首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Corrections to the vertical distribution of mean density and current velocity non-oscillating on the wave's time scale have been derived in the approximation, quadratic by the wave's steepness. It has been shown that the horizontal volume transport of both the induced current and the Stokesian drift, integrated over depth, equates zero in the Boussinesq approximation.Translated by V. Puchkin.  相似文献   

2.
In the framework of the linear theory for long waves, the paper studies internal waves generated by a semi-diurnal barotropic tide impinging on a bottom ridge at an arbitrary angle. The ocean is assumed to be double-layered. In the vicinity of the ridge, whose height is continuously changing, geostrophic flows occurring due to the inclination of the free surface and interface are considered. The dependencies of the generated wave's amplitudes on the angle of incidence of the tide and on the magnitude and direction of the geostrophic current velocity are determined, allowing a conclusion that the current contributes to the generation of internal waves. Translated by Vladimir A. Puchkin.  相似文献   

3.
《Oceanologica Acta》2002,25(2):87-99
During previous field experiments in the North Sea it was often assumed that the water column in such shallow coastal tidal waters is vertically well mixed and stratification was neglected when discussing the Normalized Radar Cross Section modulation caused by the sea floor. In this paper the influence of quasi resonant internal waves with the sea bed on the radar imaging mechanism of submarine sand waves itself is investigated. In situ data of the tidal current velocity and several water quality parameters such as sea surface temperature, fluorescence, and beam transmittance were measured in the Southern Bight of the North Sea in April 1991. Simulations of the total NRCS modulation caused by sand waves and internal waves as a function of the current gradient or strain rate induced by the internal wave current field at the sea surface have been carried out using the quasi-steady approximation and linear internal wave theory. As a first approximation the strain rate depending on stratification was calculated using the two-layer model. These simulations demonstrate that at least a density difference between the two layers of the order of Δρ ≈ 1 kg m–3 is necessary for a sinusoidal thermocline to effect the total NRCS modulation considerably. The NRCS modulation as a function of wind friction velocity has been calculated independently and is discussed with regard to the strain rate of the surface current field caused by the superimposed imaging mechanisms of sand waves and internal waves. It turned out that the existence of a surface roughness-wind stress feedback mechanism cannot be excluded.  相似文献   

4.
Hydrological data covering the South Crimea test area are used to calculate the mean profile of the variable Brunt-Väisälä frequency and the coefficients of the Korteweg-de Vries equation for internal waves at each station. Charts showing internal wave velocity isolines, non-linearity and dispersion parameters, and sea depth have been constructed. The average Brunt-Väisälä frequency profile has been used to calculate the Urcel parameter for internal waves, and non-linear properties of the internal waves observed have been assessed.Translated by Mikhail M. Trufanov.  相似文献   

5.
Taking into consideration stratification, the mean current velocity, and the tangential wind stress expressed in terms of air pressure fluctuations, we have derived iteration formulae and have performed computations of the amplitudinal characteristics of oceanic internal waves generated by air pressure waves of semi-diurnal and 4-day long periodicity propagating over the Tropical Atlantic Ocean. It has been demonstrated that such periodicity and wavelengths may contribute to the generation of long-amplitude internal waves, whose intensity is largely dependent on the direction of atmospheric wave propagation.Translated by Vladimir A. Puchkin.  相似文献   

6.
In the Boussinesq approximation, we study the nonlinear effects observed in the process of propagation of internal waves in the presence of turbulence. The space damping factor of the waves is evaluated. The Stokes drift velocity and the Euler velocity of the mean current induced by waves due to the presence of nonlinearity are determined. It is shown that the principal contribution to the wave transfer is made by the horizontal velocity of the induced current. The Stokes drift is significant only near the bottom. The vertical component of the Stokes drift velocity obtained with regard for the turbulent viscosity is nonzero.  相似文献   

7.
对长江口2002年和2003年共4个潮周期的数据进行了分析,通过流速对数剖面公式计算边界层参数,并对各个潮周期内的边界层参数的变化规律进行了分析,同时也对悬沙输送可能对垂向水流结构以及边界层参数造成的影响进行了探讨。结果表明,悬沙的时间分布特征对温度、盐度、水体密度的分布格局有重要影响,主要表现在水体的Rf值普遍较高,分层稳定。此外,悬沙也可影响边界层参数,从而对水流结构产生影响。由于水体的层化作用,使层间的摩擦阻力增大,相当于在垂向上产生不同内边界层,因而影响了流速在垂向上的变化。  相似文献   

