首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infiltration into frozen soil is a key hydrological process in cold regions. Although the mechanisms behind point‐scale infiltration into frozen soil are relatively well understood, questions remain about upscaling point‐scale results to estimate hillslope‐scale run‐off generation. Here, we tackle this question by combining laboratory, field, and modelling experiments. Six large (0.30‐m diameter by 0.35‐m deep) soil cores were extracted from an experimental hillslope on the Canadian Prairies. In the laboratory, we measured run‐off and infiltration rates of the cores for two antecedent moisture conditions under snowmelt rates and diurnal freeze–thaw conditions observed on the same hillslope. We combined the infiltration data with spatially variable data from the hillslope, to parameterise a surface run‐off redistribution model. We used the model to determine how spatial patterns of soil water content, snowpack water equivalent (SWE), and snowmelt rates affect the spatial variability of infiltration and hydrological connectivity over frozen soil. Our experiments showed that antecedent moisture conditions of the frozen soil affected infiltration rates by limiting the initial soil storage capacity and infiltration front penetration depth. However, shallow depths of infiltration and refreezing created saturated conditions at the surface for dry and wet antecedent conditions, resulting in similar final infiltration rates (0.3 mm hr?1). On the hillslope‐scale, the spatial variability of snowmelt rates controlled the development of hydrological connectivity during the 2014 spring melt, whereas SWE and antecedent soil moisture were unimportant. Geostatistical analysis showed that this was because SWE variability and antecedent moisture variability occurred at distances shorter than that of topographic variability, whereas melt variability occurred at distances longer than that of topographic variability. The importance of spatial controls will shift for differing locations and winter conditions. Overall, our results suggest that run‐off connectivity is determined by (a) a pre‐fill phase, during which a thin surface soil layer wets up, refreezes, and saturates, before infiltration excess run‐off is generated and (b) a subsequent fill‐and‐spill phase on the surface that drives hillslope‐scale run‐off.  相似文献   

2.
The soil freeze–thaw controls the hydrological and carbon cycling and thus affects water and energy exchanges at land surface. This article reported a newly developed algorithm for distinguishing the freeze/thaw status of surface soil. The algorithm was based on information from Advanced Microwave Scanning Radiometer Enhanced (AMSR‐E) which records brightness temperature (Tb) in the afternoon and after midnight. The criteria and discriminant functions were obtained from both radiometer observations and model simulations. First of all, the microwave radiation from freeze–thaw soil was examined by carrying out experimental measurements at 18·7 and 36·5 GHz using a Truck‐mounted Multi‐frequency Microwave Radiometer (TMMR) in the Heihe River of China. The experimental results showed that the soil moisture is a key component that differentiates the microwave radiation behaviours during the freeze–thaw process, and the differences in soil temperature and emissivity between frozen and thawed soils were found to be the most important criteria. Secondly, a combined model was developed to consider the impacts of complex ground surface conditions on the discrimination. The model simulations quite followed the trend of in situ observations with an overall relation coefficient (R) of approximately 0·88. Finally, the ratio of Tb18·7H (horizontally polarized Tb at 18·7 GHz) to Tb36·5V was considered primarily as the quasi‐emissivity, which is more reasonable and explicit in measuring the microwave radiation changes in soil freezing and thawing than the spectral gradient. By combining Tb36·5V to indicate the soil temperature variety, a Fisher linear discrimination analysis was used to establish the discriminant functions. After being corrected by TMMR measurements, the new discriminant algorithm had an overall accuracy of 86% when validated by 4‐cm soil temperature. The multi‐year discriminant results also provided a good agreement with the classification map of frozen ground in China. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Freezing characteristics were investigated for a sedge covered floating fen and spruce covered swamp located beside a shallow lake in the Western Boreal Forest of Canada. Thermal properties were measured in situ for one freeze‐thaw cycle, and for two freeze‐thaw cycles in laboratory columns. Thermal conductivity and liquid water content were related to a range of subsurface temperatures above and below the freezing thresholds, and clearly illustrate hysteresis between the freezing and thawing process. Thermal hysteresis occurs because of the large change in thermal conductivity between water and ice, high water content of the peat, and wide variation in pore sizes that govern ice formation. Field and laboratory results were combined to develop linear freezing functions, which were tested in a heat transfer model. For surface temperature boundary conditions, subsurface temperatures were simulated for the over‐winter period and compared with field measurements. Replication of the transient subsurface thermal regime required that freezing functions transition gradually from thawed to frozen state (spanning the ?0·25 to ?2 °C range) as opposed to a more abrupt step function. Subsurface temperatures indicate that the floating fen underwent complete phase change (from water to ice) and froze to approximately the same depth as lake ice thickness. Therefore, the floating fen peatland froze as a ‘shelf’ adjacent to the lake, whereas the spruce covered swamp had a higher capacity for thermal buffering, and subsurface freezing was both more gradual and limited in depth. These thermal properties, and the timing and duration of frozen state, are expected to control the interaction of water and nutrients between surface water and groundwater, which will be affected by changes in air temperature associated with global climate change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and eco- system, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisti- cated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demon- strates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle char- acteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.  相似文献   

6.
