首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于单一指标的传统地震易损性分析忽略了非结构构件损伤对建筑抗震性能的影响。首先基于多维性能极限状态理论建立了三维性能极限状态方程,并对几种特殊情况下的三维阈值曲面进行了讨论。进而以最大层间位移角作为整体结构与位移敏感型非结构构件的性能指标,以峰值楼面加速度作为加速度敏感型非结构构件的性能指标,对建筑的结构损伤和非结构损伤进行描述。考虑各性能指标之间的相关性和各性能指标所对应的极限状态阈值的不确定性,建立了建筑在地震作用下的三维性能极限状态的超越概率函数。最后,采用Open Sees有限元软件对一7层钢筋混凝土框架填充墙建筑进行增量动力分析,得到其各性能水平下的地震易损性曲线。分析结果表明,当忽略非结构构件损伤时,各性能极限状态的超越概率均降低,从而高估了建筑剩余功能水平,进而导致低估建筑的损失。在考虑各性能指标的极限状态阈值的不确定性时,对任一性能极限状态,不同变异系数取值下的易损性曲线会出现交点,在交点之前超越概率随着变异系数的增大而增大,交点之后则随着变异系数的增大而减小。在考虑性能指标间的相关性时,对任一性能极限状态,超越概率随着相关系数的减小而增大。另外,性能指标阈值的不确定性与性能指标间的相关性对地震易损性的影响随着性能水平的提高而逐渐降低,且对低性能水平下建筑地震易损性有明显影响。  相似文献   

2.
The seismic demand parameters including the floor acceleration amplification (FAA) factors and the interstory drift ratios (IDRs) were acquired from the floor response in time history analysis of a tall building subjected to selected ground motions. The FAA factors determined in this way are larger than those given in most current code provisions, but the obtained IDRs are close to the values given in some code provisions. Imposing a series of in‐plane pre‐deformations to two glass curtain wall (CW) specimens mounted on a shaking table, the IDRs were reproduced and the FAA factors were satisfied through applications of computed floor spectra compatible motion time histories, whose peak accelerations corresponded to the FAA factors. The CW specimens performed well during the whole experimental program with almost no change in the fundamental frequencies. No visible damage was observed in the glass panels. The maximum stresses detected in each component of the CW system were smaller than the design strengths. The obtained component acceleration amplification factor approached 3.35, which is larger than the value given in the current code provisions. In conclusion, the performance of the studied CW system is seismically safe. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The use of a seismic intensity measure (IM) is paramount in decoupling seismic hazard and structural response estimation when assessing the performance of structures. For this to be valid, the IM needs to be sufficient;that is, the engineering demand parameter (EDP) response should be independent of other ground motion characteristics when conditioned on the IM. Whenever non‐trivial dependence is found, such as in the case of the IM being the first‐mode spectral acceleration, ground motion selection must be employed to generate sets of ground motion records that are consistent vis‐à‐vis the hazard conditioned on the IM. Conditional spectrum record selection is such a method for choosing records that are consistent with the site‐dependent spectral shape conditioned on the first‐mode spectral acceleration. Based on a single structural period, however the result may be suboptimal, or insufficient, for EDPs influenced by different period values, for example, peak interstory drifts or peak floor accelerations at different floors, potentially requiring different record suites for each. Recently, the log‐average spectral acceleration over a period range, AvgSA, has emerged as an improved scalar IM for building response estimation whose hazard can be evaluated using existing ground motion prediction equations. Herein, we present a recasting of conditional spectrum record selection that is based on AvgSA over a period range as the conditioning IM. This procedure ensures increased efficiency and sufficiency in simultaneously estimating multiple EDPs by means of a single IM. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
The ‘strength’ of an earthquake ground motion is often quantified by an Intensity Measure (IM), such as peak ground acceleration or spectral acceleration at a given period. This IM is used to predict the response of a structure. In this paper an intensity measure consisting of two parameters, spectral acceleration and epsilon, is considered. The IM is termed a vector‐valued IM, as opposed to the single parameter, or scalar, IMs that are traditionally used. Epsilon (defined as a measure of the difference between the spectral acceleration of a record and the mean of a ground motion prediction equation at the given period) is found to have significant ability to predict structural response. It is shown that epsilon is an indicator of spectral shape, explaining why it is related to structural response. By incorporating this vector‐valued IM with a vector‐valued ground motion hazard, we can predict the mean annual frequency of exceeding a given value of maximum interstory drift ratio, or other such response measure. It is shown that neglecting the effect of epsilon when computing this drift hazard curve leads to conservative estimates of the response of the structure. These observations should perhaps affect record selection in the future. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Focusing on low-rise steel buildings supported by shallow isolated foundations on dense silty sand, this study demonstrates the effect of uncertainty in soil parameters on seismic response of structures. Considering a set of 20 ground motions representing 10% in 50 years hazard level and concentrating on peak base moment, base shear and interstory drift as the demand variables of interest, it is found that uncertainty in soil parameters may result in significant response variability of the structures, especially when vertical factor of safety is low and the structure is relatively stiff. Uncertainty in friction angle results in significant variability of the peak base moment and base shear, while peak interstory drift ratio is found to be virtually unaffected by uncertainty in soil parameters. It is also found that a linear soil–structure-interaction (SSI) model will not be able to predict such response variability under these set of ground motions.  相似文献   

