首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Lateral cyclic load tests were performed on an aluminum model pile in dry sand. Two levels of loading were adopted to represent different service load conditions. The maximum number of loading cycles was 1,000. From the test results, it was found that the even though in the service load condition, the pile response was still affected by cyclic effects and a larger load level would produce more significant influence. In a global point of view, the lateral displacement and maximum moment increased with loading cycles, while the secant stiffness within a cycle decreased with cycles. The cyclic effect was more significant on the lateral displacement than on the moment. In a local point of view, cyclic loading would degrade the equivalent subgrade stiffness for the soil shallower than about seven times diameter. In addition, the secant subgrade stiffness within a cycle increased with loading cycles. Some experimental relationships of lateral pile response and loading cycles were built and compared with those in the literature.  相似文献   

2.
Behaviour of rigid piles in marine clays under lateral cyclic loading   总被引:1,自引:0,他引:1  
In the field of ocean engineering, pile foundations are extensively used in supporting several structures. In many cases, piles are subjected to significant lateral loads. The environment prevalent in the ocean necessitates the piles to be designed for cyclic wave loading. In this investigation, the behaviour of rigid piles under cyclic lateral loading has been studied through an experimental programme carried out on model piles embedded in a soft marine clay. Static tests were also conducted on piles embedded in a clay bed prepared at different consistencies suitable to field situations. Cyclic load was applied by using a specially designed pneumatic controlled loading system. Tests were conducted on model piles made of mild steel (MS), aluminium and PVC with wide variation in pile soil relative stiffness. For cyclic load levels less than 50% of static lateral capacity, the deflections are observed to increase with number of cycles and cyclic load level and stabilise after a certain number of cycles. For cyclic load levels greater than 50% of static lateral capacity, the deflections are observed to increase enormously with number of cycles. The results of post-cyclic load tests indicate that the behaviour under static load can improve for cyclic load levels less than 40% of the static lateral capacity. The variations in the load capacity due to cyclic loading are explained in terms of the changes in strength behaviour of soil.  相似文献   

3.
The scour hole around a pile will reduce the capacity of a laterally loaded pile. The strain wedge model is capable to derive a py curve for the analysis of a lateral loaded pile on a nonlinear Winkler foundation. To improve and extend the ability of the strain wedge method, a modified strain wedge (MSW) method is developed, in which a nonlinear lateral deflection of the pile is assumed to describe the varied soil strain distribution in the passive wedge. And then by treating the soil weight involved in the strain wedge as a vertical load at the bottom of the scour hole, an equivalent wedge depth is obtained to consider the effect of scour hole dimensions on the response of laterally loaded piles in sand. The validity of the MSW model is proved by comparisons with a centrifuge test without scour. And its applicability in the problem of a pile with scour is performed by a comparison with a model test and a FE analysis. The analysis shows the pile displacement at the pile head with scour can be obtained by multiplying the corresponding deflection without scour with an amplification factor related to scour depth at large load level.  相似文献   

4.
Behavior of Pile Group with Elevated Cap Subjected to Cyclic Lateral Loads   总被引:1,自引:1,他引:0  
The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by waves, tide water and winds, is of great importance to designing. A large-scale model test on 3×3 pile group with elevated cap subjected to cyclic lateral loads was performed in saturated silts. The preparation and implementation of the test is presented. Steel pipes with the outer diameter of 114 mm, thickness of 4.5 mm, and length of 6 m were employed as model piles. The pile group was cyclic loaded in a multi-stage sequence with the lateral displacement controlled. In addition, a single pile test was also conducted at the same site for comparison. The displacement of the pile cap, the internal forces of individual piles, and the horizontal stiffness of the pile group are presented and discussed in detail. The results indicate that the lateral cyclic loads have a greater impact on pile group than that on a single pile, and give rise to the significant plastic strain in the soil around piles. The lateral loads carried by each row of piles within the group would be redistributed with loading cycles. The lateral stiffness of the pile group decreases gradually with cycles and broadly presents three different degradation patterns in the test. Significant axial forces were measured out in some piles within the group, owing to the strong restraint provided by the cap, and finally lead to a large settlement of the pile group. These findings can be referred for foundation designing of offshore structures.  相似文献   