8.
在流体力学中,描述流体运动有Lagrange方法和Euler方法.Euler方法是通过观测通过空间各固定位置点处流体质点的运动行为来描述流体运动规律,而Lagrange方法是跟踪各个流体质点,通过观测它们在时空运动中所走过的路径来描述流体的运动规律.在数学处理上,Euler方法较Lagrange方法简单,但Lagrange方法可以完全描述流体运动的整个流场的所有特性,而Euler方法却无法描述每个流体质点的运动轨迹.本文,我们研究具有刚性边界的三层流体系统中的界面内波,其中上层流体的密度比下层流体的密度大.通过在界面处引入朗格朗日匹配条件并使用微扰法得到了拉格朗日描述下的界面内波的一阶解、二阶解及三阶解,给出了质量输运速度、波频率、平均水平和质点运动轨迹的解.结果表明对于质量输运速度、波频率、平均水平和质点运动轨迹在界面处会有不连续性,但是我们发现在满足一定的三层流体水深比和密度比条件时这种不连续性将会消失.  相似文献   

9.
Relation between internal waves with short time scale and density distribution near the shelf break in the East China Sea is studied utilizing moored current meters, thermometers and conductivity-temperature-depth (CTD) casts. A well developed pycnocline was frequently observed around 150–200 m depth near the shelf break accompanied with the development of internal waves with short time scale. During the cruise in May 1998, the intensified internal wave motion with short time scale and the distinct offshore flow were observed just below the lower pycnocline, which shoaled and extended above the shelf area. It is suggested that vertical mixing generated by amplified internal waves would produce cross-shelf ageostophic density current around the pycnocline. During the cruise in May 1999, on the other hand, the lower pycnocline was located offshore below the shelf break, and the internal wave motion was amplified just above the lower pycnocline. In this case, the offshore flow should be generated above the lower pycnocline, but vertical profiles of current velocity were not obtained because acoustic Doppler current profiler (ADCP) data were not available around the lower pycnocline.  相似文献   

10.
This paper illustrates the modulation of the eddy scale distribution due to superimposition of surface wave on only current flow. Time series data of three-dimensional velocity components were measured in a laboratory flume by a three-dimensional (3D) 16-MHz micro-acoustic Doppler velocimeter (Micro-ADV). The velocity time series of only current case and waves following the current were analysed to obtain the phase-averaged mean velocities, turbulent intensities, and Reynolds stress. The probability density function of phase-averaged stream-wise and vertical velocity fluctuations showed bimodal oscillations towards the free surface for higher frequency surface waves. It was revealed that surface waves along the current effectively decrease the intermittency of turbulence of the only current flow. Surface wave changed the intermittent structure of only current flow by modulation of the energy cascade mechanism of the only current flow by introduction of wave induced length scales. Also the scale of the finer dissipative eddies were prominently enhanced by the increase in surface wave frequency. Wavelet analysis of time series of velocity signals provided information on the eddy scale and their frequency of occurrence. It was found that the large eddies are carried by the crest regions of the progressive wave while the small scale eddies are carried by the trough regions.  相似文献   

11.
This paper describes a simple method for determining the wavelength of small amplitude waves under laboratory conditions where reflected wave components are present both with and without a mean current flow superimposed. It assumes a locally horizontal bed but requires no a priori assumption concerning the form of the dispersion relation with a coexisting current. Synchronous measurements of the water surface recorded along any straight line are analysed to yield Fourier coefficients at each location. It is then shown that for all practical conditions excluding a perfect standing wave, the average rate of change of wave phase in the chosen direction can be related directly to the component of incident wave number in that direction, irrespective of reflection coefficient or relative current strength. The technique has been applied to regular and bichromatic waves in a flume with an absorbing wave generator, and can also be applied in 3-D wave basins where waves and currents intersect at arbitrary angles. In combined wave–current experiments, by assuming the linear dispersion relation, it is also possible to estimate the effective current velocity.  相似文献   

