首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
苏北-胶南构造混杂岩带的地质特征和岩性地层柱   总被引:9,自引:1,他引:8       下载免费PDF全文
本文简要介绍了产于华北板块与扬子板块碰撞带范围内的苏北-胶南构造混杂岩带的地质构造背景,并系统地研究滑移介质、中-浅源和深源构造块的基本特征。在深源构造岩块的研究基础上建立了壳幔过渡带至上地幔段的岩性地层柱,对上地幔可能存在的地质作用类型进行了探讨  相似文献   

2.
Since the collision of Indian subcontinent to Eurasia, a huge quantity of crustal materials from India has been penetrated into the crust or mantle of Eurasia. Investigation of the place, on which those materials have been deposited is a key problem for constructing a model of collision between continents. The results of three-dimensional seismic velocity structure obtained from seismic tomography technique may provide an evidence of the deposit of anomalous materials in the crust and upper mantle of the Tibetan Plateau and its neighboring areas. A detailed analysis of the results from the seismic surface wave tomography has deduced a new model of the continental collision from India to Eurasia. It is compatible to the velocity data obtained from other geological and geophysical observations. The main points of the new model of the continental collision from Indian to Eurasia can be summarized as follows:
  1. The Indian crust has been penetrating into the lower crust of Tibetan Plateau, instead of into the uppermost mantle beneath the crust or the asthenosphere of Tibetan Plateau;
  2. The surplus materials from the Tibetan lower crust have been squeezed and thrusted into the asthenosphere of its eastern neighboring areas (Qinghai-Sichuan-Yunnan) through the broken Moho;
  3. Some hot materials were intruded into the crust from the uppermost mantle in Tibetan Plateau and Sichuan-Yunnan provinces. The intruded hot materials may reach the ground surface (such as the Tibetan Plateau) or a depth about 25 km (such as Sichuan-Yunnan provinces) depending on the different local environmental conditions. The extensional geological structures in those regions are closely related to the intrusion of hot materials.
  相似文献   

3.
Research on the 3—D Seismic Structures in Qinghai—Xizang Plateau   总被引:1,自引:0,他引:1  
Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet)Platean,the three dimensiomal 3-D) seismic velocity stroctures in Qinghai-Xizang Plateau were obtained by using the regional body wave tomography and surface wave tomography.The results from these two tomography methods have similar characteristics for P-and S-wave velocity structures in crust and upper mantle.They show that there are remarkahle low velocity zones in the upper crust of L hasa block in the southern Qinghai-Xizang Plateau and the lower crust and upper mantle of Qiangtang block in the northern Qinghai-Xizang Plateau.These phenomena may be related to the different steps of collision process in southern and northern Qinghai-Xizang Plateau.  相似文献   

4.
The deep structure of the eastward-subducting Indian plate can provide new information on the dynamics of the India-Eurasia collision. We collected and processed waveform data from temporary seismic arrays (networks) on the eastern Tibetan Plateau, seismic arrays in Northeast India and Myanmar, and permanent stations of the China Digital Seismic Network in Tibet, Gansu, Qinghai, Yunnan, and Sichuan. We combined these data with phase reports from observation stations of the International Seismological Center on the Indian plate and selected 124,808 high-quality P-wave relative travel-time residuals. Next, we used these data to invert the 3-D P-wave velocity structure of the upper mantle to a depth of 800 km beneath the eastern segment of the arcuate Himalayan orogen, at the southeastern margin of the Tibetan Plateau. The results reveal a high-angle, easterly dipping subducting plate extending more than 200 km beneath the Indo-Myanmese arc. The plate breaks off at roughly 96°E; its fragments have passed through the 410-km discontinuity (D410) into the mantle transition zone (MTZ). The MTZ beneath the Tengchong volcanic area contains a high-velocity anomaly, which does not exceed the Red River fault to the east. No other large-scale continuous subducted plates were observed in the MTZ. However, a horizontally spreading high-velocity anomaly was identified on the D410 in some regions. The anomaly may represent the negatively buoyant 90°E Ridge plate or a thickened and delaminated lithospheric block experiencing collision and compression at the southeastern margin of the Tibetan Plateau. The Tengchong volcano may originate from the mantle upwelling through the slab window formed by the break-off of the subducting Indian continental plate and oceanic plate in the upper mantle. Low-velocity upper mantle materials on the west side of the Indo-Myanmese arc may have supplemented materials to the Tengchong volcano.  相似文献   