5.
In offshore engineering, pile foundations are commonly constructed in marine deposits to support various structures such as offshore platforms. These piles are subjected to lateral cyclic loading due to wind, wave action, and drag load from ships. In this paper, centrifuge model tests are conducted to investigate the response of the existing single piles due to lateral cyclic loading. The cyclic loading was simulated by a hydraulic actuator. It is found that the residual lateral movement and bending strain are induced in the existing pile after each loading–unloading cycle. This is because plastic deformation is induced in the soil surrounding the existing pile during each loading–unloading cycle. By increasing the applied loads during cyclic loading–unloading process, the lateral movements and bending strains induced in the pile head increase simultaneously. As the cyclic loading varies from 10 to 50 kN, the residual pile head movement increases from 40 to 154?mm, and the residual bending strain of the existing pile varies from 100 to 260 με. The ratio of residual to the maximum pile head movements varies from 0.17 to 0.22, while the ratio of residual to the maximum bending strains is in a range of 0.12–0.55.  相似文献   

6.
This paper presents a series of full-scale load tests on long bored piles instrumented with strain gauges along the shafts, including eight field tests of piles loaded to failure and one non-destructive pile load test. The load-displacement response, skin friction, end resistance, and the threshold of the pile-soil relative displacement for fully mobilizing skin resistance were discussed. A simple softening model was proposed to describe the degradation behavior of the skin friction along the pile-soil interface and the load-displacement relationship developed at the pile base. It is found that the shaft resistance degradation investigated in the non-destructive load test only occurs at a shallow depth, and the skin friction of deeper soil is not fully developed. However, unlike the results of the non-destructive load tests, the softening is accompanied by a reduction in skin friction and observed to be along the whole pile depth. The thresholds of pile-soil relative displacement for fully mobilizing skin resistances in different soils have been found to be in the range 0.6% to 2.4% of the pile diameter. Moreover, in practical applications, a bilinear model is assumed to be feasible in analyzing the load-settlement relationship developed at the end of non-destructive pile, whereas the load transmission curve of the soils below the pile base corresponds to a softening model in the field tests of piles loaded to failure.  相似文献   

7.
Slender piles embedded in soft ground or liquefied soil may buckle under vertical load. In this paper, both small- and large-scale model tests are conducted to investigate the buckling mechanisms of a slender pile and the lateral earth pressure acting on the pile. To observe the buckling of a slender pile, the strain-controlled loading method is adopted to apply a vertical load. When the two ends of a slender pile are hinged, the buckling mechanisms of small- and large-scale model tests are same. It should be noted that this applies only to a system with a small ratio of pile bending stiffness to soil bending stiffness. An applied vertical load increases with an increasing pile head settlement until it reaches the critical buckling load. By further increasing the pile head settlement, the measured load approaches the critical buckling load. In the large-scale model test, the measured lateral earth pressure (i.e., active and passive) acting on the slender pile varies linearly with the lateral pile displacement when the measured range is 3–5?m beneath the ground. A critical buckling calculation method has been adopted to compare with the conventional “m” method. The two-sided earth pressure calculation method can achieve more approximate results with the model test.  相似文献   

8.
由于桩-网复合地基的结构形式比较复杂,难以采用解析法求得其应力和位移。利用有限差分法对某桩-网法路堤进行了数值模拟,并取得了较好结果。计算结果显示,桩间土沉降线为悬链线,与现场位移监测结果吻合较好;桩身弯矩和桩土应力反映了桩-网复合地基的一些受力机理。分析认为,桩间土沉降较大的主要原因是由土体本身压缩及桩侧弯引起的。  相似文献   

9.
ABSTRACT

An investigation is made to present analytical solutions provided by a three-dimensional displacement approach for analysis of bucket foundations subjected to vertical and lateral loads in cohesive soils. The nonlinear vertical and lateral stiffness coefficients along the skirt of the bucket foundation in nonhomogeneous soil are presented using three-dimensional solutions for vertical and lateral loads and taking into account the dependence of stiffness coefficients on the shear strain. The vertical, lateral, and rocking stiffness coefficients on the base of the skirt of a bucket foundation are obtained from the solutions of hollow rigid cylindrical punch acting on the surface of a soil. The ultimate vertical stress of a soil under the base of a bucket foundation subjected to vertical and moment loads is presented analytically by considering only compression and ignoring tension on the base. The vertical and lateral yields along the skirt and the compression and shear failures on the base are taken into account in analysis of ultimate load capacities. Envelopes of the combined ultimate horizontal and moment load capacities of a bucket foundation in clay are shown. Relationships between ultimate lateral and moment load capacities and the embedment ratio (skirt length to diameter) are presented.  相似文献   

