首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
南黄海浮游植物季节性变化的数值模拟与影响因子分析   总被引:26,自引:1,他引:25  
用三维物理-生物耦合模式研究南黄海浮游植物(以叶绿素a为指标)的季节变化.对于物理模式采用Princeton ocean model(POM),对于生物模式考虑溶解无机营养盐(氮、磷、硅)、浮游植物、食草性浮游动物和碎屑.给定已知的初始场和外加边界强迫,模拟了观测到叶绿素a的主要时、空分布特征,如浮游植物的春、秋季水华和夏季次表层叶绿素a极大值现象等.研究表明,浮游植物春季水华最先发生于黄海中央海域,主要原因是该海域透明度较高,流速较小.春季水华开始于垂直对流减弱和层化开始形成之前(约3月底至4月上旬),显著地依赖水层的稳定性.水体层化以后(约5~9月)叶绿素a浓度高值区分布在南黄海的南部和锋区.夏季的南黄海中央海域,由于上混合层营养盐几乎耗尽,限制了浮游植物的生长,在紧贴温跃层下部的真光层,具有丰富的营养盐和合适的光照,次表层叶绿素a极大值得以形成.秋季(约9~11月份,略迟于海表面开始降温的时间,随地点不同而异)随垂直混合的增强,有利于营养盐向上输运,浮游植物出现一次较小的峰值.  相似文献   

2.
A four-component ecosystem model of biological activity in the Arabian Sea   总被引:1,自引:0,他引:1  
A coupled, physical-biological model is used to study the processes that determine the annual cycle of biological activity in the Arabian Sea. The physical model is a system with a surface mixed layer imbedded in the upper layer, and fluid is allowed to move between layers via entrainment, detrainment and mixing processes. The biological model consists of a set of advective-diffusive equations in each layer that determine the nitrogen concentrations in four compartments: nutrients, phytoplankton, zooplankton and detritus. Coupling is provided by the horizontal-velocity, layer-thickness, entrainment and detrainment fields from the physical solution. Surface forcing fields (such as wind stress and photosynthetically active radiation) are derived from monthly climatological data, and the source of nitrogen for the system is upward diffusion of nutrients from the deep ocean into the lower layer. Our main-run solution compares favorably with observed physical and biological fields; in particular, it is able to simulate all the prominent phytoplankton blooms visible in the CZCS data. Three bloom types develop in response to the physical processes of upwelling, detrainment and entrainment. Upwelling blooms are strong, long-lasting events that continue as long as the upwelling persists. They occur during the Southwest Monsoon off Somalia, Oman and India as a result of coastal alongshore winds, and at the mouth of the Gulf of Aden through Ekman pumping. Detrainment blooms are intense, short-lived events that develop when the mixed layer thins abruptly, thereby quickly increasing the depth-averaged light intensity available for phytoplankton growth. They occur during the fall in the central Arabian Sea, and during the spring throughout most of the basin. In contrast to the other bloom types, entrainment blooms are weak because entrainment steadily thickens the mixed layer, which in turn decreases the depth-averaged light intensity. There is an entrainment bloom in the central Arabian Sea during June in the solution, but it is not apparent in the CZCS data. Bloom dynamics are isolated in a suite of diagnostic calculations and test solutions. Some results from these analyses are the following. Entrainment is the primary nutrient source for the offshore bloom in the central Arabian Sea, but advection and recycling also contribute. The ultimate cause for the decay of the solution's spring (and fall) blooms is nutrient deprivation, but their rapid initial decay results from grazing and self shading. Zooplankton grazing is always an essential process, limiting phytoplankton concentrations during both bloom and oligotrophic periods. Detrital remineralization is also important: in a test solution without remineralization, nutrient levels drop markedly in every layer of the model and all blooms are severely weakened. Senescence, however, has little effect: in a test solution without senescence, its lack is almost completely compensated for by increased grazing. Finally, the model's detrainment blooms are too brief and intense in comparison to the CZCS data; this difference cannot be removed by altering biological parameters, which suggests that phytoplankton growth in the model is more sensitive to mixed-layer thickness than it is in the real ocean.  相似文献   

3.
4.
2003年烟台四十里湾海域主要水质指标分析   总被引:3,自引:0,他引:3  
2003年四十里湾赤潮监测资料显示:整个水域呈贫营养状态,磷酸盐为浮游植物生长的限制因子。无机氮、磷酸盐主要以陆源径流得以补充,硅酸盐主要以沉积物释放,通过海水上下混合得以补充,均以浮游植物的消耗而减少;叶绿素a与磷酸盐呈正相关关系。  相似文献   

