首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The paired watershed experimental (PWE) approach has long been used as an effective means to assess the impacts of forest change on hydrology in small watersheds (<100 km2). Yet, the effects of climate variability on streamflow are not often assessed in PWE design. In this study, two sets of paired watersheds, (1) Camp and Greata Creeks and (2) 240 and 241 Creeks located in the Southern Interior of British Columbia, Canada, were selected to explore relative roles of forest disturbance and climate variability on streamflow components (i.e., baseflow and surface runoff) at different time scales. Our analyses showed that forest disturbance is positively related to annual streamflow components. However, this relationship is statistically insignificant since forest disturbance can either increase or decrease seasonal streamflow components, which eventually limited the positive effect on streamflow at the annual scale. Interestingly, we found that forest disturbance consistently decreased summer streamflow components in the two PWEs as forest disturbance can augment earlier and quicker snow-melt processes and hence reduce soil moisture to maintain summer streamflow components. More importantly, this study revealed that climate variability played a more significant role than forest disturbance in both annual and seasonal streamflow components, for instance, climate variability can account for as much as 90% of summer streamflow components variation in Camp, suggesting the role of climate variability on streamflow should be highlighted in the traditional PWE approach to truly advance our understanding of the interactions of forest change, climate variability and water for sustainable water resource management.  相似文献   

2.
Two large neighbouring watersheds, the Bowron (3420 km2) and Willow (2860 km2) situated in the central interior of British Columbia, Canada, were used to compare their hydrological responses to forest harvesting in snow‐dominant environment. Both watersheds had experienced significant, comparative forest harvesting level. The long‐term hydrometric and timber harvesting data (>50 years of records) were analysed using time series analysis to examine the hydrological impacts of forest harvesting. The hydrological variables including mean, peak and low flows over annual and seasonal scales (spring snowmelt, summer rain and winter base flow) were tested separately. Results showed that forest harvesting in the Willow watershed significantly increased annual and spring mean flows as well as annual and spring peak flows, whereas it caused an insignificant change on those hydrological variables in the Bowron watershed. The contrasted differences in hydrological responses are due to the differences in topography, spatial heterogeneity, forest harvesting characteristics and climate between two watersheds. The relative uniform topography and climate in the Willow watershed may promote hydrological synchronization effects, whereas larger variation in elevations, together with forest harvesting that occurred at lower elevations, may cause hydrological de‐synchronization effect in the Bowron watershed. The contrasted results demonstrate that the effects of forest harvesting on hydrology in large watersheds are likely watershed specific, and any attempt to generalize hydrological responses to forest harvesting must be carried out with caution. A landscape ecological perspective is critically needed for future forest hydrology studies, particularly for large watersheds. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Evan Pugh  Eric Gordon 《水文研究》2013,27(14):2048-2060
In regions of western North America with snow‐dominated hydrology, the presence of forested watersheds can significantly influence streamflow compared to areas with other vegetation cover types. Widespread tree death in these watersheds can thus dramatically alter many ecohydrologic processes including transpiration, canopy solar transmission and snow interception, subcanopy wind regimes, soil infiltration, forest energy storage and snow surface albedo. One of the more important causes of conifer tree death is bark beetle infestation, which in some instances will kill nearly all of the canopy trees within forest stands. Since 1996, an ongoing outbreak of bark beetles (Coleoptera: Scolytidae) has caused widespread mortality across more than 600,000 km2 of coniferous forests in western North America, including numerous Rocky Mountain headwaters catchments with high rates of lodgepole pine (Pinus contorta) mortality from mountain pin beetle (Dendroctonous ponderosae) infestations. Few empirical studies have documented the effects of MPB infestations on hydrologic processes, and little is known about the direction and magnitude of changes in water yield and timing of runoff due to insect‐induced tree death. Here, we review and synthesize existing research and provide new results quantifying the effects of beetle infestations on canopy structure, snow interception and transmission to create a conceptual model of the hydrologic effects of MPB‐induced lodgepole pine death during different stages of mortality. We identify the primary hydrologic processes operating in living forest stands, stands in multiple stages of death and long‐dead stands undergoing regeneration and estimate the direction of change in new water yield. This conceptual model is intended to identify avenues for future research efforts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This data note introduces a database of long-term daily total precipitation and stream discharge data for seven forested watersheds in Japan that have been continuously monitored by the Forestry and Forest Products Research Institute. Three of the watersheds started data collection in the 1930s. Forest cover across the sites ranges from cool to warm temperate regions with the latitude spanning from 31 to 44° N and annual precipitation ranging from 1200 to 3000 mm yr−1. The effects of vegetation change via clearcutting, thinning and forest fire (among other stressors) on stream discharge can be analysed from the long-term observation sites. Moreover, this multi-site dataset allows for inter- and intra-site comparisons of annual water loss (difference of annual precipitation and stream discharge). These long-term datasets can provide comprehensive insights into the effects of climate change and other stressors on forested ecosystems, not only in Japan but across a spectrum of forest types, if combined with other long-term records from other forested watersheds across the world.  相似文献   

5.