6.
This paper presents the evaluation of two approximate methods recently proposed in the literature to estimate residual (permanent) drift demands at the end of earthquake excitation for seismic assessment of buildings. Both methods require an estimate of the peak (maximum) interstory drift demand and the corresponding drift demand at significant yielding of the building. Additionally, an approximate method is proposed as part of this study. The introduced method follows a coefficient‐based approach similar to the Coefficient Method included in several US documents. For evaluating the approximate methods, five moment‐resisting steel framed buildings having different number of stories were analyzed under four sets of earthquake ground motions. Quantification of the accuracy of the approximate methods to estimate residual drift demands with respect to results from nonlinear time‐history analyses was performed through error measures computed for each building and each set of earthquake ground motions. Results show that the mean standard error tends to increase as the seismic hazard level increases. Between the two methods, the method introduced by Erochko et al. seems more effective in predicting residual drift demands than that proposed in the FEMA P‐58 recommendations in the USA. It is demonstrated that including additional sources of stiffness and strength in the modeling approach constrains the amplitude of residual drift demands. As a beneficial consequence, the accuracy of both approximate methods in predicting residual drift demands is significantly improved (i.e., mean standard error decreases). The introduced method also provides similar accuracy than the approximate methods available in the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents, within the performance‐based earthquake engineering framework, a comprehensive probabilistic seismic loss estimation method that accounts for main sources of uncertainty related to hazard, vulnerability, and loss. The loss assessment rigorously integrates multiple engineering demand parameters (maximum and residual inter‐story drift ratio and peak floor acceleration) with consideration of mainshock–aftershock sequences. A 4‐story non‐ductile reinforced concrete building located in Victoria, British Colombia, Canada, is considered as a case study. For 100 mainshock and mainshock–aftershock earthquake records, incremental dynamic analysis is performed, and the three engineering demand parameters are fitted with a probability distribution and corresponding dependence computed. Finally, with consideration of different demolition limit states, loss assessment is performed. From the results, it can be shown that when seismic vulnerability models are integrated with seismic hazard, the aftershock effects are relatively minor in terms of overall seismic loss (1–4% increase). Moreover, demolition limit state parameters, uncertainties of collapse fragility, and non‐collapse seismic demand prediction models have showed significant contribution to the loss assessment. The seismic loss curves for the reference case and for cases with the varied parameters can differ by as large as about 150%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A multi‐level seismic vulnerability assessment of reinforced concrete moment frame buildings located in moderate seismic zones (0.25g) is performed on a set of ductile versions of low‐ to mid‐rise two‐dimensional moment frames. The study is illustrated through application to comparative trial designs of two (4‐ and 8‐story) buildings adopting both space‐ and perimeter‐framed approaches. All frames are dimensioned as per the emerging version of the seismic design code in Egypt. These new seismic provisions are in line with current European norms for seismic design of buildings. Code‐compliant designs (CCD), as well as a proposed modified code design relaxing design drift demands for the investigated buildings, are examined to test their effectiveness and reliability. Applying nonlinear inelastic incremental dynamic analyses, fragility curves (FC) for the frames are developed corresponding to various code‐specified performance levels. Code preset lower and upper bounds on design acceleration and drift, respectively, are also addressed along with their implications, if imposed, on the frames seismic performance and vulnerability. Annual spectral acceleration hazard curves for the case study frames are also generated. Estimates for mean annual frequency (MAF) of exceeding various performance levels are then computed through an integration process of the data resulting from the FC with the site hazard curves. The study demonstrates that the proposed design procedure relaxing design drift demands delivers more economic building designs relative to CCDs, yet without risking the global safety of the structure. The relaxed design technique suggested herein, even though scoring higher, as expected by intuition, MAF of exceeding various code‐limiting performance levels expressed in terms of interstory drift ratios, still guarantees a reasonably acceptable actual margin against violating code limits for such levels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The effects of Rayleigh damping model on the engineering demand parameters of two steel moment‐resisting frame buildings were evaluated. Two‐dimensional models of the buildings were created and response history analysis were conducted for three different hazard levels. The response history analysis results indicate that mass‐proportional damping leads to high damping forces compared with restoring forces and may lead to overestimation of floor acceleration demands for both buildings. Stiffness‐proportional damping, on the other hand, is observed to suppress the higher‐mode effects in the nine‐story building resulting in lower story drift demands in the upper floors compared with other damping models. Rayleigh damping models, which combine mass‐proportional and stiffness‐proportional components, that are anchored at reduced modal frequencies lead to reasonable damping forces and floor acceleration demands for both buildings and does not suppress higher‐mode effects in the nine‐story building. