首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought monitoring is a key topic in environmental monitoring and assessment although there is still a need to determine the correlation between drought monitoring indices and remote sensing products. We analyzed the correlation between the self-calibrating Palmer Drought Severity Index (sc_PDSI), the Standardized Precipitation Index and the Standardized Precipitation Evapotranspiration Index (SPEI) and terrestrial water storage monitored through the Gravity Recovery and Climate Experiment (GRACE) on a monthly timescale from 2002 to 2015 in China. As a consequence of anomalies in the soil water budget, the highly significant correlation between the sc_PDSI and the GRACE satellite-observed terrestrial water storage suggested that these two datasets are the most suitable for use in monitoring droughts. In comparing the three drought indices, the sc_PDSI was introduced as a means of drought monitoring in the Yangtze, Pearl, Huaihe, Southeast and Songhua River Basins, whereas the SPEI was found to be more applicable to other major river basins, such as the Inland River Basin. These diverse spatial behaviors are caused by the differences between the hydrological droughts characterized by these three drought indices.  相似文献   

2.
长江流域陆地水储量与多源水文数据对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
王文  王鹏  崔巍 《水科学进展》2015,26(6):759-768
从趋势性、滞后性及相关性三方面,对2002—2013年间GRACE重力卫星反演的长江上游与中游陆地水储量与模型模拟土壤含水量、实测降水和实测径流数据进行了对比分析,并从干旱强度及发展时间两方面评估了标准化陆地水储量指数SWSI、标准化降水指数SPI、标准化径流指数SRI和标准化土壤含水量指数SSMI对区域性干旱的表征能力.结果表明:长江上游地区陆地水储量与降水、径流和土壤水蓄量均无显著变化,而中游地区陆地水储量则与水库蓄量同样具有显著性增加,反映人类活动对中游地区陆地水储量变化有很大影响;各指标指示的各等级干旱月份数量基本相当,但各指标反映的特旱具体月份有较大差别,基于GRACE数据构建的SWSI指标对特大干旱的指示性不好;对比各指标对上游与中游地区干旱事件发展时间,体现出水文干旱、农业干旱对气象干旱存在一定的迟滞关系.  相似文献   

3.
受全球气候变化影响,澜沧江-湄公河流域气象水文干旱发生了较大变化,预测未来流域干旱的时空变化与传播特征是应对气候变化、开展澜湄水资源合作的基础。利用SWAT模型通过气陆耦合方式模拟了澜沧江-湄公河流域历史(1960—2005年)和未来时期(2022—2050年,2051—2080年)的水文过程,采用标准化降水指数和标准化径流指数预估并分析了流域未来气象水文干旱时空变化趋势。结果表明:①澜沧江-湄公河流域未来降水呈增长趋势,气象干旱将有所缓解,但降水年内分配不均与流域蒸发的增加,将导致水文干旱更为严峻,干旱从气象到水文的传播过程加剧;②水文干旱具有明显的空间异质性,允景洪和清盛站的水文干旱最为严重,琅勃拉邦、穆达汉和巴色站次之,万象站最弱;③未来流域水文干旱事件发生频次略有减少,但其中重旱、特旱事件占比增加,极端干旱将趋多趋强,且空间变化更加显著。  相似文献   

4.
Regional drought frequency analysis was carried out in the Poyang Lake basin (PLB) from 1960–2014 based on three standardized drought indices: the standardized precipitation index (SPI), the standardized precipitation evapotranspiration index (SPEI) and the standardized Palmer drought index (SPDI). Drought events and characteristics were extracted. A Gumbel–Hougaard (GH) copula was selected to construct the bivariate probability distribution of drought duration and severity, and the joint return periods (T a ) were calculated. Results showed that there were 50 (50 and 40) drought events in the past 55 years based on the SPI (SPEI and SPDI), and 9 (8 and 10) of them were severe with T a more than 10 years, occurred in the 1960s, the 1970s and the 2000s. Overall, the three drought indices could detect the onset of droughts and performed similarly with regard to drought identification. However, for the SPDI, moisture scarcity was less frequent, but it showed more severe droughts with substantially higher severity and longer duration droughts. The conditional return period (Ts|d) was calculated for the spring drought in 2011, and it was 66a and 54a, respectively, based on the SPI and SPDI, which was consistent with the record. Overall, the SPI, only considering the precipitation, can as effectively as the SPEI and SPDI identify the drought process over the PLB under the present changing climate. However, drought is affected by climate and land-cover changes; thus, it is necessary to integrate the results of drought frequency analysis based on different drought indices to improve the drought risk management.  相似文献   

