首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
循环荷载下饱和粉土地基单桩水平承载特性试验研究   总被引:3,自引:0,他引:3  
在饱和粉土地基中进行了单桩水平静力和循环加载室内模型试验,实测得到静载和循环荷载下桩身弯矩与深度的关系、桩身最大弯矩与循环次数之间的关系等,推导出静载和循环荷载下粉土的p-y曲线,并结合API规范给出了针对粉土地基的相关参数。单桩循环加载试验结果表明,在一定深度内随着循环次数增大,粉土极限抗力显著减小,文中给出了不同循环次数和深度下粉土地基极限抗力的折减系数建议值。  相似文献   

2.
p-y 曲线法常用于水平静力受荷桩的分析,但海洋工程中的桩基除静力外还承受波、流等循环荷载作用,将静力 p-y曲线直接用于循环荷载下桩基的设计研究时,往往会产生误差。本文梳理了水平循环荷载作用下 p-y 曲线模型的研究成果, 按照得到循环 p-y 曲线的不同方式,将其分为总体调整法和参数修正法。在参数修正法中,根据修正时考虑的因素不同,分为考虑荷载特性的修正和考虑桩土相互作用的修正。最后通过对循环荷载作用下 p-y 曲线研究现状的总结对比,评价了不同方法的特点,讨论了当前研究存在的问题并给出了建议。  相似文献   

3.
海上风电工程主要受到风、波浪及洋流等产生的水平循环荷载作用,本文研究楔形单桩基础在水平循环荷载作用下的变形规律,并探讨不同循环荷载对变形规律产生的影响,以确保风电设施正常运行。通过数值模拟建立海上风电单桩-海床模型,考虑土体超孔隙水压力的演变规律及土体致密规律,土体采用UBC3D-PLM本构模型。本文重点讨论并分析在不同水平循环荷载作用下楔形单桩基础与等截面单桩基础的桩周土体位移、塑性应变及桩基累计转角位移之间的差异。研究结果表明:楔形结构会降低桩周土体位移及塑性应变,使得楔形单桩基础旋转中心位置更低,产生倾覆的可能更小,当循环荷载比为0.7时,累计转角位移能减少41.86%;循环荷载越大,楔形单桩基础水平受荷特性越好,累计位移减少量的增长率越高。研究成果可为今后海上风电基础的选择与设计提供参考。  相似文献   

4.
孔德森  刘一  邓美旭  侯迪 《海洋工程》2021,39(1):100-111
采用有限元软件ABAQUS建立了海上风电单桩基础与土相互作用数值计算模型,将波浪、洋流及风荷载等效成双向对称循环荷载,研究了水平循环荷载作用下不同因素对桩身水平位移、剪力和弯矩的影响规律。研究表明,随着循环荷载比的增加,桩身位移零点和桩身剪力反弯点沿埋深逐渐下移,桩身弯矩最大值点位于浅层土体;不同荷载频率时桩身位移在零点以上变化较大,桩身弯矩随着频率的增加逐渐增大;单向循环荷载作用下桩身位移最大,双向对称循环荷载作用下桩身位移最小;壁厚较小时对桩身水平位移影响较大;在位移零点之上范围内可以考虑设计"上厚下薄"的钢管桩,以减小桩身水平位移;不同桩壁厚时桩身剪力曲线在埋深约6D处出现交点,且泥面处桩身弯矩变化不明显。  相似文献   

5.
对于荷载控制和位移控制的桩循环荷载试验资料,文中分别建议了确定其承载力的位移条件。按这些位移条件,不仅所得模型桩同现场桩的承载力相当接近,而且荷载控制试验同位移控制试验的桩承载力也很吻合。此外,文中根据粘土中模型桩试验的分析并综合已发展的试验资料,对循环荷载下桩承载力提出了建议值。  相似文献   

6.
文章通过所建立的软粘土地基土体的循环累积变位分析模型,对大直径圆筒原型结构在波浪引起的水平向循环荷载作用下的基础稳定性进行研究,计算分析了简体随循环次数的变位状况和临界稳定状态时简体所受到的土压力分布以及临界稳定状态的判别参数c值。  相似文献   