5.
Seismic anisotropy has been widely used to constrain deformation and mantle flow within the upper mantle of the Earth's interior, and is mainly affected by crystallographic preferred orientation(CPO)of anisotropic mineral in lithosphere. Anisotropy of peridotites caused by deformation is the main source of seismic anisotropy in the upper mantle. Olivine is the most abundant and easily deformed mineral to form CPO in peridotite, thus the CPO of olivine controls seismic anisotropy in the upper mantle. Based on simple shear experiments and studies of natural peridotites deformation, several CPO types of olivine have been identified, including A, B, C, D, E and AG-type. Studies on the deformation of olivine have shown that the CPO of olivine is mainly related to stress, water content, temperature, pressure, partial melting and melt/fluid percolation. Most of the seismic anisotropy has been explained by the A-type olivine CPO in the upper mantle, which is commonly found in upper-mantle peridotites and produced by the simple shear in dry conditions. Previous studies showed that anisotropy was attributed to the CPO of mica and amphibole in the middle-lower crust. The comparison between mantle anisotropy calculated from mineral CPO and regional anisotropy deduced from geophysical methods is therefore particularly useful for interpreting the deformation mechanisms and geodynamic processes which affect the upper mantle in different tectonic units such as subduction system, continental rift and continental collision zone in the world. The paper summarizes the characteristics of CPO and anisotropy of major anisotropic minerals in the upper mantle. Taking the lithosphere mantle xenoliths in the southeastern Tibetan plateau as an example, we perform detailed studies on the microstructures and seismic anisotropy to better understand the deformation mechanisms and upper mantle anisotropy in this region. Results show that the CPO of olivine in peridotite xenoliths in southeastern Tibetan plateau are A-type and AG-type. The mechanisms proposed for the formation of AG-type are different from that for the A-type. Therefore, the occurrence of AG-type olivine CPO pattern suggests that this CPO may record a change in deformation mechanism and tectonic environment of the lithosphere in southeastern Tibetan plateau. Provided that the strong SKS(shear wave splitting)observed in southeastern Tibetan plateau results from lithosphere mantle, the lithosphere mantle in this region is expected to be at least 130km thick and characterized by vertical foliation. Considering that the thickness of lithosphere in southeastern Tibetan plateau is much less than 130km and the lithosphere mantle cannot explain the anisotropy measured by SKS, other anisotropy sources should be considered, such as anisotropy in the asthenosphere and the oriented melt pockets(MPO)in the upper mantle. Therefore, detailed study of CPO of anisotropic mineral is essential for constraining geophysical measurements and analyzing the dynamic process of the lithosphere reasonably.  相似文献   

6.
天山中段的深浅构造特征   总被引:3,自引:1,他引:2       下载免费PDF全文
天山起源于古生代的陆-陆碰撞作用,又经历了中新生代的典型陆内造山过程,其深浅构造结构和活动性一直是众多学者关注的热点。文中通过多种地球物理探测和综合地质构造分析, 以地学断面形式对其深浅构造进行填图,揭示了天山中段复杂的深浅构造特色。结果表明:沿古生代的陆-陆碰撞缝合带两侧分别呈现出主要构造地质单元由老到新的对称性,并伴有相应深部结构的复杂性,反映了碰撞过程及后期的构造演化特点;天山中部的上地幔顶部存在厚近 10km、宽近 200km、几乎涵盖整个天山的低速高导层,可能是中新生代以来天山的陆内再造山作用引起的壳幔拆沉作用形成的残留下地壳  相似文献   