5.
全球气候变化影响了气象水文要素的时空分布特性,气象水文干旱事件的转化关系及风险传播特征亟待研究。基于站点、栅格观测资料和CMIP5(Coupled Model Inter-comparison Project Phase5)的19个气候模式输出数据,采用新安江等4个水文模型模拟了中国135个流域历史(1961—2005年)和未来时期(2011—2055年,2056—2100年)的水文过程,计算了SPI(Standard Precipitation Index)和SRI(Standard Runoff Index)干旱指标,通过游程理论识别了气象干旱与水文干旱事件,利用Copula函数与最大可能权函数度量二维干旱风险特征,定量评估了气象干旱至水文干旱的潜在风险传播特性。结果表明:①气象-水文干旱对气候变化响应强烈,华北和东北地区的干旱联合重现期增大,干旱潜在风险减小,华中和华南地区的干旱联合重现期减少60%~80%,干旱潜在风险增加;②气象干旱与水文干旱风险在历史和未来时段均存在显著的正相关关系,相关系数超过0.99;③各流域水文干旱风险变化对气象干旱风险变化的敏感程度不会随气候变暖发生较大变化,但未来北方地区水文干旱同气象干旱同时发生的概率将会小幅度增加。  相似文献   

6.
Mikaili  Omidreza  Rahimzadegan  Majid 《Natural Hazards》2022,111(3):2511-2529

As drought occurs in different climates, assessment of drought impacts on parameters such as vegetation cover is of utmost importance. Satellite remote sensing images with various spectral and spatial resolutions represent information about different land covers such as vegetation cover. Hence, the purpose of this study was to investigate the performance of satellite vegetation indices to monitor the agricultural drought on a local scale. In this regard, satellite images including Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) data were used to evaluate vegetation cover and their gradual changes effects on agricultural drought. Fars province in Iran with relatively low precipitation values was selected as the study area. Modified Perpendicular Drought Index (MPDI), MPDI1, Vegetation Condition Index (VCI), Normalized Difference Vegetation Index Anomalies (NDVIA), and Standardized Vegetation Index (SVI), were evaluated to select the remote sensing based index with the best performance in drought monitoring. The performance of such indices were investigated during 13 years (2000–2013) for MODIS and 29 years (1985–2013) for AVHRR. To assess the efficiency of the satellite indices in drought investigation, Standardized Precipitation Index (SPI) data of five selected stations were used for 3, 6, and 9 month periods on August. The results showed that NDVI-based vegetation indices had the highest correlation with SPI in cold climate and long-term timescale (6 and 9 month). The highest correlation values between remote sensing based indices and SPI were acquired, respectively, in 9-month and 6-month time-scales, with the values of 43.5% and 40%. Moreover, VCI showed the highest capability for agricultural drought investigating in different climate regions of the study area. Overall, the results proved that NDVI-based indices can be used for drought monitoring and assessment in a long-term timescale on a local time-scale.

  相似文献   

7.
The Eastern Mediterranean region has been exposed to drought episodes, which have been occurring more frequently during the last decades. The objective of the present paper is to study the precipitation regime of the Damascus (Mazzeh) meteoric station by analysing drought characteristics using the Standardized Precipitation Index (SPI) and comparing this with the drought in Cyprus. The cumulative drought conceptis proposed to characterize long-term hydrologic drought, which affects the shallow groundwater productivity in terms of quantity and quality. Gamma probability distribution was fitted to the long-term annual precipitation in Damascus from 1918–1919 to 2007–2008 (n = 90 years). Generally, a decreasing trend of 17% to the mean annual rainfall of Damascus and 13% to the mean annual rainfall of Cyprus was estimated between 1970 and 2000. The SPI identifies three major extended drought periods: (1) 9 years of severe drought (1954–1963) with an average 20% precipitation deficit per year compared to the mean. (2) 8 years of severe drought (1983–1991) with a 27% deficit per year on average. (3) 9 years of extreme drought (1993–2002) with a 31% deficit per year on average. The cumulative standardized precipitation index (SPI 30) demonstrates positive values for the first period and is indicative of having no effect on the global water balance. SPI 30 exhibits sensitive equilibrium with near zero values / a near zero value (±1.5) for the second period. For the third period, however, the SPI 30 decreases below ?10 indicating an extreme hydrological drought that has negative consequences on the recent groundwater recharge. It is required to develop and implement a sustainable groundwater management strategy to reduce long-terms drought risks. Generally, the SPI 30 in Cyprus is parallel to that in Damascus with a 3–5 year delay. Thus, the central zone of the Eastern Mediterranean region is facing big challenges and has been suffering from three decades of moderate to severe hydrological drought (SPI 30=?5 to ?10) causing a severe decrease in springs discharges of the region. Therefore, in order to reduce the climate change effects on water resources, it is necessary to adopt a sustainable proactive management plan during the frequent severe droughts.  相似文献   