5.
wrmcrloxHuman activities related to the population growth and developrnent of industry and rnwhci-pality have led to the incrouing hadings of various POllutants into estudries during the past fewdecades. These increasing edlutant lOadings have caused declined estuallne hedth which can bemereured by a vdriety of indices. In order to obtain solutions to environrnent problerns, re-sources manageTnnt apencies are supporting a holistic approach to envirorirnental management.An effcient strategy t…  相似文献   

6.
为了研究珠江河口营养物质循环和溶解氧,建立了一个生态型水质模式.在该水质模式中营养物质以溶解无机态、碎屑有机物质、底栖物质、浮游植物和浮游动物等5种形态出现,而每种形态均分氮和磷两种形式.水质模式采用三维形式,并与斜压水动力和泥沙模式联立运行.  相似文献   

7.
Historical data of total dissolved inorganic carbon (CT), together with nitrate and phosphate, have been used to model the evolution of these constituents over the year in the Atlantic water of the Norwegian Sea. Changes in nutrient concentration in the upper layer of the ocean are largely related to biological activity, but vertical mixing with the underlying water will also have an impact. A mixing factor is estimated and used to compute the entrainment of these constituents into the surface water from below. After taking the mixing contribution into account, the resulting nutrient concentration changes are attributed to biological production or decay. The results of the model show that the change in CT by vertical mixing and by biological activity based on nutrient equivalents needs another sink to balance the carbon budget. It cannot be the atmosphere as the surface water is undersaturated with respect to carbon dioxide and is, thus, a source of CT in this region. Inasmuch as the peak deficit of carbon is more than a month later than for the nutrients, the most plausible explanation is that other nitrogen and phosphate sources than the inorganic salts are used together with dissolved inorganic carbon during this period. As nitrate and phosphate show a similar trend, it is unlikely that the explanation is the use of ammonia or nitrogen fixation but rather dissolved organic nitrogen and phosphate, while dissolved organic carbon is accumulating in the water.  相似文献   

8.
The paper discusses the data derived from a numerical experiment on the ocean’s response (between the equator and 64°N) to the seasonal variability of the atmospheric forcing (wind and heat flux through the ocean surface). A multilayer (7 layers) non-linear model is used incorporating the upper mixed layer interacting with the internal layers in the regimes of entraining and subduction. The restructuring of the layer composition, the currents and temperature variability, as well as the alternation of the entrainment and subduction regimes are analysed. Translated by Vladimir A. Puchkin.  相似文献   

9.
通过楚科奇海北部–加拿大海盆西侧交接地带的生态调查,我们发现0~150 m海域水体中以融冰水(MW,0~20 m)、白令海夏季水(s BSW)和阿拉斯加沿岸流(ACW)等水团为主。水温和营养盐变化与水团息息相关,物理–生化的耦合作用进一步影响了浮游植物分布和群落结构。叶绿素a浓度最大值多位于约50 m深、富含营养盐的s BSW和ACW暖水团中。sBSW和ACW中分别以小型(占比约74%)和微微型(占比约65%)浮游植物为主。藻华初期,溶解无机氮(DIN)虽呈相对限制状态,但仍高于浮游植物生长所需阈值。双单元混合模型显示:浮游植物对氮去除明显,氮吸收量与叶绿素a浓度呈正比,且在温度略高的ACW水团中氮吸收量高于s BSW水团。在北极变暖、波弗特流涡增强以及ACW和sBSW营养盐补给下,该区域的浮游植物的叶绿素a浓度(均值:(0.327±0.163)mg/m3,范围:0.04~0.69 mg/m3)与历史数据相比有所提高。这将增加北极海区的碳吸收通量,有利于其作为碳汇区的发展。  相似文献   