7.
天山上地幔结构及其对壳内构造运动的作用   总被引:17,自引:0,他引:17       下载免费PDF全文
胥颐  刘福田 《地震地质》1998,20(4):118-412
以深部地球物理资料为基础,介绍了天山地震带上地幔的基本结构,讨论了天山不同地区上地幔介质的动力学性质和可能的驱动机制。认为水平挤压形变是造成西天山和天山毗邻西昆仑附近区域上地幔岩石圈缩短和增厚的主要原因;而在中天山和东天山靠近准噶尔盆地南缘一带,除了板块运动造成的水平挤压力之外,上地幔热物质有可能上浮甚至侵入到地壳之中。它们与水平运动一样,对壳内脆性介质的构造活动起到非常重要的作用,特别是地壳底部莫霍面附近的低速滑脱层成为震源区深部构造的一个明显标志。此外,自从印度 亚洲大陆碰撞以来,天山部分地区固结冷却的山根有可能在多重挤压变形和小尺度热对流的共同作用下,脱离它们的原有的层位而沉入上地幔  相似文献   

8.
全球地幔垂直流动速度研究   总被引:5,自引:0,他引:5       下载免费PDF全文
用高分辨率地震体波速度成像以及相关的地球物理资料,计算地幔垂直流动形式及流动速度,得到全球地幔流垂直运动模式.从全球尺度来看,地幔流基本可划分为以下几个区域:欧亚大陆—澳大利亚、北美洲—南美洲为两个大规模下降流区域,西印度洋—非洲及大西洋、中南太平洋及东太平洋为两个大规模地幔上升流区域.地幔上升流起源于核幔边界,主要表现在地幔中部和上地幔下部.地幔垂直流动速度约每年1~4cm.地幔流动对地表板块运动、海洋中脊和中隆、俯冲带和碰撞带的分布起着控制作用.地幔上升流与地表现代热点有密切关系.从东亚尺度看,地幔流大体分为三个区域:东亚边缘裂谷系和西太平洋边缘海为上升流、西伯利亚地幔深度表现为物质下降流、青藏高原—缅甸—印度尼西亚特提斯俯冲带地幔下降流,这三个区域地幔流动与地表的西太平洋构造域、亚洲构造域和特提斯构造域相吻合.勾勒出南海地区构造特征:从上到下的大体结构是上部呈“工"字型、中间为圆柱型、底部呈盾形的地幔上升流.  相似文献   

9.
We report a new model of the upper mantle structure beneath Italy obtained by means of P-wave teleseismic tomography. Besides the recent and remarkable development of the Italian Seismic Network, a high model resolution has been achieved improving the inversion method upon the ACH method used in previous investigations and picking high quality arrival times with the Multi-Channel Cross-Correlation technique. The finer details of our Vp model yield new insights into the heterogeneous structure of the Adria continental lithosphere involved in the collision between the Africa and Europe plates. A wide low Vp anomaly located in the northern Adria mantle, facing the Alpine high Vp slab, supports the idea that the Adria lithosphere has been hydrated and thinned during the Alpine subduction. We argue that this mantle softening may have played a key role in favoring the subsequent delamination of the Adria lithosphere in the northern Apennines. We hypothesize that delamination of continental lithosphere previously thinned in a back-arc setting may be considered a key process to favor subduction polarity reversal and recycling of continental material into the mantle circulation. Conversely, in the central-southern Apennines, the velocity structure is consistent with the existence of a deeper oceanic slab that flattens at the base of the upper mantle, in agreement with the widely accepted geodynamic evolution of the central Mediterranean by slab retreat and back-arc spreading. The oceanic slab is discontinuously detached from the surface plate, suggesting a different structure of the Adria lithosphere, which resists subduction instead of favoring delamination.  相似文献   

10.
Over the past 10 years,the number of broadband seismic stations in China has increased significantly.The broadband seismic records contain information about shear-wave splitting which plays an important role in revealing the upper mantle anisotropy in the Chinese mainland.Based on teleseismic SKS and SKKS phases recorded in the seismic stations,we used the analytical method of minimum transverse energy to determine the fast wave polarization direction and delay time of shear-wave splitting.We also collected results of shear-wave splitting in China and the surrounding regions from previously published papers.From the combined dataset we formed a shear-wave splitting dataset containing 1020 parameter pairs.These splitting parameters reveal the complexity of the upper mantle anisotropy image.Our statistical analysis indicates stronger upper mantle anisotropy in the Chinese mainland,with an average shear-wave time delay of 0.95 s;the anisotropy in the western region is slightly larger(1.01 s)than in the eastern region(0.92 s).On a larger scale,the SKS splitting and surface deformation data in the Tibetan Plateau and the Tianshan region jointly support the lithospheric deformation mode,i.e.the crust-lithospheric mantle coherent deformation.In eastern China,the average fast-wave direction is approximately parallel to the direction of the absolute plate motion;thus,the upper mantle anisotropy can be attributed to the asthenospheric flow.The area from the Ordos block to the Sichuan Basin in central China is the transition zone of deformation modes between the east and the west regions,where the anisotropy images are more complicated,exhibiting"fossil"anisotropy and/or two-layer anisotropy.The collision between the Indian Plate and the Eurasian Plate is the main factor of upper mantle anisotropy in the western region of the Chinese mainland,while the upper mantle anisotropy in the eastern region is related to the subduction of the Pacific Plate and the Philippine Sea Plate beneath the Eurasian Plate.  相似文献   