The Kwakshua Watersheds Observatory (KWO) is an integrative watersheds observatory on the coastal margin of a rain-dominated bog-forest landscape in British Columbia (BC), Canada. Established in 2013, the goal of the KWO is to understand and model the flux of terrestrial materials from land to sea – the origins, pathways, processes and ecosystem consequences – in the context of long-term environmental change. The KWO consists of seven gauged watersheds and a network of observation sites spanning from land to sea and along drainage gradients within catchments. Time-series datasets include year-round measurements of weather, soil hydrology, streamflow, aquatic biogeochemistry, microbial ecology and nearshore oceanographic conditions. Sensor measurements are recorded every 5 min and water samples are collected approximately monthly. Additional observations are made during high-flow conditions. We used remote sensing to map watershed terrain, drainage networks, soils and terrestrial ecosystems. The watersheds range in size from 3.2 to 12.8 km2, with varying catchment characteristics that influence hydrological and biogeochemical responses. Despite local variation, the overall study area is a global hotspot for yields of dissolved organic carbon, dissolved organic nitrogen and dissolved iron at the coastal margin. This observatory helps fill an important gap in the global network of observatories, in terms of spatial location (central coast of BC), climate (temperate oceanic), hydrology (very high runoff, pluvial regime), geology (igneous intrusive, glacially scoured), vegetation (bog rainforest) and soils (large stores of organic carbon).  相似文献   

6.
Understanding the role of forest fires on water budgets of subarctic Precambrian Shield catchments is important because of growing evidence that fire activity is increasing. Most research has focused on assessing impacts on individual landscape units, so it is unclear how changes manifest at the catchment scale enough to alter water budgets. The objective of this study was to determine the water budget impact of a forest fire that partially burned a ~450 km2 subarctic Precambrian Shield basin. Water budget components were measured in a pair of catchments: one burnt and another unburnt. Burnt and unburnt areas had comparable net radiation, but thaw was deeper in burned areas. There were deeper snow packs in burns. Differences in streamflow between the catchments were within measurement uncertainty. Enhanced winter streamflow from the burned watershed was evident by icing growth at the streamflow gauge location, which was not observed in the unburned catchment. Wintertime water chemistry was also clearly elevated in dissolved organics, and organic-associated nutrients. Application of a framework to assess hydrological resilience of watersheds to wildfire reveal that watersheds with both high bedrock and open water fractions are more resilient to hydrological change after fire in the subarctic shield, and resilience decreases with increasingly climatically wet conditions. This suggests significant changes in runoff magnitude, timing and water chemistry of many Shield catchments following wildfire depend on pre-fire land cover distribution, the extent of the wildfire and climatic conditions that follow the fire.  相似文献   

7.