10.
Temporal and spatial distribution of biogenic (BSi) and lithogenic (LSi) silica were studied in the Changjiang (Yangtze River) Estuary and its adjacent area. The annual average BSi and LSi concentrations were (1.71 ± 1.79) μmol/L and (0.56 ± 1.41) mmol/L, respectively. Both BSi and LSi were high in the inshore areas, where they received terrigenous discharge from the Changjiang, and decreased towards the offshore region. BSi and LSi were most abundant at the near bottom layer due to the high sedimentation rates and resuspension of sediment. Diatom blooms occurred in summer with high Chl a concentration in the surface layer, which induced that BSi in the surface layer during summer was obviously higher than that in the surface layer of other seasons. LSi concentration was maximal in autumn and spring and minimum in summer, associated with the seasonal variation of SPM values. Drifting investigation and mesocosm experiments were conducted during dinoflagellate bloom, aiming to understand the effect of nutrients on BSi by changing the phytoplankton composition. The results show that the low dissolved inorganic phosphorus concentration and high molar ratio of N/P (dissolved inorganic nitrogen vs. dissolved inorganic phosphorus), were the important factors for decreasing diatom biomass in the study area, and it would subsequently decrease the BSi concentration in aquatic ecosystem.  相似文献   

11.
The spatial and temporal dynamics of dissolved inorganic nitrogen, dissolved phosphate, dissolved silica and chlorophyll a were measured seasonally at eight stations in the Ria de Aveiro. Between December 2000 and September 2001, the seasonal succession of phytoplankton assemblages, inferred after the spatial and seasonal variation of silica and of chlorophyll a concentrations, showed that diatoms (μmol Si L−1) dominated from late autumn until early spring, while chlorophytes (μg Chl a L−1) bloomed during late spring and summer. The Si:N:P ratios and Si concentrations indicated no seasonal depletion in dissolved silica, as in other temperate systems, possibly because of abnormal precipitation and flood events prolonging the supply of dissolved Si to the system. The Si:N:P ratios suggested P limitation at the system level. Despite the relative proportions of available nutrients, the mean phosphorus concentration (5.3 μmol L−1) was above the reported half-saturation constants for P uptake by phytoplankton. Thus, in Ria de Aveiro, the seasonal succession of phytoplankton assemblages may also be dependent on the grazing capacity of the pelagic community through top-down regulation.  相似文献   

12.
加拿大海盆北部营养盐限制作用研究   总被引:1,自引:1,他引:0  
利用2008年夏季中国第三次北极科学考察获得的营养盐、叶绿素a、温度和盐度等数据资料,结合现场营养盐添加实验的结果讨论西北冰洋加拿大海盆北部营养盐对浮游植物生长的限制作用。结果表明:由于融冰水稀释作用,加拿大海盆B80站约20m深度存在较强的盐跃层,阻碍了水体上下混合。较低浓度的溶解无机氮(DIN)和硅酸盐(分别为0.31μmol/L和0.94μmol/L)以及严重偏离Redfield比值的N/P、N/Si比值(分别为0.42和0.32)表明加拿大海盆表层水体存在N和Si限制。根据现场营养盐加富实验各培养组叶绿素a浓度变化、营养盐吸收总量差异和浮游植物种群结构,进一步表明氮是北冰洋海盆首要限制营养盐,而Si则抑制了硅质生物的生长。同时,较小的硝酸盐半饱和常数(Ks)证明即使在营养盐充足的情况下北冰洋海盆浮游植物生长速率也处于较低水平。计算得到各培养组营养盐吸收比例(N/P比值)均大于Redfield比值,可能是培养实验过程中以微型、微微型浮游植物为主,硅藻等小型浮游植物为辅造成的。  相似文献   

13.
为加深对海洋生物地球化学循环过程和海洋生态系统功能的认知,并为相关研究提供科学依据,文章综述海洋中碱性磷酸酶及其活性的研究进展,并提出展望。研究结果表明:碱性磷酸酶主要来源于浮游植物、浮游动物和细菌,通常根据滤膜孔径等进行分类,对于海洋碳、氮、磷循环和调节生物群落组成具有重要意义;碱性磷酸酶活性通常采用水解荧光模拟底物法定量研究,并在全球海洋范围具有一定的水平、垂直和季节分布特征,影响碱性磷酸酶活性的典型环境因子包括太阳辐射、海水温度、河流输入、上升流、溶解态有机磷、溶解态无机磷、溶解态无机氮、金属离子以及病毒裂解、浮游动物捕食和排遗作用等。  相似文献   

14.
中国近海异常海温数值预报模式研究Ⅰ.模式的建立   总被引:10,自引:3,他引:7  
本文从近海异常海温的定义和形成机制出发,在原有的海表温度数值预报模式的基础上,考虑了上层海洋对强天气强迫的动力响应和浅海效应,前者包括卷入和卷出、冷水抽吸和暖水辐聚,后者包括潮混合和浅海对短波吸收之影响,从而建立了一个以混合层的温、流、深度为变量的中国近海异常海温数值预报模式.  相似文献   