8.
This article assesses drought status in the Yarmouk Basin (YB), in northern Jordan, using the Standardized Precipitation Index (SPI), the Standardized Water-Level Index (SWI), and the Percent Departure from Normal rainfall (PDNimd) during the years 1993–2014. The results showed that the YB suffers from frequent and irregular periods of drought as variations in drought intensity and frequency have been observed. The SPI results revealed that the highest drought magnitude of ??2.34 appeared at Nuaimeh rainfall station in 1991. This station has also experienced severe drought particularly in years 1995, 1999, 2005, and 2012 with SPI values ranging from ??1.51 to ??1.59. Some other rainfall stations such as Baqura, Ibbin, Khanasiri, Kharja, Mafraq police, Ramtha, Turra, and Umm Qais have also suffered several periods of drought mostly in 1993. The SWI results show the highest extreme drought events in 2001 in Souf well while other extreme drought periods were observed at Wadi Elyabis well in 1994 and at Mafraq well in 1995. As compared to SPI maps, our SWI maps reflect severe and extreme drought events in most years, negatively impacting the groundwater levels in the study area.  相似文献   

9.
The Niger River basin is drought-prone, and farmers are often exposed to the vagaries of severe weather and extreme climate events of the region. Spatiotemporal characteristics of drought are important for its mitigation. With 52 years of gauged-based monthly rainfall, the study investigates the potentials of Standardized Precipitation Index (SPI) as standard measure for meteorological drought, its characterization, early warning systems and use in weather index-based insurance. Gamma probability distribution type 2, which best fits the rainfall frequency distribution of the region, was used for the transformation of the skewed rainfall data to derive the SPI. Results showed 9, 5, 5 and 6 drought events of severe to extreme intensities occurred in the headwaters of the basin, inner delta, middle Niger, and lower Niger sub-watersheds, respectively. Their magnitudes were in the range 1–5, 2–6, 2–8 and 2–7, respectively. Spatially, results further showed that the 1970s and 1980s drought events were dominantly of moderate (SPI values ?1 to ?1.49) and severe (SPI values ?1.5 to ?1.99) intensities, respectively, with sporadic cases of severe to extreme drought intensities occurring in 1970s and extreme to exceptional intensities in the 1980s. Further investigations show that 3-month SPI indicated 85% of variance in the standardized cereal crop yield, which suites well as weather index insurance variable. The study therefore proposes SPI weather index-based insurance as a pathway forward to ameliorate the negative impacts on insured farmers in this region in terms of indemnity payouts whenever drought disaster occurs.  相似文献   

10.
The amount and distribution of precipitation play crucial roles in the occurrence of drought in the Weihe River Basin (WRB), China. Using the precipitation data (1960–2010) of 21 meteorological stations, the spatial and temporal characteristics of short-, medium-, and long-term droughts on 3-, 6-, and 12-month time scales, respectively, were examined using the theory of runs and the Standardized Precipitation Index (SPI). The trends of the drought characteristics were analyzed by a modified Mann-Kendall (MMK) test method. Furthermore, comparative analysis of the SPI at different time scales was conducted. The results showed that (1) the main drought type was moderate drought, which occurred frequently in July and October; (2) the drought intensity and frequency were highest in the 1990s, and the drought severity and drought duration in the northwest was more serious than that in the east; (3) an increasing trend of short droughts appeared mainly in the spring and fall; an increasing trend of medium droughts mainly occurred in the 1990s and that of long-term droughts were mainly presented in the northwest region of the WRB; (4) SPI-3 can better reflect precipitation in the current month, SPI-6 has an advantage in characterizing drought persistence, and SPI-12 performs well in capturing extraordinary droughts; and (5) it was also observed that there is a strong relation between the precipitation distribution and drought zones in the basin, and the drought conditions changed continuously with the seasons depending upon the amount and spatial distribution of precipitation .  相似文献   