Depending on the severity of the fire, forest fires may modify infiltration and soil erosion processes. Rainfall simulations were used to determine the hydrological effects of fire on Andisols in a pine forest burned by a wildfire in 2007. Six burned zones with different fire severities were compared with unburned zones. Infiltration, runoff and soil loss were analysed on slopes of 10% and 30%. Forest floor and soil properties were evaluated. Unburned zones exhibited relatively low infiltration (23 and 16 mm h?1 on 10% and 30% slope angles, respectively) and high average runoff/rainfall ratios (43% and 50% on 10% and 30% slope angles, respectively), which were associated with the extreme water repellency of the forest floor. Nonetheless, this layer seems to provide protection against raindrop impact and soil losses were found to be low (8 and 16 g m?2 h?1 for 10% and 30% slope angles, respectively). Soil cover, soil structure and water repellency were the main properties affected by the fire. The fire reduced forest floor and soil repellency, allowing rapid infiltration. Moreover, a significant decrease was noted in soil aggregate stabilities in the burned zones, which limited the infiltration rates. Consequently, no significant differences in infiltration and runoff were found between the burned and the unburned zones. The decrease in post‐fire soil cover and soil stability resulted in order‐of‐magnitude increases in erosion. Sediment rates were 15 and 31 g m?2 h?1 on the 10% and 30% slope angles, respectively, in zones affected by light fire severity. In the moderate fire severity zones, these values reached 65 and 260 g m?2 h?1 for the 10% and 30% slope angles, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Stream and rainfall gauging and runoff sampling were used to determine changes in hydrology and export of nutrients and suspended sediment from a June 2004 wildfire that burned 3010 ha in chaparral coastal watersheds of the Santa Ynez Mountains, California. Precipitation during water year 2005 exceeded average precipitation by 200–260%. Burned watersheds had order of magnitude higher peak discharge compared with unburned watersheds but similar annual runoff. Suspended sediment export of 181 mt ha?1 from a burned watershed was approximately ten times greater than from unburned watersheds. Ammonium export from burned watersheds largely occurred during the first three storms and was 32 times greater than from unburned watersheds. Nitrate, dissolved organic nitrogen, and phosphate export from burned watersheds increased by 5.5, 2.8, and 2.2 times, respectively, compared with unburned chaparral watersheds. Storm runoff and peak discharge increase in burned compared with unburned sites were greatest during early season storms when enhanced runoff occurred. As the winter progressed, closely spaced storms and above average precipitation reduced the fire‐related impacts that resulted in significant increases in annual post‐fire runoff and export in other studies in southern California chaparral. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Xing Fang  John W. Pomeroy 《水文研究》2016,30(16):2754-2772
A devastating flood struck Southern Alberta in late June 2013, with much of its streamflow generation in the Front Ranges of the Rocky Mountains, west of Calgary. To better understand streamflow generation processes and their sensitivity to initial conditions, a physically based hydrological model was developed using the Cold Regions Hydrological Modelling platform (CRHM) to simulate the flood for the Marmot Creek Research Basin (~9.4 km2). The modular model includes major cold and warm season hydrological processes including snow redistribution, sublimation, melt, runoff over frozen and unfrozen soils, evapotranspiration, subsurface runoff on hillslopes, groundwater recharge and discharge and streamflow routing. Uncalibrated simulations were conducted for eight hydrological years and generally matched streamflow observations well, with a NRMSD of 52%, small model bias (?3%) and a Nash–Sutcliffe efficiency (NSE) of 0.71. The model was then used to diagnose the responses of hydrological processes in 2013 flood from different ecozones in Marmot Creek: alpine, treeline, montane forest and large and small forest clearings to better understand spatial variations in the flood runoff generation mechanisms. To examine the sensitivity to antecedent conditions, ‘virtual’ flood simulations were conducted using a week (17 to 24 June 2013) of flood meteorology imposed on the meteorology of the same period in other years (2005 to 2012), or switched with the meteorology of one week in different months (May to July) of 2013. Sensitivity to changing precipitation and land cover was assessed by varying the precipitation amount during the flood and forest cover and soil storage capacity in forest ecozone. The results show that runoff efficiency increases rapidly with antecedent snowpack and soil moisture storage with the highest runoff response to rainfall from locations in the basin where there are recently melted or actively melting snowpacks and resulting high soil moisture or frozen soils. The impact of forest canopy on flooding is negligible, but flood peak doubles if forest canopy removal is accompanied by 50% reduction in water storage capacity in the basin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, summer rainfall contributions to streamflow were quantified in the sub‐arctic, 30% glacierized Tarfala (21.7 km2) catchment in northern Sweden for two non‐consecutive summer sampling seasons (2004 and 2011). We used two‐component hydrograph separation along with isotope ratios (δ18O and δD) of rainwater and daily streamwater samplings to estimate relative fraction and uncertainties (because of laboratory instrumentation, temporal variability and spatial gradients) of source water contributions. We hypothesized that the glacier influence on how rainfall becomes runoff is temporally variable and largely dependent on a combination of the timing of decreasing snow cover on glaciers and the relative moisture storage condition within the catchment. The results indicate that the majority of storm runoff was dominated by pre‐event water. However, the average event water contribution during storm events differed slightly between both years with 11% reached in 2004 and 22% in 2011. Event water contributions to runoff generally increased over 2011 the sampling season in both the main stream of Tarfala catchment and in the two pro‐glacial streams that drain Storglaciären (the largest glacier in Tarfala catchment covering 2.9 km2). We credit both the inter‐annual and intra‐annual differences in event water contributions to large rainfall events late in the summer melt season, low glacier snow cover and elevated soil moisture due to large antecedent precipitation. Together amplification of these two mechanisms under a warming climate might influence the timing and magnitude of floods, the sediment budget and nutrient cycling in glacierized catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
东江流域典型子流域土地利用/覆被变化对地表径流影响   总被引:3,自引:1,他引:2  
杨宏伟  许崇育 《湖泊科学》2011,23(6):991-996
应用SWAT模型对东江上中下游典型流域的地表径流进行模拟,采用1977 - 1981年和1996-2000年胜前、顺天和九州三个出口控制站逐月实测径流资料进行模型校准和验证,确定模型的敏感性参数,采用相关系数R2和Nash-Suttclife模型效率系数ENS,对SWAT模型模拟结果进行评价,结果显示模拟精度较高,R2...  相似文献   

12.