Freezing and thawing processes at the soil surface play an important role in determining the nature of Tibetan land and atmosphere interactions. In this study, land surface water and heat exchanges under different freezing and thawing conditions over the central Tibetan Plateau were investigated using observations from the Coordinated Enhanced Observing Period/Asia‐Australia Monsoon Project on the Tibetan Plateau, and the Simultaneous Heat and Water Model. During the freezing and thawing stages, significant diurnal variation of soil temperature resulted in a diurnal cycle of unfrozen water content at the surface. Radiation and energy components and evapotranspiration averaged over four freeze/thaw stages also changed diurnally. On average, the surface albedo (0·68) during the completely frozen stage was sharply higher than those during the freezing, thawing, and completely thawed stages due to the snow cover. The Bowen ratios were 3·1 and 2·5 in the freezing and thawing stages, respectively, but the ratio was only 0·5 in the completely thawed stage. Latent heat flux displayed distinctly better correlation with unfrozen soil water content during the freezing and thawing stages than during the completely frozen and thawed stages. This implies that the diurnal cycle of unfrozen soil water, resulting from diurnal freeze/thaw cycles at the surface, has a significant impact on latent heat flux. A surface energy imbalance problem was encountered, and the possible sources of error were analysed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   

8.
Many undertakings have used either a single value or a narrow window of temperatures as a threshold for the freezing of water within rock. These temperatures vary from 0 to ?5 C, with most windows being in the range ?1 to ?4 C. Based on thermal data, these thresholds are commonly used to ‘count’ the number of freeze–thaw events as a basis for determining freeze–thaw weathering. Data collected from northern Canada indicate that the temperature at which freezing occurs can vary substantially, even for the same site. Using exotherm and zero curtain observations from bricks, at angles of 90 and 45, aligned to the four cardinal aspects, the various temperatures at which water froze are shown. Bricks on the north and east commonly did exhibit freezing, based on exotherms, within the window ?1 to ?5 C, while data for the south and west aspects showed substantial variation, with freezes sometimes between ?6·4 and ?8·9 C. The data were evaluated for evidence of zero curtain effects (indicative of water freezing), but no unequivocal events could be found, and it is suggested that, at the scale of observation used here, they are unlikely. It would therefore appear that the use of thermal thresholds may not be meaningful for evaluation of freeze–thaw events. The available data also indicate many instances when temperatures went substantially sub‐zero (e.g. ?20 C) and yet no indication of water freezing occurred – most likely because there was no water available to freeze. This indicates that any form of freeze–thaw event counting, in the absence of some indicator of the presence of water and that it actually froze, is flawed, as thermal conditions alone are not adequate to indicate the occurrence or not of actual freeze–thaw weathering events. These data suggest that evaluations of freeze–thaw occurrence based simply on thermal thresholds may be substantially in error. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Width and temperature of rock joints were automatically monitored in the Japanese Alps. Three years of monitoring on a sandstone rock face shows two seasonal peaks of joint widening in autumn and spring. The autumn events are associated with short‐term freeze–thaw cycles, and the magnitude of widening reflects the freezing intensity and water availability. The short‐term freezing can produce wedging to a depth of at least 20 cm. The spring events follow a rise in the rock surface temperature to 0 °C beneath the seasonal snowcover, and likely originate from refreezing of meltwater entering the joint. Some of these events contribute to permanent enlargement of the joint. Two other joints on nearby rock faces experience only sporadic widening accompanying freeze–thaw cycles and insignificant permanent enlargement. Observations indicate that no single thermal criterion can explain frost weathering. The temperature range at which wedging occurs varies with the bedrock conditions, water availability and duration of freezing. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
The numerical model COUP 2D simulates the hydrological coupling between hillslopes and the river channel during a rainfall event. In order to test the numerical model, a 1:100 scaled laboratory flume which was modified to incorporate lateral hillslope elements, was used to run a series of experiments in which hillslope angle, channel angle, hillslope discharge and channel discharge were the varying parameters. Overall, there were 18 different experimental configurations with three replicates carried out for each condition, leading to a total of 54 experiments. These conditions were then used to parameterize and run COUP 2D. Internal model outputs of flow depth and flow velocity at four cross‐sections in the channel were compared to the measurements made in the physical model for the same parameter conditions. Statistical comparisons of the measured and modelled data were carried out for each experiment and across all experiments, using two goodness‐of‐fit measures—root mean square error and Nash–Sutcliffe coefficient of efficiency—in order to assess the performance of the model over an entire simulation as well as over all the simulations. The main effects on the goodness‐of‐fit measures for flow depth of each experimental variable, as well as the interactions between variables, were evaluated using statistical modelling. The results show that the model captures flow‐depth variations in response to changing channel and hillslope parameters. Statistical modelling suggests that the main effects on model error are cross‐section position, channel angle and channel discharge. Significant interactions also occur between all the channel variables and between the channel variables and hillslope discharge. The results of the testing procedure have significant implications for the consideration of different model components and for the interaction between data‐ and model evaluation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
For the simulation of winter hydrological processes a gap in the availability of flow models existed: one either had the choice between (1) physically-based and fully-integrated, but computationally very intensive, or (2) simplified and compartamentalized, but computationally less expensive, simulators. To bridge this gap, we here present the integration of a computationally efficient representation of winter hydrological processes (snowfall, snow accumulation, snowmelt, pore water freeze–thaw) in a fully-integrated surface water-groundwater flow model. This allows the efficient simulation of catchment-scale hydrological processes in locations significantly influenced by winter processes. Snow accumulation and snowmelt are based on the degree-day method and pore water freeze–thaw is calculated with a vertical heat conduction approach. This representation of winter hydrological processes is integrated into the fully-coupled surface water-groundwater flow model HydroGeoSphere. A benchmark for pore water freeze–thaw as well as two illustrative examples are provided.  相似文献   

12.
以4榀相同特性的带构造柱砖墙为研究对象,分别进行0、40、80及120次冻融循环试验和低周反复荷载试验,来研究冻融环境对砌体结构抗震性能的影响。试验结果表明:随着冻融循环次数的增加,裂缝出现更早,发展更为迅速,破坏程度更加严重,承载力、刚度、耗能、延性均出现明显的衰减。本文从宏观和微观两个方面对遭受冻融作用砖墙进行了损伤机理的分析。  相似文献   

13.