11.
松嫩地块东缘和佳木斯地块西缘电性结构   总被引:2,自引:0,他引:2       下载免费PDF全文
横过松嫩地块东缘和佳木斯地块西缘的大地电磁测深剖面揭示了两块体结合带附近的深部电性结构.本文对剖面测点做了标准化数据处理,并对二维偏离度、构造走向进行了计算和分析,采用非线性共轭梯度(NLCG)二维反演方法对TM模式的数据进行了反演,获得了该剖面的地壳、上地幔电性结构模型,划分出三个典型构造单元:松嫩地块东缘、碰撞拼合带和佳木斯地块西缘.研究结果表明,研究区上地壳基本呈高阻特征,可能为岩浆岩,代表其经历了多期次岩浆作用,而松嫩地块东缘和佳木斯地块西缘的中下地壳的高导体可能与地幔物质的上涌有关;拼合带下方存在西倾的高导体和高阻体,可能是佳木斯地块向西俯冲到松嫩地块下方的构造遗迹;研究区可能发生了拆沉作用,与之伴随的地幔物质上涌可能是后期伸展作用的一个动力.  相似文献   

12.
Based on the polarization analysis of teleseismic SKS waveform data recorded at 49 seismic stations in Capital Area Seismograph Network,the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by using the grid searching method of minimum transverse energy and the stacking analysis method,and then we acquired the image of upper mantle anisotropy in Capital area.In the study area,the fast-wave polarization direction is basically WNW-ESE,and the delay time falls into the interval from 0.56 s to 1.56 s.The results imply that the upper mantle anisotropy in Capital area is mainly caused by the subduc-tion of the Pacific plate to Eurasian plate.The subduction has resulted in the asthenospheric material deformation in Capital area,and made the alignment of upper mantle peridotite lattice parallel to the deformation direction.And the collision between the Indian and Eurasian plates made the crust of western China thickening and uplifting and material eastwards extruding,and then caused the upper mantle flow eastwards,and made the upper mantle de-formation direction parallel to the fast-wave direction.The deformation model of the crust and upper mantle is possibly vertically coherent deformation by comparing the fast-wave polarization direction with the direction of lithospheric extension and the GPS velocity direction.  相似文献   

13.
Continent–continent collisions are an important tectonic process and have played a fundamental role in the evolution of the modern continents. A combination of geological and geophysical data has provided new constraints on the structure and temporal evolution of these orogens. Magnetotelluric (MT) studies have been an important part of these studies since they can constrain the fluid content and thermal structure which are key parameters for defining the rheology of the crust and upper mantle. MT studies of the Himalaya have defined the geometry of active faults associated with continued plateau growth. Orogen scale MT studies have shown that both the India–Asia collision (Tibetan Plateau and Himalaya) and the Arabia–Eurasia collision (Eastern Anatolia) have developed a low resistivity mid-crustal layer with upper surface at 10–20 km that is likely due to a combination of partial melt and associated aqueous fluids. The properties of this layer are consistent with a strength contrast that permits crustal flow over geological timescales. The upper mantle from the Moho to at least 100 km beneath both Northern Tibet and the Anatolian Plateau is characterized by low resistivity values (10–30 Ωm) indicating the presence of shallow asthenosphere. Future integrated seismic and MT studies of collision zones are needed fully to explore the 3D structures associated with deformation and further constrain geodynamic models.  相似文献   

