantage of the proposed method is that an equation of motion for the structure becomes unnecessary for designing controllers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号