As large, high‐severity forest fires increase and snowpacks become more vulnerable to climate change across the western USA, it is important to understand post‐fire disturbance impacts on snow hydrology. Here, we examine, quantify, parameterize, model, and assess the post‐fire radiative forcing effects on snow to improve hydrologic modelling of snow‐dominated watersheds having experienced severe forest fires. Following a 2011 high‐severity forest fire in the Oregon Cascades, we measured snow albedo, monitored snow, and micrometeorological conditions, sampled snow surface debris, and modelled snowpack energy and mass balance in adjacent burned forest (BF) and unburned forest sites. For three winters following the fire, charred debris in the BF reduced snow albedo, accelerated snow albedo decay, and increased snowmelt rates thereby advancing the date of snow disappearance compared with the unburned forest. We demonstrate a new parameterization of post‐fire snow albedo as a function of days‐since‐snowfall and net snowpack energy balance using an empirically based exponential decay function. Incorporating our new post‐fire snow albedo decay parameterization in a spatially distributed energy and mass balance snow model, we show significantly improved predictions of snow cover duration and spatial variability of snow water equivalent across the BF, particularly during the late snowmelt period. Field measurements, snow model results, and remote sensing data demonstrate that charred forests increase the radiative forcing to snow and advance the timing of snow disappearance for several years following fire. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This brief paper indicates that forest fires may have short and longer term effects on runoff and thus, can influence trend studies on the response of watersheds to climate change. Twenty-two watersheds at the Experimental Lakes Area in northwestern Ontario were studied to view the impacts of climatic variability and forest fires on runoff. A roughly 30 year database demonstrated few trends in climatological variables and even fewer trends in runoff data at the 5% significance level. Daily maximum temperature increased by 0.053 °C per year, while precipitation in the months of February and March showed significant decreases. Total snow showed a significant decrease over a 30 year period at the 8% significance level. The Mann Kendall test for trend was applied to the runoff indices of 19 watersheds and it was revealed that only six exhibited trends. Of these, five had been burned during the test period. Virtually all burned watersheds showed initial increases in runoff, however, long term runoff trended lower in the burned watersheds, while the one watershed that was not burned showed an increasing trend. Forest fires alter the age distribution of trees with subsequent impacts on water yields in the short and longer term.  相似文献   

14.
A wildfire in May 1996 burned 4690 hectares in two watersheds forested by ponderosa pine and Douglas fir in a steep, mountainous landscape with a summer, convective thunderstorm precipitation regime. The wildfire lowered the erosion threshold in the watersheds, and consequently amplified the subsequent erosional response to shorter time interval episodic rainfall and created both erosional and depositional features in a complex pattern throughout the watersheds. The initial response during the first four years was an increase in runoff and erosion rates followed by decreases toward pre‐fire rates. The maximum unit‐area peak discharge was 24 m3 s?1 km?2 for a rainstorm in 1996 with a rain intensity of 90 mm h?1. Recovery to pre‐fire conditions seems to have occurred by 2000 because for a maximum 30‐min rainfall intensity of 50 mm h?1, the unit‐area peak discharge in 1997 was 6.6 m3 s?1 km?2, while in 2000 a similar intensity produced only 0.11 m3 s?1 km?2. Rill erosion accounted for 6 per cent, interrill erosion for 14 per cent, and drainage erosion for 80 per cent of the initial erosion in 1996. This represents about a 200‐fold increase in erosion rates on hillslopes which had a recovery or relaxation time of about three years. About 67 per cent of the initially eroded sediment is still stored in the watersheds after four years with an estimated residence time greater than 300 years. This residence time is much greater than the fire recurrence interval so erosional and depositional features may become legacies from the wildfire and may affect landscape evolution by acting as a new set of initial conditions for subsequent wildfire and flood sequences. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

15.