12.
The method of asymptotic multiscale expansion is applied to determine the mean current velocity and density fields induced by a packet of internal waves. In the limiting case of a weakly non-linear plane wave, heat, salt, and impulse vertical transport is conditioned by the vertical component of the Stokes drift velocity, which is non-zero, when turbulent viscosity and diffusion are considered. As the wave period decreases, the wave fluxes of heat, salt, and impulse increase. In shallow waters, these fluxes become more vigorous and may be comparable to the respective turbulent flows or even to be more powerful. Translated by Vladimir A. Puchkin.  相似文献   

13.
This paper describes experiments on interfacial phenomena in a stratified shear flow having a sharp velocity shear at a density interface. The interface was visualized in vertical cross-section using dye, and the flow pattern was traced using aluminum powder. Two kinds of internal waves with different phase velocities and wave profiles were observed. They are here named p(positive)-waves and n(negative)-waves, respectively. By means of a two-dimensional visualization technique, the following facts have been confirmed regarding these waves. (1) The two kinds of waves propagate in the opposite direction relative to a system moving with the mean velocity at the interface, and their dispersion relations approximately agree with the two solutions of interfacial waves in a two-layer system of a linear basic shear flow. (2) The p-wave has sharp crests and flat troughs, and the n-wave has the reverse of this. This difference in wave profile is due to the finite amplitude effect. (3) Phase velocity of each wave lies within the range of the mean velocity profile, so that a critical layer exists and each wave has a “cat's eye” flow pattern in the vicinity of the critical layer, when observed in a system moving with the phase velocity. Consequently, these two waves are symmetrical with respect to the interface. The mechanisms of generation of these waves, and the entrainment process are discussed. It is inferred that when the “cat's eye” flow pattern is distorted and a stagnation point approaches the interface, entrainment in the form of a stretched wisp from the lower to the upper layer occurs for the p-wave, and from the upper to the lower layer for the n-wave.  相似文献   

14.
ADCP measurements of the velocity structure in the permanent thermocline at two locations over the continental slope in the Bay of Biscay are presented. The vertical variation of the contribution of the inertia-gravity waveband to the kinetic energy, vertical motion, and current shear are analysed. The semi-diurnal tides together with near-inertial waves appear to provide over 70% of the high-frequency kinetic energy (>1/3 cpd). Over the vertical range of the ADCP observations the phase of the harmonic M2 tide changes up to 155°, while the kinetic energy varies in the vertical by a factor of 3.8, showing the importance of the contribution of internal waves to the observed tidal motion. Both semi-diurnal internal tidal waves and near-inertial waves have a vertically restricted distribution of the variance of the horizontal and vertical velocity, as in internal wave beams. The short-term 14-day averaged amplitude and phase lag of the M2 tide shows large temporal changes, with a characteristic 40–45 day time scale. These changes are probably related to variations in generation sites and propagation paths of the internal tide, because of changes in the temperature and salinity stratification due to the presence of meso-scale eddies. The relatively large shear in the inertia-gravity wave band, mainly at near-inertial frequencies, supports low-gradient Richardson numbers that are well below 1 for nearly half of the time. This implies that the large shear may support turbulent mixing for a large part of the time.  相似文献   

15.
This paper focuses on the impact of periodic internal waves on the oxygen/hydrogen sulphide co-existence zone in the open Black Sea. The numerical model is based on a set of transport/diffusion equations governing the evolution of oxygen/hydrogen sulphide concentrations and considering the reaction between them. The wave velocity field is determined by solving a spectrum problem for preinertial period internal waves, using the characteristic vertical density profile for summertime. Via analysis of the model data, the influence of wave characteristics on the parameters of the O2/H2S co-existence zone has been assessed.Translated by Vladimir A. Puchkin.  相似文献   

