首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
海浪破碎对海洋上混合层中湍能量收支的影响   总被引:2,自引:1,他引:2  
海浪破碎产生一向下输入的湍动能通量,在近海表处形成一湍流生成明显增加的次层,加强了海洋上混合层中的湍流垂向混合。为了研究海浪破碎对混合层中湍能量收支的影响,文中分析了海浪破碎对海洋上混合层中湍流生成的影响机制,采用垂向一维湍封闭混合模式,通过改变湍动能方程的上边界条件,引入了海浪破碎产生的湍动能通量,并分别对不同风速下海浪破碎的影响进行了数值研究,分析了混合层中湍能量收支的变化。当考虑海浪破碎影响时,近海表次层中的垂直扩散项和耗散项都有显著的增加,该次层中被耗散的湍动能占整个混合层中耗散的总的湍能量的92.0%,比无海浪破碎影响的结果增加了近1倍;由于平均流场切变减小,混合层中的湍流剪切生成减小了3.5%,形成一种存在于湍动能的耗散和垂直扩散之间的局部平衡关系。在该次层以下,局部平衡关系与壁层定律的结论一致,即湍动能的剪切生成与耗散相平衡。研究结果表明,海浪破碎在海表产生的湍动能通量影响了海洋上混合层中的各项湍能量收支间的局部平衡关系。  相似文献   

2.
上混合中剪切湍流和朗缪尔环流动力特征差异   总被引:1,自引:0,他引:1  
Large eddy simulation(LES) is used to investigate contrasting dynamic characteristics of shear turbulence(ST)and Langmuir circulation(LC) in the surface mixed layer(SML). ST is usually induced by wind forcing in SML. LC can be driven by wave-current interaction that includes the roles of wind, wave and vortex forcing. The LES results show that LC suppresses the horizontal velocity and greatly modifies the downwind velocity profile, but increases the vertical velocity. The strong downwelling jets of LC accelerate and increase the downward transport of energy as compared to ST. The vertical eddy viscosity Km of LC is much larger than that of ST. Strong mixing induced by LC has two locations. They are located in the 2ds–3ds(Stokes depth scale) and the lower layer of the SML,respectively. Its value and position change periodically with time. In contrast, maximum Km induced by ST is located in the middle depth of the SML. The turbulent kinetic energy(TKE) generated by LC is larger than that by ST. The differences in vertical distributions of TKE and Km are evident. Therefore, the parameterization of LC cannot be solely based on TKE. For deep SML, the convection of large-scale eddies in LC plays a main role in downward transport of energy and LC can induce stronger velocity shear(S2) near the SML base. In addition, the large-scale eddies and S2 induced by LC is changing all the time, which needs to be fully considered in the parameterization of LC.  相似文献   

3.
Modeling of the Turbulence in the Water Column under Breaking Wind Waves   总被引:1,自引:0,他引:1  
Past studies have shown that there is a wave-enhanced, near-surface mixed-layer in which the dissipation rate is greater than that derived from the “law of the wall”. In this study, turbulence in water columns under wind breaking waves is investigated numerically and analytically. Improved estimations of dissipation rate are parameterized as surface source of turbulent kinetic energy (TKE) for a more accurate modelling of vertical profile of velocity and TKE in the water column. The simulation results have been compared with the experimental results obtained by Cheung and Street (1988) and Kitaigorodskii et al. (1983), with good agreement. The results show that the numerical full model can well simulate the near-surface wave-enhanced layer and suggest that the vertical diffusive coefficients are highly empirical and related to the TKE diffusion, the shear production and the dissipation. Analytical solutions of TKE are also derived for near surface layer and in deep water respectively. Near the surface layer, the dissipation rate is assumed to be balanced by the TKE diffusion to obtain the analytical solution; however, the balance between the dissipation and the shear production is applied at the deep layer. The analytical results in various layers are compared with that of the full numerical model, which confirms that the wave-enhanced layer near the surface is a diffusion-dominated region. The influence of the wave energy factor is also examined, which increases the surface TKE flux with the wave development. Under this region, the water behavior transits to satisfy the classic law of the wall. Below the transition depth, the shear production dominantly balances the dissipation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
We investigate the turbulence induced by wave-breaking at the ocean surface. Two recent models use a mechanism of direct depth injection of turbulent kinetic energy (TKE) by breaking waves. Those models aim to reproduce the near-surface mean and turbulent properties, in particular the TKE dissipation rates. Of critical importance are the injection depth of each breaking wave and the size distribution of those breaking waves. The models by Sullivan et al. (2007) and by Kudryavtsev et al. (2008) have very different parameterizations, and those differences are reviewed here and compared to available observations. Using realistic parameterizations in these models leads to TKE injections too shallow to compare to observations, in particular for developed seas. The near-surface turbulence is thus still not well understood to the zeroth order. For instance, whether developed seas produce deeper or shallower mixing than young seas is neither well understood nor well modelled. Additional dedicated measurements as well as investigations of breaking non-breaking wave interactions are needed.  相似文献   