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The selection of a scalar Intensity Measure (IM) for performing analytical vulnerability (loss) assessment across a building class is addressed. We investigate the ability of several IM choices to downgrade the effect of seismological parameters (sufficiency) as well as reduce the record‐to‐record variability (efficiency) for both highrise and lowrise sets of ‘index’ buildings. These characteristics are explored in unprecedented detail, employing comparisons and statistical significance testing at given levels of local engineering demand parameters (story drift ratios and peak floor accelerations) that relate to losses, instead of global variables such as the maximum interstory drift. Thus, a detailed limit‐state‐specific view is offered for the suitability of different scalar IMs for loss assessment. As expected, typical single‐period spectral values are found to introduce unwanted bias at high levels of scaling, both for a single as well as a class of buildings. On the other hand, the geometric mean of the spectral acceleration values estimated at several periods between the class‐average second‐mode and an elongated class‐average first‐mode period offers a practical choice that significantly reduces the spectral‐shape bias without requiring the development of new ground motion prediction equations. Given that record selection remains a site‐ and building‐specific process, such an improved IM can help achieve reliable estimates for building portfolios, as well as single structures, at no additional cost. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The efficacy of various ground motion intensity measures (IMs) in the prediction of spatially distributed seismic demands (engineering demand parameters, (EDPs)) within a structure is investigated. This has direct implications to building‐specific seismic loss estimation, where the seismic demand on different components is dependent on the location of the component in the structure. Several common IMs are investigated in terms of their ability to predict the spatially distributed demands in a 10‐storey office building, which is measured in terms of maximum interstorey drift ratios and maximum floor accelerations. It is found that the ability of an IM to efficiently predict a specific EDP depends on the similarity between the frequency range of the ground motion that controls the IM and that of the EDP. An IMs predictability has a direct effect on the median response demands for ground motions scaled to a specified probability of exceedance from a ground motion hazard curve. All of the IMs investigated were found to be insufficient with respect to at least one of magnitude, source‐to‐site distance, or epsilon when predicting all peak interstorey drifts and peak floor accelerations in a 10‐storey reinforced concrete frame structure. Careful ground motion selection and/or seismic demand modification is therefore required to predict such a spatially distributed demands without significant bias. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Seismic intensity measures (IMs) perform a pivotal role in probabilistic seismic demand modeling. Many studies investigated appropriate IMs for structures without considering soil liquefaction potential. In particular, optimal IMs for probabilistic seismic demand modeling of bridges in liquefied and laterally spreading ground are not comprehensively studied. In this paper, a coupled-bridge-soil-foundation model is adopted to perform an in-depth investigation of optimal IMs among 26 IMs found in the literature. Uncertainties in structural and geotechnical material properties and geometric parameters of bridges are considered in the model to produce comprehensive scenarios. Metrics such as efficiency, practicality, proficiency, sufficiency and hazard computability are assessed for different demand parameters. Moreover, an information theory based approach is adopted to evaluate the relative sufficiency among the studied IMs. Results indicate the superiority of velocity-related IMs compared to acceleration, displacement and time-related ones. In particular, Housner spectrum intensity (HI), spectral acceleration at 2.0 s (S a-20), peak ground velocity (PGV), cumulative absolute velocity (CAV) and its modified version (CAV 5) are the optimal IMs. Conversely, Arias intensity (I a ) and shaking intensity rate (SIR) which are measures often used in liquefaction evaluation or related structural demand assessment demonstrate very low correlations with the demand parameters. Besides, the geometric parameters do not evidently affect the choice of optimal IMs. In addition, the information theory based sufficiency ranking of IMs shows an identical result to that with the correlation measure based on coefficient of determination (R 2). This means that R 2 can be used to preliminarily assess the relative sufficiency of IMs.  相似文献   