16.
The paper addresses the plane linear problem on generation of an internal wave in a continuously stratified ocean by a moving atmospheric front. The front exhibits air pressure perturbations, as well as the field of tangential wind stress. In the frame of a model for the planetary atmospheric boundary layer, a relationship between the air pressure and wind fields has been derived, generalizing Ackerbloom's formulae for the case of a moving atmospheric anomaly. Using the Fourier transform, a relation has been obtained for the wave's signature in the wake of a moving atmospheric perturbation, and the respective analysis has been performed. Numerical estimates of the internal wave amplitudes have been acquired for the mean density stratification in the Kuril-Kamchatka region. Comparative analysis of the effectiveness of wave signature generation by the moving areas of surface pressures and tangential wind stresses has been carried out. It has been demonstrated that the latter field determines the effectiveness of baroclinic wave signature generation. Translated by Vladimir A. Puchkin.  相似文献   

17.
TOPEX/POSEIDON altimeter data are analyzed for the 8.5-year period November 1992 to May 2001 to investigate the sea surface height (SSH) and geostrophic velocity signatures of quasi-annual equatorially trapped Rossby waves in the Pacific. The latitudinal structures of SSH and both components of geostrophic velocity are found to be asymmetric about the equator across the entire Pacific with larger amplitude north of the equator. The westward phase speeds are estimated by several different methods to be in the range 0.5-0.6 m s−1. These observed characteristics are inconsistent with the classical theory for first vertical, first meridional mode equatorially trapped Rossby waves, which predicts a phase speed of about 0.9 m s−1 with latitudinally symmetric structures of SSH and zonal velocity and antisymmetric structure of meridional velocity. The observations are even less consistent with the latitudinal structures of SSH and geostrophic velocity components for other modes of the classical theory.The latitudinal asymmetries deduced here have also been consistently observed in past analyses of subsurface thermal data and altimeter data and have been variously attributed to sampling errors in the observational data, a superposition of multiple meridional Rossby wave modes, asymmetric forcing by the wind, and forcing by cross-equatorial southerly winds in the eastern Pacific. We propose a different mechanism to account for the observed asymmetric latitudinal structure of low-frequency equatorial Rossby waves. From the free-wave solutions of a simple 1.5-layer model, it is shown that meridional shears in the mean equatorial current system significantly alter the potential vorticity gradient in the central and eastern tropical Pacific. The observed asymmetric structures of sea surface height and geostrophic velocity components are found to be a natural consequence of the shear modification of the potential vorticity gradient. The mean currents also reduce the predicted westward phase speed of first meridional mode Rossby waves, improving consistency with the observations.  相似文献   

18.
In this paper we use an industrial Navier–Stokes (NS) solver to model high amplitude internal waves. The model simulates a fluid with a shallow upper layer with linear stratification and a deep lower layer with constant density, relevant to conditions in the ocean at several locations. Waves are generated by trapping a volume of light water behind a gate in one end of the numerical wave tank. The velocity and vorticity fields predicted by the model agree well with experiment. The high amplitude waves produced by the NS solver experience an upper bound on the velocity and a broadening in agreement with experiment. These effects have not previously been captured by theoretical models.  相似文献   

19.
Internal waves were observed by measuring temperature variations of several subsurface layers at the innermost part of Suruga Bay from December 1968 to October 1971. Spectral energy densities of temperature fluctuations were computed from the records of the measurements. In the shorter period range from one minute to one hour, peaks of energy density were found occasionally in the range shorter than the minimum of VÄisÄlÄ periods computed from the vertical distribution of water density. It has been generally understood, however, that the periods of internal waves in a stable stratum should be within the range between the inertial and VÄisÄlÄ periods.The measurements of tidal currents in the surface and lower layers, which were undertaken simultaneously with the temperature measurements, revealed that the short-period oscillations were associated with the increase of current velocity and of vertical shear of current at the pycnocline.It is considered that observed periods shorter than the minimum of VÄisÄlÄ period are not real but apparent periods due to the Doppler effect, because the waves are generated in the velocity shear of tidal current and the source is moving towards the station with the tidal current.  相似文献   

20.
Results of satellite observations of surface manifestations of internal waves in the Caspian Sea are presented. It is proposed that the possible cause of generation of the revealed internal waves is uninodal seiches with a nodal line located in the vicinity of the Apsheron Sill. The basic parameters of internal waves in the Caspian Sea, having the form of classical soliton trains, are determined. Seasonal variability of surface manifestations of the internal waves is revealed. The horizontal current velocity of the solitons is assessed. According to the estimation, velocity is about 0.2 m/s, which is sufficient for wind ripple modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号