5.
Large Eddy Simulation for Wave Breaking in the Surf Zone   总被引:1,自引:0,他引:1  
In this paper, (he large eddy simulation method is used combined with the marker and cell method to study the wave propagation or shoaling and breaking process. As wave propagates into shallow water, the shoaling leads lo the increase of wave height, and then at a certain position, the wave will be breaking. The breaking wave is a powerful agent for generating turbulence, which plays an important role in most of the fluid dynamic processes throughout the surf zone, such as transformation of wave energy, generation of near-shore current and diffusion of materials. So a proper numerical model for describing the turbulence effect is needed. In this paper, a revised Smagorinsky subgrid-scale mode! is used to describe the turbulence effect. The present study reveals that the coefficient of the Smagorinsky model for wave propagation or breaking simulation may be taken as a varying function of the water depth and distance away from the wave breaking point. The large eddy simulation model presented in this pape  相似文献   

6.
Effects of Stokes production on summer ocean shelf dynamics   总被引:1,自引:0,他引:1  
A two-dimensional numerical model,which is configured on the basis of Princeton ocean model(POM),is used to study the effect of Stokes production(SP) of the turbulent kinetic energy on a density profile and Ekman transport in an idealized shelf region in summer.The energy input from SP is parameterized and included into the Mellor-Yamada turbulence closure submodel.Results reveal that the intensity of wind-driven upwelling fronts near the sea surface is weakened by the SP-associated turbulent kinetic energy input.The vertical eddy viscosity coefficient in the surface boundary layer is enhanced greatly owing to the impact of SP,which decreases the alongshore velocity and changes the distribution of upwelling.In addition,the SP-induced mixing easily suppresses the strong stratification and significantly increases the depth of the upper mixed layer(ML) under strong winds.  相似文献   

7.
《Ocean Modelling》2011,39(3-4):267-279
Near-surface enhancement of turbulent mixing and vertical mixing coefficient for temperature owing to the effect of surface wave breaking is investigated using a two-dimensional (2-D) ocean circulation model with a tidal boundary condition in an idealized shelf sea. On the basis of the 2-D simulation, the effect of surface wave breaking on surface boundary layer deepening in the Yellow Sea in summer is studied utilizing a 3-D ocean circulation model. A well-mixed temperature surface layer in the Yellow Sea can be successfully reconstructed when the effect of surface wave breaking is considered. The diagnostic analysis of the turbulent kinetic energy equation shows that turbulent mixing is enhanced greatly in the Yellow Sea in summer by surface wave breaking. In addition, the diagnostic analysis of momentum budget and temperature budget also show that surface wave breaking has an evident contribution to the turbulent mixing in the surface boundary layer. We therefore conclude that surface wave breaking is an important factor in determining the depth of the surface boundary layer of temperature in the Yellow Sea in summer.  相似文献   