10.
为解决在钢管桩水平静载试验中更加高效、安全和准确进行桩身内力变形测试和分析的问题,文章针对打入钢管桩中的应变传感器和测斜管分别提出实用且可靠的安装、保护和测试方法;将该方法应用于西非某码头工程,在大直径钢管桩水平静载试验中进行应力和变形测试。研究结果表明,该安装和保护方法实用且可靠,可保证水平试验过程中钢管桩的内力变形情况得到如实测试和记录,对研究分析大直径钢管桩受水平荷载时桩身弯矩和水平位移的变化情况意义重大,可为类似项目的设计和施工提供参考。  相似文献   

11.
Full-rangenonlinearanalysisoffatiguebehaviorsofreinforcedconcretestructuresbyfiniteelementmethod¥SongYupu;ZhaoShunbo;WangRuim...  相似文献   

12.
孔德森  刘一  邓美旭  侯迪 《海洋工程》2021,39(1):100-111
采用有限元软件ABAQUS建立了海上风电单桩基础与土相互作用数值计算模型,将波浪、洋流及风荷载等效成双向对称循环荷载,研究了水平循环荷载作用下不同因素对桩身水平位移、剪力和弯矩的影响规律。研究表明,随着循环荷载比的增加,桩身位移零点和桩身剪力反弯点沿埋深逐渐下移,桩身弯矩最大值点位于浅层土体;不同荷载频率时桩身位移在零点以上变化较大,桩身弯矩随着频率的增加逐渐增大;单向循环荷载作用下桩身位移最大,双向对称循环荷载作用下桩身位移最小;壁厚较小时对桩身水平位移影响较大;在位移零点之上范围内可以考虑设计"上厚下薄"的钢管桩,以减小桩身水平位移;不同桩壁厚时桩身剪力曲线在埋深约6D处出现交点,且泥面处桩身弯矩变化不明显。  相似文献   

13.
海洋平台的隔水套管群桩与土共同作用研究是一个很复杂的课题,目前国内外研究资料甚少,因此在平台导管架设计中,一般不考虑隔水套管群桩承受水平力作用,这与实际不相符合。本文结合工程课题,在调查研究和模型试验的基础上,对隔水套管群桩在水平力作用下的工作性状与破坏机理、群桩的水平力及其主要影响因素、单桩与群桩情况下应力应变关系等方面进行较深入的研究;并提出砂土地基隔水套管群桩效应经验公式,弥补了现行计算方法的缺陷和不足。研究成果可供工程设计参考使用。  相似文献   

14.
A research on super-long piles has been primarily based on cast-in-place bored piles. In this article, field tests associated with selected measuring technologies were conducted on two super-long steel pipe piles in offshore areas to investigate the behaviors and performance of super-long steel pipe piles. The strain along the pile shaft was monitored by adopting the Brillouin optical time domain reflection and fiber Bragg grating techniques. Static load tests were also conducted on two test piles to determine the bearing capacities. In addition, the axial forces, relative displacements between piles and soils and pile shaft resistances were calculated based on the measured strain. According to the results of the static load tests, the ultimate bearing capacities of the two test piles are greater than 15,000 and 15,500 kN. Both of these values meet the design requirements. In addition, the two test piles can be treated as pure friction piles, and the load transfer mechanism and relationships between the pile shafts and relative displacements are also discussed. Finally, recommendations for practical engineering and significant conclusions are presented.  相似文献   

15.
In this study, the dynamic response of pile foundation in dry sandy soil excited by two opposite rotary machines was considered experimentally. A small scale physical model was manufactured to accomplish the experimental work in the laboratory. The physical model consists of two small motors supplied with eccentric mass (0.012?kg) and eccentric distance (20?mm) representing the two opposite rotary machines, an aluminum shaft as the pile, and a steel plate a pile cap. The experimental work was achieved taking the following parameters into considerations: pile embedment depth ratio (L/d, where L is the pile length and d is its diameter) and operating frequency of the rotary machines. All tests were conducted in medium dense fine sandy soil with 60% relative density. Twelve tests were performed to measure the change in load transferred through the pile’s tip to the underlying soil. To predict precisely the dynamic load that will be induced from the rotary machines, a mini load cell with a capacity of 100?kg was mounted between the aluminum plate (the machine base) and the steel plate (pile cap). The results revealed that, before machine operation, the pile tip load was approximately equal to the static load (machine and pile cap), whereas during machines’ operation, the pile tip load decreased for all embedment depth ratios and operating frequencies. This reduction was due to the action of skin friction that was mobilized along the pile during operation, and as a result the factor of safety against pile bearing failure increases. For all operating frequencies and pile lengths, the factor of safety against bearing failure increased during machines’ operation, where the pile tip load became less than its value before starting operation. During operation, the skin friction resistance mobilized along pile length led to decrease the bearing load.  相似文献   