Postfire runoff and erosion are a concern, and more data are needed on the effects of wildfire at the watershed‐scale, especially in the Colorado Front Range. The goal of this study was to characterize and compare the streamflow and suspended sediment yield response of two watersheds (Bobcat Gulch and Jug Gulch) after the 2000 Bobcat fire. Bobcat Gulch had several erosion control treatments applied after the fire, including aerial seeding, contour log felling, mulching, and straw wattles. Jug Gulch was partially seeded. Study objectives were to: (1) measure precipitation, streamflow, and sediment yields; (2) assess the effect of rainfall intensity on peak discharges, storm runoff, and sediment yields; (3) evaluate short‐term hydrologic recovery. Two months after the fire, a storm with a maximum 30 min rainfall intensity I30 of 42 mm h?1 generated a peak discharge of 3900 l s?1 km?2 in Bobcat Gulch. The same storm produced less than 5 l s?1 km?2 in Jug Gulch, due to less rainfall and the low watershed response. In the second summer, storms with, I30 of 23 mm h?1 and 32 mm h?1 generated peak discharges of 1100 l s?1 km?2 and 1700 l s?1 km?2 in the treated and untreated watersheds respectively. Maximum water yield efficiencies were 10% and 17% respectively, but 18 of the 23 storms returned ≤2% of the rainfall as runoff, effectively obscuring interpretation of the erosion control treatments. I30 explained 86% of the variability in peak discharges, 74% of the variability in storm runoff, and >80% of the variability in sediment yields. Maximum single‐storm sediment yields in the second summer were 370 kg ha?1 in the treated watershed and 950 kg ha?1 in the untreated watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Closed depressions (CDs) are lower lying areas where the sediment eroded from the surrounding soil surfaces draining towards the CD is trapped in the system. CDs have been reported in several regions of the European loess belt and are attributed either to natural processes (e.g. dissolution of subsurface horizons) or to human intervention (e.g. quarrying). Previous studies focussed mainly on cropland areas where, however, only few and largely filled in CDs remain. The objectives of this study were to i) assess the spatial distribution of CDs under forest and cropland, ii) to determine and compare the morphology of CDs under forest and under cropland, and iii) to determine the origin and age of these CDs under forest. In a study area located partly in ancient forest (13 km2) and partly in cropland (29 km2), a systematic survey revealed the presence of 71 CDs under forest (5·3 CD.km?2) and 30 CDs under cropland (1 CD.km?2). Comparison of their morphology showed that CDs under forest were significantly deeper, with steeper sidewalls and a smaller surface area because of the erosion and deposition processes acting on the CDs under cropland. By comparing CDs that had been under cropland for different time intervals, the rate of this morphological evolution could be reconstructed. Analysis of the soil stratigraphy of two representative CDs in the ancient forest area confirmed their origin as quarries. Most probably, calcareous loess was excavated since this soil horizon, about two to five meters thick, was completely absent within the CDs. Dating of the infilling of one CD by optically stimulated luminescence (OSL) shows that the CD filled in between the first century BC and the fourth century AD. This dating corresponds to the dating of sediment deposits in nearby, human‐induced gullies that were attributed to an agricultural land use phase between the 18th century BC and the third century AD.  相似文献   

17.
We present a comprehensive hydrological modeling study in the drainage area of a hydropower reservoir in central Switzerland. To investigate the response of this 95 km2 alpine watershed to a changing climate, we used both a conceptual and a physically based hydrological model approach. The multi-model approach enabled detailed insights into the uncertainties associated with model projections of future runoff based on climate scenarios. Both hydrological models consistently predicted changes of the seasonal runoff dynamics, including the timing of snowmelt and peak-flow in summer as well as the future spread between high and low flow years. However the models disagreed regarding the evolution of glacier melt rates thus leading to a considerable difference in predicted annual runoff figures. The findings suggest that snow-glacier feedbacks require particular attention when predicting future runoff from glacio-nival watersheds.  相似文献   

18.