8.
A three-dimensional multi-level turbulence model is developed to simulate tide induced circulation in coastal waters. Based on the bathymetry data, the coastal waters are divided into a number of layers. In every layer, the velocities are integrated along the layer depth. The eddy viscosity and diffusivity are computed from the Prandtl mixing length turbulence model. This multi-level model solves for the water surface elevations and currents in different water depths. Comparison of numerical results with the measured data shows good conformity.  相似文献   

9.
波浪破碎过程产生的湍流动量和能量垂向输运对于加快海洋上混合层中垂向混合具有显著效果。采用二维实验室水槽中对波浪破碎过程进行模拟。对采集的波浪振幅时间序列采用希尔伯特变换定位破碎波位置,波浪的破碎率随有效波高的增加而增大,波浪谱分析得到的波浪基本周期与有效周期结果相似。实验中采用粒子图像测速技术(particle image velocimetry, PIV)计算波浪破碎过程中湍动能耗散率的空间分布。湍流强度与波浪的相位密切相关,波峰位置处湍流活动最为剧烈,而且波峰位置处湍流混合区内湍动能耗散率量值的垂向分布基本保持不变,即出现"湍流饱和"现象,湍流影响深度可以达到波高的70%—90%。计算湍流扩散系数的垂向分布发现,湍流扩散在混合区上部随深度的增大以指数函数的形式增加,在混合区下部趋于稳定。作为对比,在相同位置处对声学多普勒流速测量仪(acoustic Doppler velocimeter, ADV)测量的单点流速做频谱分析,发现与该位置处PIV湍动能耗散率结果量级处于同一水平,进一步验证了实验结果的准确性。  相似文献   

10.
《Coastal Engineering》2001,42(1):53-86
A numerical model is used to simulate wave breaking, the large scale water motions and turbulence induced by the breaking process. The model consists of a free surface model using the surface markers method combined with a three-dimensional model that solves the flow equations. The turbulence is described by large eddy simulation where the larger turbulent features are simulated by solving the flow equations, and the small scale turbulence that is not resolved by the flow model is represented by a sub-grid model. A simple Smagorinsky sub-grid model has been used for the present simulations. The incoming waves are specified by a flux boundary condition. The waves are approaching in the shore-normal direction and are breaking on a plane, constant slope beach. The first few wave periods are simulated by a two-dimensional model in the vertical plane normal to the beach line. The model describes the steepening and the overturning of the wave. At a given instant, the model domain is extended to three dimensions, and the two-dimensional flow field develops spontaneously three-dimensional flow features with turbulent eddies. After a few wave periods, stationary (periodic) conditions are achieved. The surface is still specified to be uniform in the transverse (alongshore) direction, and it is only the flow field that is three-dimensional.The turbulent structures are investigated under different breaker types, spilling, weak plungers and strong plungers. The model is able to reproduce complicated flow phenomena such as obliquely descending eddies. The turbulent kinetic energy is found by averaging over the transverse direction. In spilling breakers, the turbulence is generated in a series of eddies in the shear layer under the surface roller. After the passage of the roller the turbulence spreads downwards. In the strong plunging breaker, the turbulence originates to a large degree from the topologically generated vorticity. The turbulence generated at the plunge point is almost immediately distributed over the entire water depth by large organised vortices. Away from the bed, the length scale of the turbulence (the characteristic size of the eddies resolved by the model) is similar in the horizontal and the vertical direction. It is found to be of the order one half of the water depth.  相似文献   

11.
刘子龙  史剑  蒋国荣 《海洋科学》2017,41(3):122-129
基于海浪模式WAVEWATCH Ⅲ模拟北太平洋海浪要素,结合NDBC浮标资料进行验证,发现模拟出的有效波高与浮标测量值具有很好的一致性。基于改进型白冠覆盖率耗散模型,利用海浪模式模拟出的有效波高、有效波周期和摩擦速度等海浪要素计算出单位面积水柱内因海浪破碎产生的湍动能通量。通过改变环流模式sbPOM湍动能方程的上边界条件,引入海浪破碎产生的湍动能通量,并探究海浪破碎对北太平洋海表面温度模拟的影响。研究表明,由于海浪破碎的引入,环流模式sbPOM对北太平洋海表面温度模拟的准确程度得到提升,这为大气模式提供一个准确的北太平洋下边界条件具有重要意义。  相似文献   