16.
文中主要采用小比尺模型试验,研究了台风对海上风电单桩基础累积变形的影响。通过在模型槽中进行桩的水平静力和循环加载试验,得到了不同工况下桩的累积转角与循环加载次数之间的关系曲线。随后对曲线进行分析,拟合出无台风工况下累积转角的计算公式,然后运用叠加法,得出了有台风工况下累积转角的计算公式。试验结果表明,单独作用一种循环荷载时,桩的累积转角是循环次数的幂函数。台风引起的大幅值循环荷载会导致转角的陡升,且增加幅度与小幅值循环荷载的幅值负相关。当将台风荷载设置在加载过程的开头时,对于疲劳设计工况,台风荷载产生的累积转角占总的累积转角的99%以上,因而可以忽略小幅值循环荷载产生的累积转角,直接用台风荷载产生的累积转角代表桩的长期累积转角,实现简化设计。  相似文献   

17.
Most field tests are carried out using working piles for verification purposes in China, and loading tests are terminated before achieving true pile capacity. In this work, two full-scale destructive loading tests on tension piles instrumented with strain gauges were conducted to capture true pile capacity. The load-displacement response, load transfer, and threshold of the pile-soil relative displacement for fully mobilizing skin resistance in the uplift case were discussed. It was found that the shaft resistance degradation is observed to be along the pile depth with a reduction factor of 0.905 to 0.931, and the thresholds of pile-soil relative displacement for fully mobilizing skin resistance of the tension pile in different soils are found to be in the range 0.67% to 1.34% of the pile diameter. Based on the field test results, a simple softening model was proposed to describe the degradation behavior of skin friction along the pile-soil interface. Further study was conducted to assess the influence of the threshold of pile-soil relative displacement for fully mobilizing skin friction and the reduction factor on the skin friction. As to the analysis of the response of single pile subjected to tension load, a highly effective iterative computer program was developed using the proposed skin friction softening model. Comparisons of the load-settlement response for the well-instrumented tests were given to demonstrate the effectiveness and accuracy of the proposed simple method.  相似文献   

18.
An investigation was made to present analytical solutions of cyclic response to suction caisson subjected to inclined cyclic loadings in clay using a three-dimensional displacement approach. A model representing the relationship between vertical load and vertical displacement and that between lateral load and lateral displacement along the skirt of suction caisson subjected to cyclic loadings is proposed for overconsolidated clay. For the effect of vertical load on cyclic load capacity of suction caisson, using the Mindlin solution in the case of a vertical point load, the vertical stress of soil under the base of suction caisson is presented. For the stress state of soil beneath the base of suction caisson subjected to cyclic loading, the Mohr–Coulomb failure line and critical state line are presented and the relationship between total stress, effective mean principal stress, stress difference, and pore-pressure is elucidated. The comparison of results predicted by the present method for a suction caisson subjected to cyclic loadings in clay has shown good agreement with those obtained from field tests. Cyclic behavior of clay up to failure is made clear from the relationship between cyclic tensile load, vertical and lateral displacements, and rotation and that between depth, vertical, and lateral pressures.  相似文献   

19.
This paper presents an experimental study on the wave-induced behavior of monopiles. Laboratory experiments were conducted at the constant initial state of the sandy beds in a wave flume with a soil trench. The responses of the pile-head displacement, the pile strain and the pore water pressure on regular waves were investigated. The experimental results show that the monopiles lean along the direction of the wave progression and the inclination increases with the duration of wave actions. The pile-head displacement (consisting of the permanent displacement and cyclic displacement) increases as the wave height increases, especially more significantly for the permanent displacement. The head-fixed pile suffers from larger wave load than that on the head-free pile under the same wave condition. Increasing pile diameter or fixing fins on the monopile is effective in reducing the pore water pressure in the upper part of the bed and the permanent displacement.  相似文献   

20.
The shaft resistance of rock-socketed piles depends not only on the properties of its surrounding rock, but also on the radial force induced by the load imposed on the top of the pile. This paper deduced a plastic zone of rock around a single pile and obtained the shaft resistance of a rock-socketed pile based on the theories of cavity expansion and shear strength. The research results showed that the magnitude of the radial force in the socketed portion of a rock-socketed pile was related to the pile diameter, Poisson’s ratio, and properties of the surrounding rock. The influence area of rock decreased with increasing pile diameter. The radial force and lateral friction decreased with the increasing relative stiffnesses of the pile and rock. The radial stress on the elastic–plastic interface can be analytically determined based on the rock properties and depth. A field test was used to validate the proposed method, and a good agreement was obtained between the field data and predicted results of the proposed method. The research results in this paper are beneficial to guide actual practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号