7.
在长期风浪循环荷载作用下,海上风机单桩基础的基础阻尼会发生变化,疲劳寿命受到影响。对于此问题,目前还缺乏足够的研究。本文针对砂性土中海上风机单桩基础,基于Abaqus软件平台建立其疲劳损伤分析模型,桩-土相互作用采用非线性弹簧模拟,风和波浪荷载由FAST程序分别基于Kaimal谱和Jonswap谱计算,最后采用S-N曲线和Miner线性疲劳累积损伤原则计算单桩基础在风机运行和停机等不同工况下的疲劳损伤和疲劳寿命。结果表明:基础阻尼由2%减小到0.5%,海上风机单桩基础的疲劳寿命从27.3年减少到17.7年。在停机状态下,基础阻尼的减小对海上风机单桩基础的疲劳寿命的不利影响更为显著。在设计使用期内,额定风速附近工况导致的疲劳损伤较大。在海上风机单桩基础疲劳设计时,考虑长期循环荷载作用下基础阻尼减小的不利影响是非常有必要的。  相似文献   

8.
桶形基础越来越广泛应用于海洋油气平台、海上风机、输电塔、防波堤等构筑物,研究其循环承载特性对以上构筑物服役安全性具有重要意义。通过在软黏土中开展单桶循环上拔以及小间距群桶循环上拔和循环下压超重力离心模型试验,发现循环上拔地基破坏模式为整体破坏,裂隙均呈现圆弧形,循环下压呈现渐进式整体破坏模式,下压过程的挤压作用可明显减小桶周泥面高度,导致其承载力降低。模拟双向受荷工况的循环上拔试验在5次加载后荷载弱化系数开始趋于稳定,远早于单向受荷工况;单向和双向受荷工况循环上拔荷载弱化系数残余稳定值分别为0.31和0.32,循环下压荷载弱化系数最小值为0.35,表明不同加载方式竖向循环荷载作用下,此三者大小均可用软黏土地基灵敏度倒数预估。  相似文献   

9.
港口靠船桩工作性状计算的双参数法   总被引:8,自引:0,他引:8  
谢耀峰 《海洋工程》2002,20(2):38-42,48
港口靠船桩是承受重复性荷载或多循环荷载的一种横向承载桩。双参数法能较好地描述靠船桩 (单桩、群桩 )的桩土工作性状。用双参数法进行计算时 ,所给的地面条件必须由重复荷载或多循环荷载作用下实测出来。根据现场试桩资料 ,标定桩土参数 ,即k =mx1/n的指数l/n、桩土相对柔度系数α、桩土综合刚度EI等值 ,可以用来设计试桩附近局部地区同类条件下的其它长桩。对于没有进行试桩的某些工程 ,可以联合运用双参数法和p -y曲线法进行桩的分析  相似文献   

10.
文章回顾了目前风电大直径单桩基础水平受荷静力响应分析的p-y 曲线规范方法,结合现有成果探讨了该方法会高估桩侧初始刚度并低估极限承载力的原因。为解决其不足,文章介绍了一种基于土体应力应变关系的p-y 曲线方法,它不但能较为正确地反映桩侧刚度,还能跟踪桩周土体的平均塑性应变的累积。在此基础上探讨了桩基在循环疲劳状态下的规范方法,由于其无法精确反映循环次数和幅值对于桩侧刚度弱化的影响,因此,进一步介绍了基于静力p-y 骨干曲线的滞回曲线构造方法,最后,基于上述分析方法,提出了一些大直径单桩优化设计的建议。  相似文献   

11.
Modified suction caissons (MSCs) acting as offshore wind turbine foundations will generate the accumulated rotation under cyclic loading resulted from waves. The accumulated rotation and the range of soil deformation around the MSC under long-term cyclic wave loading were studied using 3-D numerical simulations. The Morison equation was adopted to calculate the wave loadings. It was found that the MSC accumulated rotation increases linearly with the increase of the logarithm of cyclic number. The normalized expression was proposed to reflect the relationship between the accumulated rotation and cyclic number. The soil deformation range around the MSC increases when increasing the cyclic number and loading amplitude. It can also be concluded that the accumulated rotation increases rapidly with this change of excess pore pressure in the first 4000 cycles. The responses of the MSC to wave and wind loads were also investigated. Results show that the accumulated rotation of the MSC under both wave and wind loadings is larger than that under the wave loading only.  相似文献   