14.
利用布设在青藏高原东北缘地区的甘肃宽频带地震台阵记录到的远震P波走时数据,采用小波域参数化和基于L1范数的稀疏约束反演算法的多尺度层析成像方法,得到了该地区400km深度范围内上地幔的P波速度结构.本文采用的多尺度层析成像方法可以自适应数据非均匀采样的情况,有效降低谱泄漏效应和反问题的多解性,明显提高解的分辨率和可靠性.层析成像结果表明青藏高原东北缘上地幔整体上显示为低速特征,扬子地块上地幔则显示为高速特征,两者之间上地幔存在清晰的块体边界带,该边界带位于东经104°—105°之间并且随深度的增加逐渐东移.该特征暗示了青藏高原上地幔物质向东扩张的机制,但在西秦岭上地幔顶部不存在物质运移的通道.青藏高原东北缘内部也具有明显的分区特征,松潘—甘孜地块上地幔P波速度整体呈低速特征,而柴达木地块的上地幔顶部具有相对高速特征,而在上地幔200km以下这两个地块间的差别逐渐减小.1654年天水地震和1879年武都地震都发生在扬子地块与青藏高原的碰撞交汇区,其震中下方上地幔显示为高低速转换结构.  相似文献   

15.
青藏高原地震波三维速度结构的研究   总被引:14,自引:0,他引:14  
丁志峰  何正勤  吴建平  孙为国 《中国地震》2001,17(2):202-209,T001
根据青藏高原及其邻区的模拟地震台站和宽频带数字地震记录资料,采用区域体波层析成你和瑞利面波层析成像,反演得到了青藏高原地区的三维地震波速度结构。两种层析成像方法得到的地壳上地幔P波和S波速度结构的结果非常相似,它们显示,青藏高原南部的拉萨块体的上地壳存在明显的低速区,青藏高原北部的羌塘地区的下地壳和上地幔顶部相对速度较低。这些结果与青藏高原南、北部处于碰撞过程中的不同阶段有关。  相似文献   

16.
青藏高原东南缘处于印度板块与欧亚板块碰撞的侧翼,揭示该地区的岩石圈结构有助于完整理解青藏高原碰撞造山的动力学过程,对构建大陆碰撞成矿理论框架至为关键.本研究对横过青藏高原侧向碰撞带的一条深反射地震剖面的15个大炮资料,进行了针对性静校正、去噪等处理和单次叠加成像,结果剖面显示了侧向碰撞带岩石圈结构的骨架特征:(1)双程走时(TWT)8~10s的强反射(Tc)将地壳分为上、下两层;Tc可能是大型滑脱构造的拆离面,其存在使上地壳的变形与下地壳解耦;(2)Moho间断面反射(Tm)为3~4个同相轴的窄带反射波组,横向不连续,与深大断裂交汇处被错断,但断距不大;(3)在兰坪—思茅地块下方TWT21s和扬子克拉通西缘下方TWT22~24s存在相向倾斜的反射波组(TL);以Tc、Tm和TL构成的骨架结构,定性地描绘出剖面下方岩石圈地幔以汇聚为主、地壳块体以侧向滑移为主和上地壳为薄皮逆冲或滑脱的分层动力学模式.该岩石圈变形样式明显不同于以正向碰撞挤压、地壳缩短垂向增厚为主的"冈底斯模式".  相似文献   

17.
Seismic anisotropy of upper mantle in eastern China   总被引:6,自引:0,他引:6  
Based on the polarization analysis of teleseismic SKS waveform data recorded at 65 seismic stations which respectively involved in the permanent and temporary broadband seismograph networks deployed in eastern China, the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by use of SC method and the stacking analysis method, and then the image of upper mantle anisotropy in eastern China was acquired. In the study region, from south to north, the fast-wave polarization directions are basically EW in South China, gradually clockwise rotate to NWW-SEE in North China, then to NW-SE in Northeast China. The delay time falls into the interval [0.41 s, 1.52 s]. Anisotropic characteristics in eastern China indicate that the upper mantle anisotropy is possibly caused by both the collision between the Indian and Eurasian Plates and the subduction from the Pacific and Philippine Sea Plates to the Eurasian Plate. The collision between two plates made the crust of western China thickening and uplifting and the material eastwards extruding, and then caused the upper mantle flow eastwards and southeastwards. The subduction of Pacific Plate and Philippine Sea Plate has resulted in the lithosphere and the asthenosphere deformation in eastern China, and made the alignment of upper mantle peridotite lattice parallel to the deformation direction. The fast-wave polarization direction is consistent with the direction of lithosphere extension and the GPS velocity direction, implying that the crust-upper mantle deformation is possibly a vertically coherent deformation. Supported by Special Project for the Fundamental R & D of Institute of Geophysics, China Earthquake Administration (Grant No. DQJB06B06), Special Program of the Ministry of Science and Technology of China (Grant No. 2006FY110100), China Digital Earthquake Observation Network Project “North China Seismic Array”, and National Natural Science Foundation of China (Grant Nos. 40334041 and 40774037)  相似文献   