15.
The Dardanelles Strait is a remarkable example of a long, narrow, shallow, and strongly stratified strait with bidirectional exchange that is governed by both baroclinic and barotropic forcing with a wide spectrum of variability. A three-dimensional free surface primitive equation model is applied to study seasonal hydrodynamics variability in this strait. The calculated vertical structure of temperature, salinity, and velocity fields agrees well with available survey data. Seasonal monthly values of the volume exchange at the Aegean and Marmara exits are estimated. It is found that the seasonal exchange dynamics is governed by the turbulent friction and entrainment at the Nara Passage area. The mean annual water transport in the upper layer is increased by 80% after the Nara Passage. About 25% of water entering in the Dardanelles bottom layer reaches the Marmara Sea in winter, and 50% reaches it in summer. The estimate of the Dardanelles hydrodynamics according to hydraulic and viscous–advective–diffusive regime classification shows significant deviation from the two-layer hydraulic asymptotic. However, according to three-layer hydraulic theory, the flow is found to be critical in the Nara Passage area.  相似文献   

16.
长江口及邻近水域氮、磷的形态特征及分布研究   总被引:3,自引:0,他引:3  
根据近几年大面调查的监测资料,对长江口及邻近水域氮、磷营养盐的形态组成、时空分布及氮磷比的变动规律及其影响因素进行了分析研究。结果表明,长江口及邻近水域中硝酸盐是水体无机氮存在的主要形态,其约占总无机氮的90%,无机氮含量河口高,向东南方向愈来愈低;从该水域总磷的形态组成来看,磷营养盐主要以溶解态和颗粒态共存的形式存在,TDP略高于TPP,无机磷的平面分布与无机氮十分相似,春季无机磷含量高于夏季;N/P值变动范围大和平均值较高是该水域的主要特征,N/P值与长江径流量的大小有关系,夏季N/P值比春季高,综合分析来看,磷营养盐和光照都有可能成为该水域浮游植物生长的重要限制因子。  相似文献   

17.
《Ocean Modelling》2004,6(3-4):285-334
We have developed a general 1-D multi-component ecosystem model that incorporates a skillful upper ocean mixed layer model based on second moment closure of turbulence. The model is intended for eventual incorporation into coupled 3-D physical–biogeochemical ocean models with potential applications to modeling and studying primary productivity and carbon cycling in the global oceans as well as to promote the use of chlorophyll concentrations, in concert with satellite-sensed ocean color, as a diagnostic tool to delineate circulation features in numerical circulation models. The model is nitrogen-based and the design is deliberately general enough and modular to enable many of the existing ecosystem model formulations to be simulated and hence model-to-model comparisons rendered feasible. In its more general form (GEM10), the model solves for nitrate, ammonium, dissolved nitrogen, bacteria and two size categories of phytoplankton, zooplankton and detritus, in addition to solving for dissolved inorganic carbon and total alkalinity to enable estimation of the carbon dioxide flux at the air–sea interface. Dissolved oxygen is another prognostic variable enabling air–sea exchange of oxygen to be calculated. For potential applications to HNLC regions where productivity is constrained by the availability of a trace constituent such as iron, the model carries the trace constituent as an additional prognostic variable. Here we present 1-D model simulations for the Black Sea, Station PAPA and the BATS site. The Black Sea simulations assimilate seasonal monthly SST, SSS and surface chlorophyll, and the seasonal modulations compare favorably with earlier work. Station PAPA simulations for 1975–1977 with GEM5 assimilating observed SST and a plausible seasonal modulation of surface chlorophyll concentration also compare favorably with earlier work and with the limited observations on nitrate and pCO2 available. Finally, GEM5 simulations at BATS for 1985–1997 are consistent with the available time series. The simulations suggest that while it is generally desirable to employ a comprehensive ecosystem model with a large number of components when accurate depiction of the entire ecosystem is desirable, as is the prevailing practice, a simpler formulation such as GEM5 (N2PZD model) combined with assimilation of remotely sensed SST and chlorophyll concentrations may suffice for incorporation into 3-D prediction models of primary productivity, upper ocean optical clarity and carbon cycling.  相似文献   