12.
Behaviour of rigid piles in marine clays under lateral cyclic loading   总被引:1,自引:0,他引:1  
In the field of ocean engineering, pile foundations are extensively used in supporting several structures. In many cases, piles are subjected to significant lateral loads. The environment prevalent in the ocean necessitates the piles to be designed for cyclic wave loading. In this investigation, the behaviour of rigid piles under cyclic lateral loading has been studied through an experimental programme carried out on model piles embedded in a soft marine clay. Static tests were also conducted on piles embedded in a clay bed prepared at different consistencies suitable to field situations. Cyclic load was applied by using a specially designed pneumatic controlled loading system. Tests were conducted on model piles made of mild steel (MS), aluminium and PVC with wide variation in pile soil relative stiffness. For cyclic load levels less than 50% of static lateral capacity, the deflections are observed to increase with number of cycles and cyclic load level and stabilise after a certain number of cycles. For cyclic load levels greater than 50% of static lateral capacity, the deflections are observed to increase enormously with number of cycles. The results of post-cyclic load tests indicate that the behaviour under static load can improve for cyclic load levels less than 40% of the static lateral capacity. The variations in the load capacity due to cyclic loading are explained in terms of the changes in strength behaviour of soil.  相似文献   

13.
A 1-g model experimental study was conducted to investigate the accumulated rotations and unloading stiffness of bucket foundations in saturated loose sand. One-way horizontal cyclic loading was applied to model bucket foundations with embedment ratios 0.5 and 1.0. Up to 104 cycles of loading were applied at a frequency of 0.2 Hz varying load amplitudes. The accumulated rotation of the bucket foundations increased with the number of cycles and the load amplitudes. Empirical equations were proposed to describe the accumulated rotation of the foundations. The unloading stiffness of foundations increased with the number of cycles but decreased with an increase in load amplitude. The initial unloading stiffness of L/D = 1.0 (L is skirt length; D is foundation diameter) was approximately twice that of L/D = 0.5. Excess pore water pressure difference of 50% was observed between L/D = 0.5 and 1.0. The suction and static capacity of the bucket increased with increase of bucket embedment ratio with a difference of 69.5% and 73.6% respectively between L/D = 0.5 and 1.0.  相似文献   

14.
A series of 1 g model tests was conducted to investigate the accumulated vertical pullout displacement and unloading stiffness of bucket foundations embedded in dry and saturated sands. The foundations were subjected to vertical pullout cyclic loading with different load amplitudes. Cyclic load was applied up to 104 cycles. Test results showed that the accumulated vertical pullout displacement increased with the increase in the number of load cycles and cyclic load amplitudes. The unloading stiffness of the bucket foundations decreased with the increase in load amplitude and number of cycles. Empirical equations were proposed based on the test results to evaluate the accumulated vertical pullout displacement and unloading stiffness of the bucket foundations in saturated sand. These equations can be used for the preliminary design of single or tripod bucket foundations.  相似文献   

15.
Lateral cyclic load tests were performed on an aluminum model pile in dry sand. Two levels of loading were adopted to represent different service load conditions. The maximum number of loading cycles was 1,000. From the test results, it was found that the even though in the service load condition, the pile response was still affected by cyclic effects and a larger load level would produce more significant influence. In a global point of view, the lateral displacement and maximum moment increased with loading cycles, while the secant stiffness within a cycle decreased with cycles. The cyclic effect was more significant on the lateral displacement than on the moment. In a local point of view, cyclic loading would degrade the equivalent subgrade stiffness for the soil shallower than about seven times diameter. In addition, the secant subgrade stiffness within a cycle increased with loading cycles. Some experimental relationships of lateral pile response and loading cycles were built and compared with those in the literature.  相似文献   