Understanding how rivers respond to changes in land cover, climate, and subsurface conditions is critical for sustainably managing water resources and ecosystems. In this study, long‐term hydrologic, climate, and satellite data (1973–2012) from the Upper Tahe River watershed (2359 km2) in the Da Hinggan Mountains of northeast China were analysed to quantify the relative hydrologic effects of climate variability (system input) and the combined influences of forest cover change and permafrost thaw (system characteristics) on average annual streamflow (system response) using 2 methods: the sensitivity‐based method and the Kendall–Theil robust line method. The study period was subdivided into a forest harvesting period (1973–1987), a forest stability period (1988–2001), and a forest recovery period (2002–2012). The results indicated that the combined effects of forest harvesting and permafrost thaw on streamflow (+ 47.0 mm) from the forest harvesting period to the forest stability period was approximately twice as large as the effect associated with climate variability (+20.2 mm). Similarly, from the forest stability period to the forest recovery period, the decrease in average annual streamflow attributed to the combined effects of forest recovery and permafrost thaw (?38.0 mm) was much greater than the decrease due to climate variability (?22.2 mm). A simple method was used to separate the distinct impacts of forest cover change and permafrost thaw, but distinguishing these influences is difficult due to changes in surface and subsurface hydrologic connectivity associated with permafrost thaw. The results highlight the need to consider multiple streamflow drivers in future watershed and aquatic ecosystem management. Due to the ecological and hydrological susceptibility to disturbances in the Da Hinggan Mountains, forest harvesting will likely negatively impact ecohydrological processes in this region, and the effects of forest species transition in the forest recovery process should be further investigated.  相似文献   

14.
Discussions regarding weathering in cold environments generally centre on mechanical processes and on the freeze–thaw mechanism in particular. Despite the almost ubiquitous assumption of freeze–thaw weathering, unequivocal proof of interstitial rock water actually freezing and thawing is singularly lacking. Equally, many studies have used the crossing of 0 °C, or values close to that, as the basis for determining the number of ‘freeze–thaw events’. In order to assess the weathering regime at a site in northern Canada, temperatures were collected at the surface, 1 cm and 3 cm depth for sets of paving bricks, with exposures both vertical and at 45°, orientated to the four cardinal directions. Temperature data were collected at 1 min intervals for 1 year. These data provide unequivocal proof for the occurrence of the freezing and thawing of water on and within the rock (freeze–thaw events). The freeze event is evidenced by the exotherm associated with the release of latent heat as the water actually freezes. This is thought to be the ?rst record of such events from a ?eld situation. More signi?cantly, it was found that the temperature at which freezing occurred varied signi?cantly through the year and that on occasion the 1 cm depth froze prior to the rock surface. The change in freeze temperature is thought to be due to the chemical weathering of the material (coupled with on‐going salt inputs via the melting of snowfall), which, it is shown, could occur throughout the winter despite air temperatures down to ?30 °C. This ?nding regarding chemical weathering is also considered to be highly signi?cant. A number of thermal stress events were also recorded, suggesting that rock weathering in cold regions is a synergistic combination of various chemical and mechanical weathering mechanisms. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The increase of surface runoff at the plot scale caused by soil water repellency is a generally accepted phenomenon. However, to improve the understanding of the effect of water repellency on runoff at the catchment scale, spatio‐temporal dynamics of water repellency have to be analysed in more detail. The experimental setup of this study allowed the investigation of the relationship between water repellency and runoff generation on Quaternary and Tertiary sandy substrates while ensuring similar conditions in terms of terrain characteristics, meteorological and vegetation‐free conditions on both areas. Measurements of water drop penetration time and contact angle were carried out over a period from September 