18.
A numerical ecosystem model expressing both phosphorus and nitrogen cyclings in the pelagic system of Hiroshima Bay, Japan, was developed in order to investigate the seasonal variations of these elements and their annual budgets. Based on the geophysical and chemical structures of the bay, Hiroshima Bay was divided into northern and southern boxes, themselves divided into two layers of an upper 5 m and a lower layer according to the stratification of the water column. The model consists of equations representing all relevant physical and biological processes. The results revealed that the internal regeneration of materials was an important source of bioavailable nutrients for phytoplankton growth in the water column. The incorporation of phytoplankton aggregation improved the accuracy of the outputs in comparison to the observed data, especially during the stratified summer season. The results also indicated that phosphorus limitation of phytoplankton growth occurs in the upper layer during summer while light limitation occurs in the lower layer. In addition, physical processes such as diffusion and advection were also important as they ensured that most of regenerated nutrients in the lower layer were transported to the upper layer. Thus, these processes might support the high primary production and the production of oysters that are extensively cultured in this bay. Considering the informative results obtained, the model used in this study provides a sound basis and tool to describe the dynamics of phosphorus and nitrogen cyclings in Hiroshima Bay.  相似文献   

19.
Considerable attention has recently been focused on the role of eddies in affecting biogeochemical fluxes and budgets of the Sargasso Sea. In late November 1996, the Bermuda Testbed Mooring (BTM) and Bermuda Atlantic Time Series (BATS) shipboard sampling evidenced a fall phytoplankton bloom at the Bermuda time-series site which was strongly forced by the interplay between seasonal mixed layer destratification and perturbation of mixed layer dynamics due to passage of a warm mesoscale feature. The feature was characterized by clockwise current vector rotation from near the surface to about 200 m and a thick, warm, low salinity isothermal layer >180 m in depth. Nutrients, chlorophyll fluorescence and pigment profiles indicated high primary production stimulated by enhancement of nutrient entrainment and intermittent deep mixing down to the base of the feature's isothermal layer. Nearly coincident with the arrival of this productive feature at the BTM site, the Oceanic Flux Program (OFP) sediment traps recorded an abrupt, factor of 2.5 increase in mass flux at 3200 m depth. Even more dramatic was the observed increase in flux of labile bioreactive organic matter. Fluxes of primary phytoplankton-derived compounds increased by factors of 7–30, bacteria-derived compounds by 6–9, and early degradation products of sterols by a factor of 10. The covariation of early degradation products and bacteria-derived compounds with phytoplankton-derived compounds indicated that the settling phytoplankton bloom material contained elevated bacterial populations and was undergoing active degradation when it entered the 3200 m trap cup.The increase in the flux of bulk components, especially the residual silicate fraction, and refractory organic compounds clearly preceded the main pulse of the labile, surface-derived phytoplankton organic material. The coincident increase in the flux of refractory and zooplankton-derived compounds suggests that in the initial stage of the deep flux event, the mass flux increased largely as a result of an increase in the flux of refractory materials scavenged from the water column and repackaged into sinking particles and increased zooplankton inputs. These results imply that biological reprocessing of flux material within the water column acts to enhance the coupling between the surface and deep ocean environments.Our results show that transient, upper ocean forcing associated with variable upper ocean physical structure—which includes but is not limited to eddies—and variable meteorological forcing can have an enormous effect on the export flux of bioreactive organic material. The importance of pulsed fluxes of bioreactive material arising from transient physical forcing to the long-term average is not presently known. However, the occurrence of episodic high flux events throughout the OFP time-series record (also inferred from BTM time-series) suggests that such forcing, regardless of specific dynamics, may be responsible for a significant fraction of the total export flux of bioreactive carbon and associated elements to the deep oligotrophic ocean.  相似文献   

20.
Using an interdisciplinary three-dimensional physical and biogeochemical model developed for the Black Sea, the long-term evolution of marine dynamics and ecosystem is investigated. The hydrophysical fields were calculated from a model of Black Sea circulation with assimilation of hydrographic survey and satellite measurement data from 1971 to 2001. The circulation model reproduces well processes of various scales in both space and time (particularly the seasonal course and interannual variability of main hydrophysical fields). The resulting flow fields are then used to calculate the long-term evolution of the components of the lower level of the food chain in the Black Sea ecosystem. The biogeochemical model used in the calculations is based on the nitrogen cycle and includes a parameterization of the main biological and chemical interactions and processes in the upper layer of the Black Sea. The numerical experiments indicated that the biogeochemical component of the model rather successfully reproduces the main features and evolution trends in the Black Sea ecosystem for the period under consideration: the growth in the phytoplankton biomass during eutrophication and changes in seasonal cycles of the main ecosystem components. Also, the hydrophysical processes were shown to be important for a reliable reproduction of long-term changes in the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号