16.
Behavior of Pile Group with Elevated Cap Subjected to Cyclic Lateral Loads   总被引:1,自引:1,他引:0  
The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by waves, tide water and winds, is of great importance to designing. A large-scale model test on 3×3 pile group with elevated cap subjected to cyclic lateral loads was performed in saturated silts. The preparation and implementation of the test is presented. Steel pipes with the outer diameter of 114 mm, thickness of 4.5 mm, and length of 6 m were employed as model piles. The pile group was cyclic loaded in a multi-stage sequence with the lateral displacement controlled. In addition, a single pile test was also conducted at the same site for comparison. The displacement of the pile cap, the internal forces of individual piles, and the horizontal stiffness of the pile group are presented and discussed in detail. The results indicate that the lateral cyclic loads have a greater impact on pile group than that on a single pile, and give rise to the significant plastic strain in the soil around piles. The lateral loads carried by each row of piles within the group would be redistributed with loading cycles. The lateral stiffness of the pile group decreases gradually with cycles and broadly presents three different degradation patterns in the test. Significant axial forces were measured out in some piles within the group, owing to the strong restraint provided by the cap, and finally lead to a large settlement of the pile group. These findings can be referred for foundation designing of offshore structures.  相似文献   

17.
基于 SWAN 波浪传播模型建立包含风暴潮与天文潮耦合传播的台风浪数值模型,通过多次台风引起的波浪模拟,证实该模型可适用于浙江沿海.将1949年以来登陆我国大陆沿海最强的“5612”号台风作为典型的超强台风,计算了超强台风在浙北至浙南3个不同地点登陆遭遇天文潮高潮位时产生的沿海波高过程.结果显示,在开敞海区,登陆点南侧附近及其以北沿海,台风登陆时过程最大有效波高与风暴高潮位基本同时出现,而在登陆点以南远区的沿海海域,最大有效波高出现在登陆前的一个高潮位附近;超强台风作用下浙江陆域沿海离岸近1 km 范围内有效波高可达4耀6 m.这些结论对海堤工程设计和防灾减灾具有重要意义.  相似文献   

18.
The bearing behavior of suction caissons supporting offshore wind turbines under two-way cyclic lateral loading and dead load in clay was investigated with consideration of soil strength degradation and adhesive interface friction between caisson walls and heterogeneous clay using the finite-element package ABAQUS.An ABAQUS built-in user subroutine was programmed to calculate the adhesive interface friction between clay and caisson walls.The results of parametric studies showed that the degradation of bearing capacity could be aggravated by the decrease of the aspect ratio.The offset between the rotation point of the soil inside the caisson and the central axis of the caisson increased with the increasing vertical load and number of cycles.The linearly increasing strength profile and adhesive interface led to the formation of an inverted spoon failure zone inside the caisson.The settlement-rotation curves in each cycle moved downwards with increasing number of cycles due to the soil strength degradation.  相似文献   

19.
This article presents a procedure to calculate the bearing capacity of suction anchors subjected to inclined average and cyclic loads at the optimal load attachment point using the undrained cyclic shear strength of soft clays based on the failure model of anchors proposed by Andersen et al. The constant average shear stress of each failure zone around an anchor is assumed and determined based on the static equilibrium condition for the procedure. The cyclic shear strength of each failure zone is determined based on the average shear stress. The cyclic bearing capacity is finally determined by limiting equilibrium analyses. Thirty-six model tests of suction anchors subjected to inclined average and cyclic loads were conducted, which include vertical and lateral failure modes. Model test results were predicted using the procedure to verify its feasibility. The average relative error between predicted and test results is 1.7%, which shows that the procedure can be used to calculate the cyclic bearing capacity of anchors with optimal loading. Test results also showed that the anchor was still in vertical failure mode under combined average and cyclic loads if an anchor was in vertical failure mode under static loads. The anchor failure would depend on the vertical resistance degradation under cyclic loads if an anchor was in lateral failure mode under static loads. Cyclic bearing capacities associated with the number of load cycles to failure of 1000 were about 75% and 80% of the static bearing capacity for vertical failure anchors and lateral failure anchors, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号