2003 to December 2005. Spatial variability of actual soil water repellency was related to heterogeneity of substrate and geomorphologic units, variations in time were related with the seasons and their meteorological conditions. To relate variable degrees of actual water repellency to surface runoff generation, both variables were measured in parallel at the plot scale (1 m × 1 m) and at the hillslope scale from September 2004 to December 2005. Soil water repellency of the Tertiary sands showed a temporal variability depending on the season, with the highest degree during summer and autumn. Variation of hydrophobicity between the seasons caused higher runoff coefficients in summer and autumn. Spatial heterogeneity of the soil water repellency revealed lower values in fine‐textured erosion rills and higher values for interrills and top areas. The measured runoff coefficients decreased from the scale of microplots to the hillslope scale due to infiltration in hydrophilic rills on the hillslope. The results suggest that improved hydrological modelling approaches on water‐repellent soils can be based on a geomorphological subdivision of the catchment area and seasonally varying infiltration parameters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Frozen soil plays an important role on the stability of railway and highway subgrade in cold regions. However, the dynamic properties of frozen soil subjected to the freeze–thaw cycles have rarely been investigated. In this study, cryogenic cyclic triaxial tests were conducted on frozen compacted sand from Nehe, Heilongjiang Province in China which was subjected to the closed-system freeze–thaw cycles. A modified Hardin hyperbolic model was suggested to describe the backbone curves. Then, dynamic shear modulus and damping ratio versus cyclic shear strain were analyzed under the different freeze–thaw cycles, temperatures, initial water contents, loading frequencies and confining pressures. The results indicate that the freeze–thaw process plays a significant effect on the dynamic shear modulus and damping ratio, which slightly change after one freeze–thaw cycle. Dynamic shear modulus increases with increasing initial water content, temperature, loading frequency and confining pressure. Damping ratio increases with increasing initial water content, while decreases with increasing temperature and loading frequency. The effect of confining pressure on the damping ratio was found not significant. Furthermore, the empirical expressions were formulated to estimate dynamic shear modulus and damping ratio of the frozen compacted sand. The results provide guidelines for evaluating the infrastructures in cold regions.  相似文献   

17.
Runoff from boreal hillslopes is often affected by distinct soil boundaries, including the frozen boundary and the organic‐mineral boundary (OMB), where highly porous and hydraulically conductive organic material overlies fine‐grained mineral soils. Viewed from the surface, ground cover appears as a patchwork on sub‐meter scales, with thick, moss mats interspersed with lichen‐covered, silty soils with gravel inclusions. We conducted a decameter‐scale subsurface tracer test on a boreal forest hillslope in interior Alaska to quantify locations and mechanisms of transport and storage in these soils, focusing on the OMB. A sodium bromide tracer was added as a slug addition to a pit and sampled at 40 down‐gradient wells, screened primarily at the OMB and within a 7 × 12 m well field. We maintained an elevated head in the injection pit for 8.5 hr to simulate a storm. Tracer breakthrough velocities ranged from <0.12 to 0.93 m hr?1, with the highest velocities in lichen‐covered soils. After 12 hr and cessation of the elevated head, the tracer coalesced and was only detected in thick mosses at a trough in the OMB. By 24 hr, approximately 17% of the tracer mass could be accounted for. The majority of the mass loss occurred between 4 and 12 hr, while the tracer was in contact with lichen‐covered soils, which is consistent with tracer transport into deeper flow paths via preferential flow through discrete gravelly areas. Slow breakthroughs suggest that storage and exchange also occurred in shallow soils, likely related to saturation and drainage in fine‐grained mineral soils caused by the elevated hydraulic head. These findings highlight the complex nature of storage and transmission of water and solutes from boreal hillslopes to streams and are particularly relevant given rapid changes to boreal environments related to climate change, thawing permafrost and increasing fire severity.  相似文献   

18.