12.
Effect of Langmuir circulation on upper ocean mixing in the South China Sea   总被引:2,自引:0,他引:2  
Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. Themodel is coupled of the ocean circulationmodel ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research andmechanismanalysis work. This work focuses on inducing LC’s effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, theMellor-Yamada turbulence closuremixing scheme is modified by including LC’s effect. The SWAN imports bathymetry, free surface and current information fromthe ROMS while exports significant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave breaking which will bringsmore energy into water. When LC works together with wave breaking,more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects aremore obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reasonmakes themeasy to influence the oceanmixing as well.  相似文献   

13.
Nearshore shoaling and breaking waves can drive a complex circulation system of wave-induced currents. In the cross-shore direction, the local vertical imbalance between the gradient of radiation stress and that of pressure due to the setup drives an offshore flow near the bottom, called ‘undertow’, which plays a significant role in the beach profile evolution and the structure stability in coastal regions. A 1DV undertow model was developed based on the relationship between the turbulent shear stress and t...  相似文献   

14.
The solution of the linear three dimensional hydrodynamic equations describing wind induced flow in a sea region is developed using the Galerkin method through the vertical. A basis set of B-splines is shown to have some computational advantages over a set of eigenfunctions (vertical modes). However, a basis set of modes leads to a system of essentially uncoupled equations and current profiles can be interpreted in terms of vertical modes.The influence of wind induced surface turbulence and turbulence at depth due to tidal motion upon current profiles in both deep (260 m) and shallow (35 m) sea regions is examined. The variation in the angle between surface current and surface wind for different viscosity profiles, and the effect of bottom friction upon it is considered.The magnitude and direction of the surface current is significantly influenced by surface eddy viscosity. However, viscosity at depth due to tidal motion also has an important effect upon the surface current.The time evolution of current structure following the sudden onset of a wind is examined using the modal model. Calculations show that the rate of damping of the internal modes is inversely proportional to the square of the depth. Consequently wind induced current structure takes longer to reach a steady state in a deep sea region than a shallow area.The influence of sea surface elevation gradients in determining the direction of surface current is also considered.  相似文献   

15.
Effect of Stokes drift on upper ocean mixing   总被引:1,自引:0,他引:1  
Stokes drift is the main source of vertical vorticity in the ocean mixed layer. In the ways of Coriolis - Stokes forcing and Langmuir circulations, Stokes drift can substantially affect the whole mixed layer. A modified Mellor-Yamada 2. 5 level turbulence closure model is used to parameterize its effect on upper ocean mixing conventionally. Results show that comparing surface heating with wave breaking, Stokes drift plays the most important role in the entire ocean mixed layer, especially in the subsurface layer. As expected, Stokes drift elevates both the dissipation rate and the turbulence energy in the upper ocean mixing. Also, ilffluence of the surface heating, wave breaking and wind speed on Stokes drift is investigated respectively. Research shows that it is significant and important to assessing the Stokes drift into ocean mixed layer studying. The laboratory observations are supporting numerical experiments quantitatively.  相似文献   

16.
How the role of vertical turbulent mixing (VTM) in sea surface cooling (SSC) varies with the moving speed of a tropical cyclone was examined for Typhoon Rex (1998) by using the Meteorological Research Institute Community Ocean Model (MRI.COM). The MRI.COM well reproduced TRMM/TMI three-day mean sea surface temperature (SST) fields along Rex’s track. During the fast-moving phase of Rex, SSC simulated by the MRI.COM was caused by shear-induced VTM on the right side of the track. During the slowly-moving phase, on the other hand, the Ekman-pumping area mostly overlapped the VTM area right behind Rex’s center. During the recurvature phase, cool water transported by the upwelling was more efficiently entrained into a mixed layer by the VTM for nearly a 1 near-inertial period after the passage of Rex. We then modified the entrainment formulation of Deardorff (1983), which was incorporated into a slab mixed-layer ocean model (SOM) so as to fit to the results simulated by the MRI.COM. The principal modifications are as follows: (1) consideration of turbulent kinetic energy (TKE) production caused by surface wave breaking; (2) increase in the coefficient for estimating dissipation to balance with TKE production due to turbulent transport; and (3) changing the initial guess for the critical Richardson number. These modifications led to an improvement of SST simulations by the SOM. The impact of the modifications on simulated SSTs turned out to be more significant than the impacts of initial mixed-layer depth and the difference between diurnally-varying and daily mean short-wave radiation.  相似文献   