13.
Different values have been assigned to the ratio of the defl ection amplifi cation factor(Cd) to the response modifi cation factor(R) for a specifi ed force-resisting system in the seismic design provisions while the same application is defi ned for it. An analytical study of the seismic responses of several reinforced concrete frames subjected to a suite of earthquake records performed in this research indicate that the stories’ overstrength and stiffness distribution along the structural height can affect local defl ections more than global ones. Therefore, the Cd/R ratio is calculated based on the ratio of both maximum inelastic to maximum elastic displacements and interstory drifts. Due to damage concentration in some specifi c stories, the defl ection amplifi cation factor calculated based on inelastic interstory drifts was larger than that of the inelastic displacements. Consequently, a minimum value of 1.0 is recommended for the Cd/R ratio in order to estimate maximum inelastic drifts. The ratio of inelastic to elastic displacement was generally found to increase slightly along the structural height for the studied RC models. In addition, it was detected that the story damage indices of the studied RC frames decrease when the inverted value of inelastic interstory drift ratios are increased through a(negative) power form.  相似文献   

14.
Moat wall pounding occurs when a base-isolated building displaces beyond the provided clearance and collides with the surrounding retaining wall, inducing very high floor accelerations and interstory drifts. Previous studies on moat wall pounding typically employ simplified models of the superstructure, with a uniaxial contact spring used to model the entire moat wall. Consequently, researchers have developed sophisticated contact models to estimate the normal-direction contact force that is generated during seismic pounding. This study examines how the choice in contact model affects the seismic response of a base-isolated building subjected to impact-inducing ground excitation. Five widely used state-of-the-art contact models are summarized and implemented into an experimentally-calibrated numerical model of a base-isolated moment frame. Results of nonlinear dynamic time history analyses are shown in detail for one ground motion, followed by a larger parametric study across 28 near-fault ground motions. This work shows that peak impact force and base acceleration are moderately sensitive to the choice in contact model, while upper floor accelerations and interstory drifts are practically not affected.  相似文献   

15.
An extensive experimental and theoretical research study was undertaken to study the vibration serviceability of a long-span prestressed concrete floor system to be used in the lounge of a major airport.Specifically,jumping impact tests were carried out to obtain the floor’s modal parameters,followed by an analysis of the distribution of peak accelerations.Running tests were also performed to capture the acceleration responses.The prestressed concrete floor was found to have a low fundamental natural frequency(≈8.86 Hz)corresponding to the average modal damping ratio of≈2.17%.A coefficients plate with simply-supported edges.The calculated analytical results(natural frequencies and root-mean-square acceleration)agree well with the experimental ones.The analytical approach is thus validated.  相似文献   

16.
文俊  蒋友宝 《地震工程学报》2020,42(2):326-331,367
为测试高层钢结构建筑抗震性能,在有限元模型中以某高层钢框架结构办公大厦作为研究对象,测试其横向支撑地震动力响应状况。选取地震峰值加速度为200 cm/s^2的El-Centro波作为地震波输入,采用瞬态动力方法分析不同楼板厚度下建筑地震模拟响应,得到建筑顶层位移时程曲线;在SAP2000结构软件中分析建筑工程添加横向支撑前后的反应谱,记录各楼层垂直与水平方向位移与层间位移角。得到如下结果:高层钢结构建筑在地震响应下产生的位移不随楼板厚度的增加而增大,楼板厚度为100 mm、170 mm时位移波动显著;添加横向支撑后,建筑水平刚度显著提升,同理,添加横向支撑后横向层间位移角的最大值变化较大,且低于1/250,符合相关建筑标准。  相似文献   