Decoupling the impacts of climate and tectonics on hillslope erosion rates is a challenging problem. Hillslope erosion rates are well known to respond to changes in hillslope boundary conditions (e.g. channel incision rates) through their dependence on soil thickness, and precipitation is an important control on soil formation. Surprisingly though, compilations of hillslope denudation rates suggest little precipitation sensitivity. To isolate the effects of precipitation and boundary condition, we measured rates of soil production from bedrock and described soils on hillslopes along a semi‐arid to hyperarid precipitation gradient in northern Chile. In each climate zone, hillslopes with contrasting boundary conditions (actively incising channels versus non‐eroding landforms) were studied. Channel incision rates, which ultimately drive hillslope erosion, varied with precipitation rather than tectonic setting throughout the study area. These precipitation‐dependent incision rates are mirrored on the hillslopes, where erosion shifts from relatively fast and biologically‐driven to extremely slow and salt‐driven as precipitation decreases. Contrary to studies in humid regions, bedrock erosion rates increase with precipitation following a power law, from ~1 m Ma?1 in the hyperarid region to ~40 m Ma?1 in the semi‐arid region. The effect of boundary condition on soil thickness was observed in all climate zones (thicker soils on hillslopes with stable boundaries compared to hillslopes bounded by active channels), but the difference in bedrock erosion rates between the hillslopes within a climate region (slower erosion rates on hillslopes with stable boundaries) decreased as precipitation decreased. The biotic‐abiotic threshold also marks the precipitation rate below which bedrock erosion rates are no longer a function of soil thickness. Our work shows that hillslope processes become sensitive to precipitation as life disappears and the ability of the landscape to respond to tectonics decreases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Different hydraulic gradients, especially due to seepage or drainage, at different locations on a hillslope profile may have a profound effect on the dominant erosion processes. A laboratory study was designed to simulate hillslope processes and quantify effects of surface hydraulic gradients on erosion for a Glynwood clay loam soil (fine, illitic, mesic Aquic Hapludalf). A 5 m long, 1·2 m wide soil pan was used at 5 and 10 per cent slopes with an external watering tube to vary the soil bed's hydrological conditions. Different combinations of slope steepness with seepage or drainage gradients were used to simulate the hydrologic conditions on a 5 m segment of a hillslope profile. Runoff samples were taken during rainfall-only and rainfall with added inflow. Results showed that, under drainage conditions, interrill processes dominated and rilling was limited. The surface contained scattered crescent-shaped pits after the run. Under seepage conditions, rilling processes dominated and the inflow introduced at the top of the soil pan further accelerated the headward erosion of the rills. Erosion rates increased by as much as 60 times under seepage conditions representative of the lower backslope when compared to drainage conditions that generally occur at the upper backslope. This indicated that rills and gullies on backslopes and footslopes may be catalysed or enhanced by seepage conditions rather than form from flow hydraulic shear stress alone. An understanding of spatial and temporal changes that affect both hillslope hydrology and erosional processes is needed to develop accurate process-based erosion prediction models. This knowledge may lead to different management practices on landscape positions where seepage occurs. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Wildfires are a cause of soil water repellency (hydrophobicity), which reduces infiltration whilst increasing erosion and flooding from post-fire rainfall. Post-fire soil water repellency degrades over time, often in response to repeated wetting and drying of the soil. However, in mountainous fire-prone forests such as those in the Western USA, the fire season often terminates in a cold and wet winter, during which soils not only wet and dry, but also freeze and thaw. Little is known about the effect of repeated freezing and thawing of soil on the breakdown of post-fire hydrophobicity. This study characterized the changes in hydrophobicity of Sierra Nevada mountain soils exposed to different combinations of wet–dry and freeze–thaw cycling. Following each cycle, hydrophobicity was measured using the Molarity of Ethanol test. Hydrophobicity declined similarly across all experiments that included a wetting cycle. Repeated freezing and thawing of dry soil did not degrade soil water repellency, but freeze–thaw cycles decreased hydrophobicity in wet soils. Total soil organic matter content was not different between soils of contrasting hydrophobicity. Macroscopic changes such as fissures and cracks were observed to form as soil hydrophobicity decayed. Microscopic changes revealed by scanning electron microscope imagery suggest different levels of soil aggregation occurred in samples with distinct hydrophobicities, although the size of aggregates was not clearly correlated to the change in water repellency due to wet–dry and freeze–thaw cycling. A 9-year climate and soil moisture record from Providence Critical Zone Observatory was combined with the laboratory results to estimate that hydrophobicity would persist an average of 144 days post-fire at this well-characterized, typical mid-elevation Sierra Nevada site. Most of the breakdown in soil water repellency (79%) under these climate conditions would be attributable to freeze–thaw cycling, underscoring the importance of this process in soil recovery from fire in the Sierra Nevada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号