11.
Data reduction methods such as principal components analysis and factor analysis can be used to define drought prone areas of a basin. In this study, factor analysis method applied for the purpose of projecting the information space on the few dominant axes. The main aim of this study is regionalization of Lake Urmia Basin from the view of drought using factor analysis. For this purpose, monthly precipitation data of 30 weather stations in the period 1972–2009 were used. For each of the selected stations, 3- and 12-month Standardized Precipitation Index (SPI) values were calculated. Factor analysis conducted on SPI values to delineate the study area with respect to drought characteristics. Homogeneity of obtained regions tested using the S statistics proposed by Wiltshire. Results of factor analysis of 3- and 12-month SPI values showed that 5 (6) factors having eigenvalues >1 accounted for 68.08 (78.88) % of total variance. The Lake Urmia Basin was delineated into the five distinct homogeneous regions using the 3-month SPI time series. This was six in the case of the 12-month SPI time series. It can be concluded that there are different distinct regions in Lake Urmia Basin according to drought characteristics. The map of regions defined using the 3- and 6-month SPI time series presented in this paper for Lake Urmia Basin.  相似文献   

12.
District-wide drought climatology over India for the southwest monsoon season (June–September) has been examined using two simple drought indices; Percent of Normal Precipitation (PNP) and Standardized Precipitation Index (SPI). The season drought indices were computed using long times series (1901–2003) of southwest monsoon season rainfall data of 458 districts over the country. Identification of all India (nation-wide) drought incidences using both PNP and SPI yielded nearly similar results. However, the district-wide climatology based on PNP was biased by the aridity of the region. Whereas district-wide drought climatology based on SPI was not biased by aridity. This study shows that SPI is a better drought index than PNP for the district-wide drought monitoring over the country. SPI is also suitable for examining break and active events in the southwest monsoon rainfall over the country. The trend analysis of district-wide season (June–September) SPI series showed significant negative trends over several districts from Chattisgarh, Bihar, Kerala, Jharkhand, Assam and Meghalaya, Uttaranchal, east Madhya Pradesh, Vidarbha etc., Whereas significant positive trends in the SPI series were observed over several districts from west Uttar Pradesh, west Madhya Pradesh, South & north Interior Karnataka, Konkan and Goa, Madhya Maharashtra, Tamil Nadu, East Uttar Pradesh, Punjab, Gujarat etc.  相似文献   

13.
Zhu  Bangyan  Chu  Zhengwei  Shen  Fei  Tang  Wei  Wang  Bin  Wang  Xiao 《Natural Hazards》2019,99(1):379-389

Droughts are hindrances to economic and social developments in many parts of the world, especially in developing nations like Kenya. In North Eastern Kenya (NEK), drought is very prevalent. The communities in the region are mainly dependent on animal farming, and drought occurrence leads to great socioeconomic setback. Drought indices used in most studies consider rainfall as the only parameter for assessing drought occurrences. This study analyzes drought in NEK using the Standardized Precipitation Index (SPI) and the Combined Drought Index (CDI) using rainfall and temperature values and Normalized Difference Vegetation Index values for the period 1980–2010. The results of the two indices show significant correlation. However, CDI is preferred in the analysis of the drought compared to the SPI as it gives drought in more detail, showing extreme, severe, moderate and mild. The study recommends the use of the two methods independently since they give similar results and further recommends trial in other parts of the country affected by drought.