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long‐term water balances by explicitly simulating the internal watershed hydrological fluxes that affect discharge. We used the physically based Simultaneous Heat and Water (SHAW) model to simulate the inter‐annual hydrological dynamics of a 4 km2 watershed in northern Idaho. The model simulates seasonal and annual water balance components including evaporation, transpiration, storage changes, deep drainage, and trends in streamflow. Independent measurements were used to parameterize the model, including forest transpiration, stomatal feedback to vapour pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. No calibrations were applied to fit the simulated streamflow to observations. The model reasonably simulated the annual runoff variations during the evaluation period from water year 2004 to 2009, which verified the ability of SHAW to simulate the water budget in this small watershed. The simulations indicated that inter‐annual variations in streamflow were driven by variations in precipitation and soil water storage. One key parameterization issue was leaf area index, which strongly influenced interception across the catchment. This approach appears promising to help elucidate the mechanisms responsible for hydrological trends and variations resulting from climate and vegetation changes on small watersheds in the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Karst terrain (carbonate rocks) covers a vast land of 0.446 million km2 in southwest China. Water yield and carbonate rocks weathering in this region have been receiving increased attention due to a large‐scale forest recovery. Using both hydrological measurements and forest inventories from 1986 to 2007 in the Houzhai karst basin (HKB), we analyzed the responses of water yield and dissolved inorganic carbon (DIC) export to forest recovery in southwest China. With implementation of both the Natural Forest Conservation Program (NFCP) and the Conversion of Farmland to Forests Program (CFFP), the fraction of forest area in HKB was increased from near zero to 18.9% during the study period, but the ratio of total water yield (surface and underground) to precipitation varied very little over the annual period, neither in wet season nor in dry season. By contrast, the concentration of DIC in water, especially in the surface water had a pronounced increase during the study period, with an increase of 0.53 and 0.25 g C m?3 yr?1 for surface water and underground water, respectively. As a result, total annual DIC export at mean annual rainfall significantly increased from the low to high forest area stage. This increase was largely driven by surface water during the wet season, presumably being related to biological activity. It was concluded that forest recovery in HKB had no significant effect on water yield, but resulted in more carbon dioxide (CO2) dissolved in karst water accompanying with carbon uptake by forests. Our results suggested that implementations of both NFCP and CFFP had no shifted water yield regimes in southwest China; instead, they might have alleviated global climate change by increasing carbon uptake through combined biological processes and carbonate rocks weathering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
An analysis of the hydrological effects of vegetation changes in the Columbia River basin over the last century was performed using two land cover scenarios. The first was a reconstruction of historical land cover vegetation, c. 1900, as estimated by the federal Interior Columbia Basin Ecosystem Management Project (ICBEMP). The second was current land cover as estimated from remote sensing data for 1990. Simulations were performed using the variable infiltration capacity (VIC) hydrological model, applied at one‐quarter degree spatial resolution (approximately 500 km2 grid cell area) using hydrometeorological data for a 10 year period starting in 1979, and the 1900 and current vegetation scenarios. The model represents surface hydrological fluxes and state variables, including snow accumulation and ablation, evapotranspiration, soil moisture and runoff production. Simulated daily hydrographs of naturalized streamflow (reservoir effects removed) were aggregated to monthly totals and compared for nine selected sub‐basins. The results show that, hydrologically, the most important vegetation‐related change has been a general tendency towards decreased vegetation maturity in the forested areas of the basin. This general trend represents a balance between the effects of logging and fire suppression. In those areas where forest maturity has been reduced as a result of logging, wintertime maximum snow accumulations, and hence snow available for runoff during the spring melt season, have tended to increase, and evapotranspiration has decreased. The reverse has occurred in areas where fire suppression has tended to increase vegetation maturity, although the logging effect appears to dominate for most of the sub‐basins evaluated. Predicted streamflow changes were largest in the Mica and Corralin sub‐basins in the northern and eastern headwaters region; in the Priest Rapids sub‐basin, which drains the east slopes of the Cascade Mountains; and in the Ice Harbor sub‐basin, which receives flows primarily from the Salmon and Clearwater Rivers of Idaho and western Montana. For these sub‐basins, annual average increases in runoff ranged from 4·2 to 10·7% and decreases in evapotranspiration ranged from 3·1 to 12·1%. In comparison with previous studies of individual, smaller sized watersheds, the modelling approach used in this study provides predictions of hydrological fluxes that are spatially continuous throughout the interior Columbia River basin. It thus provides a broad‐scale framework for assessing the vulnerability of watersheds to altered streamflow regimes attributable to changes in land cover that occur over large geographical areas and long time‐frames. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号