17.
渤海垂直湍流混合强度季节变化的数值模拟   总被引:4,自引:1,他引:4  
渤海为极浅陆架海 ,其中湍流耗散作用显著。将三维斜压陆架海模式 HAMSOM应用于渤海 ,以渤海周边台站每天 4次的常规气象资料作为风和热驱动 ,渤海海峡开边界以 5个主要分潮调和常数计算水位强迫 ,计算了渤海 1982年水文要素和流场变化 ,并用模式以湍的局地平衡理论封闭计算出垂直湍流粘性的时空分布。结果表明 :渤海湍流混合冬强夏弱 ,变化幅度较大 ( 10~ 2 0 0 cm2 / s) ,这是风搅拌和潮混合的湍流输入在密度层化调整下的结果 ;风的作用在冬季强于潮的作用 ,而底层则由潮混合控制呈现半月周期 ;渤海湍粘性系数的空间分布十分复杂 ,这是在渤海地形和岸形轮廓限制下 ,由一定大气条件驱动的流场和密度场导致的湍流混合强度不同所致  相似文献   

18.
《Ocean Modelling》2004,6(2):177-190
Three parameterisations of the vertical mixing of a primitive equation model that uses a geopotential coordinate system are tested against observations in the context of the Antarctic Bottom Water flow through the Romanche Fracture Zone. On an increasing complexity scale, the three parameterisations are a convection algorithm, a vertical diffusivity depending on a Richarson number, and a vertical diffusivity calculated from a turbulent kinetic energy (TKE) equation. The model uses a high vertical and horizontal resolution.It is shown that the convection algorithm does not produce enough vertical mixing compared to observations. This results in the propagation of a too dense water mass in the downstream basin. On the opposite, the Richardson number-dependent algorithm as well as the TKE algorithm produce a mixing comparable to the observations. With these two parameterisations, the main region of intensification of the vertical mixing is located downstream of the main sill that was also described as the major region of turbulence from observations. The mixing length of the TKE parameterisation is consistent with calculation of Thorpe scales from the fine structure of CTD data. Hence, the two successful parameterisations initially designed for the surface mixed layer also give satisfying results for overflows as soon as the hydraulic control and its associated downstream intensified vertical shear are correctly represented in the model.  相似文献   

19.
20.
采用POMgcs(Princeton Ocean Model with generalized coordinate system)和MITgcm(MIT General Circulation Model)两个海洋数值模式,研究了M-Y2.0、基于固壁近似假定的M-Y2.5、基于波浪破碎作用的M-Y2.5和KPP 4种垂向混合参数化方案对模拟黄海夏季上层温度结构的影响。结果表明,M-Y2.0和基于固壁近似假定的M-Y2.5方案低估了黄海上层的湍动能,模拟的黄海夏季温度上混合层的效果与实测相比均偏浅,不能够很好地重构黄海夏季温度的垂直结构。而基于波浪破碎作用的M-Y2.5和KPP方案均可以增加海洋上层湍动能的输入量,模拟的黄海夏季温度上混合层的效果与实测较为一致。故推测黄海夏季的上层结构是受波浪混合和流场剪切等物理机制共同调节的,若通过合理的垂向混合参数化方案将这些物理机制的作用加以体现,将会较真实地模拟和重构出黄海夏季海温上层结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号