  相似文献   

14.
This article investigates whether the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived global terrestrial Drought Severity Index (DSI) had the capability of detecting regional drought over subtropical southwestern China. Monthly, remotely sensed DSI data with 0.05° spatial resolution were used to characterize the extent, duration, and severity of drought from 2000 to 2010. We reported that southwestern China suffered from incipient to extreme droughts from November 2009 to March 2010 (referred to as the “drought period”). The area affected by drought occupied approximately 74 % of the total area of the study region, in which a moderate drought, severe drought, and an extreme drought accounted for 20, 12.7, and 13.2 % of the total area, respectively; particularly in March 2010, droughts of severe and extreme intensity covered the largest areas of drought, which were 16.1 and 18.6 %, respectively. Spatially, eastern Yunnan, western Guizhou, and Guangxi suffered from persistent droughts whose intensities ranged from mild to extreme during the drought period. Pearson’s correlation analyses were performed between DSI and the in situ meteorological station-based Standardized Precipitation Index (SPI) for validating the monitoring results of the DSI. The results showed that the DSI corresponded favorably with the time scales of the SPI; meanwhile, the DSI showed its highest correlation (mean: r = 0.58) with a three-month SPI. Furthermore, similar spatial patterns and temporal variations were found between the DSI and the three-month SPI, as well as the agro-meteorological drought observation data, when monitoring drought. Our analysis suggests that the DSI can be used for near-real-time drought monitoring with fine resolution across subtropical southwestern China, or other similar regions, based solely on MODIS-derived evapotranspiration/potential evapotranspiration and Normalized Difference Vegetation Index data.  相似文献   

15.
To establish the drought index objectively and reasonably and evaluate the hydrological drought accurately, firstly, the optimal distribution was selected from nine distributions (normal, lognormal, exponential, gamma, general extreme value, inverse Gaussian, logistic, log-logistic and Weibull), then the Optimal Standardized Streamflow Index (OSSI) was calculated based on the optimal distribution, and last, the spatiotemporal evolution of hydrological drought based on the OSSI series was investigated through the monthly streamflow data of seven hydrological stations during the period 1961–2011 in Luanhe River basin, China. Results suggest: (1) the general extreme value and log-logistic distributions performed prominently in fitting the monthly streamflow of Luanhe River basin. (2) The main periods of hydrological drought in Luanhe River basin were 148–169, 75–80, 42–45, 14–19 and 8–9 months. (3) The hydrological drought had an aggravating trend over the past 51 year and with the increase in timescale, the aggravating trend was more serious. (4) The lower the drought grade was, the broader the coverage area. As for the Luanhe River basin, the whole basin suffered the mild and more serious drought, while the severe and more serious drought only cover some areas. (5) With the increase in time step, the frequency distribution of mild droughts across the basin tended to be concentrated, the frequency of extreme droughts in middle and upper reaches tended to increase and the frequency in downstream tends to decrease. This research can provide powerful references for water resources planning and management and drought mitigation.  相似文献   

16.
Characteristics of meteorological drought in Bangladesh   总被引:3,自引:3,他引:0  
Meteorological drought events occur in Bangladesh are diagnosed using monthly rainfall and mean air temperature from the surface observations and Regional Climate Model (RegCM) by calculating Standardized Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI) for the period 1961?C1990. The historical records of drought event obtained from the Bangladesh Bureau of Statistics and International Disaster Database are used to verify the SPI and PDSI detected events. The SPI and monthly PDSI are obtained for 27 station data across Bangladesh as well as for two subregions over the country. Result based on the observed data shows that regional information is better in drought diagnosis compared to the point information. The regional analysis is able to detect about 80?% of the drought events occurred during the study period. Frequency of moderate drought is higher for all over the country. The SPI calculated from RegCM rainfall shows that the detection of moderate drought events is 10, 7, and 21?% overestimated for 1-, 3-, and 6-month length, respectively, compared to using of observed data. For extreme drought cases, detection is overestimated (underestimated) by 25?% (79?%) for 1-month (6-month) length. The PDSI results for model and observed data are nearly same to SPI calculations. Model monthly PDSI result is overestimated (underestimated) by 29?% (50?%) for moderate (severe) drought events with reference to the observed PDSI. Hence, RegCM output may be useful to detect 3?C6-month (monthly to seasonal) length moderate drought events over a heavy rainfall region likely Bangladesh.  相似文献   