17.
The seismic fragility of a system is the probability that the system enters a damage state under seismic ground motions with specified characteristics. Plots of the seismic fragilities with respect to scalar ground motion intensity measures are called fragility curves. Recent studies show that fragility curves may not be satisfactory measures for structural seismic performance, since scalar intensity measures cannot comprehensively characterize site seismicity. The limitations of traditional seismic intensity measures, e.g., peak ground acceleration or pseudo-spectral acceleration, are shown and discussed in detail. A bivariate vector with coordinates moment magnitude m and source-to-site distance r is proposed as an alternative seismic intensity measure. Implicitly, fragility surfaces in the (mr)-space could be used as graphical representations of seismic fragility. Unlike fragility curves, which are functions of scalar intensity measures, fragility surfaces are characterized by two earthquake-hazard parameters, (mr). The calculation of fragility surfaces may be computationally expensive for complex systems. Thus, as solutions to this issue, a bi-variate log-normal parametric model and an efficient calculation method, based on stochastic-reduced-order models, for fragility surfaces are proposed.  相似文献   

18.
An analytical seismic fragility assessment framework is presented for the existing low strength reinforced concrete structures more common in the building stock of the developing countries.For realistic modelling of such substandard structures,low strength concrete stress-strain and bond-slip capacity models are included in calibrating material models.Key capacity parameters are generated stochastically to produce building population and cyclic pushover analysis is carried out to capture inelastic behaviour.Secant period values are evaluated corresponding to each displacement step on the capacity curves and used as seismic demand.A modified capacity demand diagram method is adopted for the degrading structures,which is further used to evaluate peak ground acceleration from back analysis considering each point on the capacity curve as performance point.For developing fragility curves,the mean values of peak ground acceleration are evaluated corresponding to each performance point on the series of capacity curves.A suitable probability distribution function is adopted for the secant period scatter at different mean peak ground acceleration values and probability of exceedance of limit states is evaluated.A suitable regression function is used for developing fragility curves and regression coefficients are proposed for different confidence levels.Fragility curves are presented for a low rise pre-seismic code reinforced concrete structure typical of developing countries.  相似文献   

19.
Seismic site coefficients (F s ) for Imphal city have been estimated based on 700 synthetically generated earthquake time histories through stochastic finite fault method, considering various combinations of magnitudes and fault distances that may affect Imphal city. Seismic hazard curves and Uniform Hazard Response Spectra (UHRS) are presented for Imphal city. F s have been estimated based on site response analyses through SHAKE-91 for a period range of engineering interest (PGA to 3.0 s), for 5% damping. F s were multiplied by UHRS values to obtain surface level spectral acceleration with 2 and 10% probability of exceedance in 50 year (~2500 and ~500 year) return period. Comparison between predicted mean surface level response spectra and IS-1893 code shows that spectral acceleration value is higher for longer periods (i.e., >1.0 s), for ~500 year return period, and lower for periods shorter than 0.2 s for ~2500 year return period.  相似文献   

20.
The effect of the upper part of a layered profile on calculated seismic hazard parameters is analyzed. The behavior of the soil profile is studied as part of equivalent linear modeling with the example of six seismogeological models. Peak ground acceleration of the input signal varies from 0.1 to 0.6 g. It is shown that the character of the dependence of physicomechanical properties in the layer on the strain value leads to variations in the amplitudes of the response spectrum on the free surface and displacement of the maximum of the frequency spectrum. An increase in the thickness of the upper layer significantly influences the shape of the response spectra. Variations in the PGA values, damping coefficients, strain values with depth are calculated, as well as the velocity profiles for different soil layers with respect to the degradation curves. It is demonstrated that restricting the upper limit of the damping coefficient to 15% does not lead to noticeable changes in the shape of the response spectra on the free surface. The soil column begins to decrease the peak value of the input signal when its level exceeds 0.3 g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号