18.
额尔古纳地块东缘和兴安地块西缘电性结构研究   总被引:2,自引:1,他引:1       下载免费PDF全文
中国东北地区位于中亚造山带东段,夹持在西伯利亚板块、华北板块和太平洋板块之间,是解决东亚大陆构造演化的关键区域,其中额尔古纳地块和兴安地块位于东北地区西部,是两个十分重要的地质构造单元.横过额尔古纳地块东缘和兴安地块西缘的大地电磁测深剖面揭示了两块体结合带附近的深部电性结构,进而为该区构造演化提供新的电性依据.本文通过对剖面测点数据做标准化处理,并对二维偏离度、构造走向等进行计算与分析,采用非线性共轭梯度(NLCG)算法对TE+TM模式的数据做了二维反演,获得了该剖面的地壳和上地幔电性结构模型,划分出三个典型构造单元:额尔古纳地块东缘、碰撞拼合带和兴安地块西缘.研究结果表明,研究区上地壳基本呈高阻特征,可能为岩浆岩,代表其经历了多期次岩浆作用,而额尔古纳地块东缘和兴安地块西缘中下地壳的高导体反映其地壳非刚性的特点,可能形成于后期伸展环境;拼合带中下地壳存在大范围高导体并与上地幔高导体相连,指示出地幔物质上升的通道,反映出地幔物质的上升作用可能是后期构造伸展的重要动力.  相似文献   

19.
Based on the data from more than 200 MTS sites distributed within different areas of the Chinese continent, general characteristics of upper mantle conductivity have been described. At least two conductive layers have been found in the upper mantle of some areas. The first is thin with a resistivity of a modicum to few tens m; the second one is thicker with a resistivity of one to m. Nearly 300 heat-flow values indicate that there exists an exponential correspondent relationship between a depth of the upper mantle conductive layer with a thickness and an average value of heat flow. Based on the above results, the top depth map of this upper mantle conductive layer has been outlined for parts of the Chinese continent. This conductive layer is basically consistent with the low velocity zone in the upper mantle, and Cenozoic tectonism and current seismicity are significantly related to the variation of depth of the conductive layer in the upper mantle. The possible origins of the conductive layers in the upper mantle have been discussed here.  相似文献   

20.
中国西部三维速度结构及其各向异性   总被引:24,自引:5,他引:24  
本文用覆盖中国的358条勒夫面波路径资料,研究了10.45-113.80s范围内中国西部的三维SH波速度结构.结果表明,各构造单元的SH波速度结构均有明显的差别.作为稳定块体的塔里木盆地,壳内重力分异程度较高,上、中、下地壳厚度差别小,壳内无明显的低速层,地壳平均速度比较小;上地幔低速层埋深大且层中速度大;区内横向变化小.构造活动区如天山、青藏高原,其突出的特征是下地壳厚度大且速度大,上地幔盖层速度值相当高.这与西伯利亚、印支板块的挤压有密切的关系.青藏高原东部及其北、东边缘地区壳内存在低速层,上地幔低速层埋深浅,一些地区存在壳幔过渡层.面波各向异性研究表明,青藏高原、天山及印支板块北缘下存在明显的各向异性,以构造边缘地区及上地幔低速层附近最为突出.印度板块、西伯利亚板块与中国大陆间的碰撞引起强大的水平压力和一定的下插作用,是造成青藏高原隆起、地壳增厚、天山隆起的最根本的因素,同时也促成壳幔中辉石、橄榄石的定向排列和物质运移,因而出现明显的各向异性现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号