17.
Drought has an impact on many aspects of society. To help decision makers reduce the impacts of drought, it is important to improve our understanding of the characteristics and relationships of atmospheric and oceanic parameters that cause drought. In this study, the use of data mining techniques is introduced to find associations between drought and several oceanic and climatic indices that could help users in making knowledgeable decisions about drought responses before the drought actually occurs. Data mining techniques enable users to search for hidden patterns and find association rules for target data sets such as drought episodes. These techniques have been used for commercial applications, medical research, and telecommunications, but not for drought. In this study, two time-series data mining algorithms are used in Nebraska to illustrate the identification of the relationships between oceanic parameters and drought indices. The algorithms provide flexibility in time-series analyses and identify drought episodes separate from normal and wet conditions, and find relationships between drought and oceanic indices in a manner different from the traditional statistical associations. The drought episodes were determined based on the Standardized Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI). Associations were observed between drought episodes and oceanic and atmospheric indices that include the Southern Oscillation Index (SOI), the Multivariate ENSO Index (MEI), the Pacific/North American (PNA) index, the North Atlantic Oscillation (NAO) Index, and the Pacific Decadal Oscillation (PDO) Index. The experimental results showed that among these indices, the SOI, MEI, and PDO have relatively stronger relationships with drought episodes over selected stations in Nebraska. Moreover, the study suggests that data mining techniques can help us to monitor drought using oceanic indices as a precursor of drought.  相似文献   

18.
Drought is one of the most detrimental natural disasters. Studying the changing characteristics of drought is obviously of great importance to achieve the sustainable use of water resources at river basin scales. In this paper, the satellite-based Vegetation Condition Index (VCI) and Vegetation Health Index (VH) were firstly calculated by using NDVI and brightness of the Global Vegetation Index dataset derived from Advance Very High Resolution Radiometer for China in growing seasons over 1982–2005. Then, the long-term VCI and VH data were employed to study the variation of droughts in the ten basins covering the whole country. The linear trend of each pixel showed that most parts of China were getting wetter in growing seasons, and the drought areas defined by the number of drought pixels have decreased in most basins. The increasing trend of basin averaged values of VCI and VH also indicates the whole country was generally getting wetter. At last, to better understand the two remote sensing drought indices, the response of the growing-season VCI and VH was compared to that of the Palmer Drought Severity Index and 6-month Standard Precipitation Index. Significant spatial variability of the relationship between the VCI, VH, and the station-based meteorological drought indices was shown, and some more closely related areas were found. The study will be useful for water resources management for each basin in the future.  相似文献   

19.
Drought is one of the most harmful natural hazards in Gansu Province in Northwest China. The changes of precipitation affect the severity of drought. In order to recognize the trend of precipitation and understand the effect of rainfall change on water resources management and drought severity, Mann–Kendall test was used. Standardized Precipitation Index (SPI) was calculated to reconstruct the drought at different time scales and analyze the frequency of drought occurrence in the recent 50 years. The results show that the SPI is applicable in Gansu Province. The number of severe droughts differs among regions: it is more obvious as a 3-month drought in the Yellow River Basin and the Yangtze River Basin than in the Inland River Basin, and other droughts at 6-, 9-, and 12-month time scales have the same effect in the three regions. Mann–Kendall test results show that there is an upward trend in the summer periods and a downward trend in the autumn-winter-spring intervals ranging from 10.5 mm/10 years to −37.4 mm/10 years, which affect the local water resources management, droughts mitigation, and agriculture decision making. This situation poses challenges for future study.  相似文献   

20.
李敏  张铭锋  朱黎明  黄金柏 《水文》2023,43(4):39-44
气象干旱发展到一定程度可以传递为水文干旱。以潘家口水库流域1961—2010年逐月平均降水数据和潘家口水库的入库径流序列为基础数据,分别计算了1、3、6、12个月时间尺度的标准化降水指数(SPI)和标准化径流指数(SRI),以表征研究区域的气象干旱和水文干旱。基于条件分布模型,分析了不同时间尺度的气象干旱传递到未来的不同等级和不同的预测期(或滞后期)的水文干旱的概率。结果表明,当SPI时间尺度较短或预测期(滞后期)较短时,其对应的SRI水文干旱等级越倾向于维持与SPI相同的干旱等级;随着SPI时间尺度的增长或预测期(滞后期)延长,其对应的SRI水文干旱等级略低于气象干旱或恢复到正常状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号