首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 324 毫秒
1.
Catchment hydrological responses to precipitation inputs, particularly during exceptionally large storms, are complex and variable, and our understanding of the associated runoff generation processes during those events is limited. Hydrological monitoring of climatically and hydrologically distinct catchments can help to improve this understanding by shedding light on the interplay between antecedent soil moisture conditions, hydrological connectivity, and rainfall event characteristics. This knowledge is urgently needed considering that both the frequency and magnitude of extreme precipitation events are increasing worldwide as a consequence of climate change. In autumn 2018, we installed water level sensors to monitor stream water and near-stream groundwater levels at two Mediterranean forest headwater catchments with contrasting hydrological regimes: Font del Regàs (sub-humid climate, perennial flow regime) and Fuirosos (semi-arid climate, intermittent flow regime). Both catchments are located in northeastern Spain, where the extratropical cyclone Gloria hit in January 2020 and left in ca. 65 h outstanding accumulated rainfalls of 424 mm in Font del Regàs and 230 mm in Fuirosos. During rainfall events of low mean intensity, hydrological responses to precipitation inputs at the semi-arid Fuirosos were more delayed and more variable than at the sub-humid Font del Regàs. We explain these divergences by differences in antecedent soil moisture conditions and associated differences in catchment hydrological connectivity between the two catchments, which in this case are likely driven by differences in local climate rather than by differences in local topography. In contrast, during events of moderate and high mean rainfall intensities, including the storm Gloria, precipitation inputs and hydrological responses correlated similarly in the two catchments. We explain this convergence by rapid development of hydrological connectivity independently of antecedent soil moisture conditions. The data set presented here is unique and contributes to our mechanistic understanding on how streams respond to rainfall events and exceptionally large storms in catchments with contrasting flow regimes.  相似文献   

2.
3.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Knowledge about flood generating processes can be beneficial for numerous applications. Especially in the context of climate change impact assessment, daily patterns of meteorological and catchment state conditions leading to flood events (i.e., storylines) may be of value. Here, we propose an approach to identify storylines of flood generation using daily weather and snow cover observations. The approach is tested for and applied to a typical pre‐Alpine catchment in the period between 1961 and 2014. Five precipitation parameters were determined that describe temporal and spatial characteristics of the flood associated precipitation events. The catchment's snow coverage was derived using statistical relationships between a satellite‐derived snow cover climatology and station snow measurements. Moreover, (pre‐) event snow melt sums were estimated using a temperature‐index model. Based on the precipitation and catchment state parameters, 5 storylines were identified with a cluster analysis: These are (a) long duration, low intensity precipitation events with high precipitation depths, (b) long duration precipitation events with high precipitation depths and episodes of high intensities, (c) shorter duration events with high or (d) low precipitation intensity, respectively, and (e) rain‐on‐snow events. The event groups have distinct hydrological characteristics that can largely be explained by the storylines' respective properties. The long duration, high intensity storyline leads to the most adverse hydrological response, namely, a combination of high peak magnitudes, high volumes, and long durations of threshold exceedance. The results show that flood generating processes in mesoscale catchments can be distinguished on the basis of daily meteorological and catchment state parameters and that these process types can explain the hydrological flood properties in a qualitative way. Hydrological simulations of daily resolution can thus be analysed with respect to flood generating processes.  相似文献   

5.
The northern mid‐high latitudes form a region that is sensitive to climate change, and many areas already have seen – or are projected to see – marked changes in hydroclimatic drivers on catchment hydrological function. In this paper, we use tracer‐aided conceptual runoff models to investigate such impacts in a mesoscale (749 km2) catchment in northern Scotland. The catchment encompasses both sub‐arctic montane sub‐catchments with high precipitation and significant snow influence and drier, warmer lowland sub‐catchments. We used downscaled HadCM3 General Circulation Model outputs through the UKCP09 stochastic weather generator to project the future climate. This was based on synthetic precipitation and temperature time series generated from three climate change scenarios under low, medium and high greenhouse gas emissions. Within an uncertainty framework, we examined the impact of climate change at the monthly, seasonal and annual scales and projected impacts on flow regimes in upland and lowland sub‐catchments using hydrological models with appropriate process conceptualization for each landscape unit. The results reveal landscape‐specific sensitivity to climate change. In the uplands, higher temperatures result in diminishing snow influence which increases winter flows, with a concomitant decline in spring flows as melt reduces. In the lowlands, increases in air temperatures and re‐distribution of precipitation towards autumn and winter lead to strongly reduced summer flows despite increasing annual precipitation. The integration at the catchment outlet moderates these seasonal extremes expected in the headwaters. This highlights the intimate connection between hydrological dynamics and catchment characteristics which reflect landscape evolution. It also indicates that spatial variability of changes in climatic forcing combined with differential landscape sensitivity in large heterogeneous catchments can lead to higher resilience of the integrated runoff response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The higher mid‐latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter‐catchment comparison program, North‐Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North‐Watch program, which focuses on how these catchments collect, store and release water and identify ‘types’ of hydro‐climatic catchment response. At most sites, a 10‐year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter‐annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual‐scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall–runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Snowmelt is an important source of runoff in high mountain catchments. Snowmelt modelling for alpine regions remains challenging with scarce gauges. This study simulates the snowmelt in the Karuxung River catchment in the south Tibetan Plateau using an altitude zone based temperature‐index model, calibrates the snow cover area and runoff simulation during 2003–2005 and validates the model performance via snow cover area and runoff simulation in 2006. In the snowmelt and runoff modelling, temperature and precipitation are the two most important inputs. Relevant parameters, such as critical snow fall temperature, temperature lapse rate and precipitation gradient, determine the form and amount of precipitation and distribution of temperature and precipitation in hydrological modelling of the sparsely gauged catchment. Sensitivity analyses show that accurate estimation of these parameters would greatly help in improving the snowmelt simulation accuracy, better describing the snow‐hydrological behaviours and dealing with the data scarcity at higher elevations. Specifically, correlation between the critical snow fall temperature and relative humidity and seasonal patterns of both the temperature lapse rate and the precipitation gradient should be considered in the modelling studies when precipitation form is not logged and meteorological observations are only available at low elevation. More accurate simulation of runoff involving snowmelt, glacier melt and rainfall runoff will improve our understanding of hydrological processes and help assess runoff impacts from a changing climate in high mountain catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
We assess the effects of prospective climate change until 2100 on water management of two major reservoirs of Iran, namely, Dez (3.34 × 109 m3) and Alavian (6 × 107 m3). We tune the Poly‐Hydro model suited for simulation of hydrological cycle in high altitude snow‐fed catchments. We assess optimal operation rules (ORs) for the reservoirs using three algorithms under dynamic and static operation and linear and non‐linear decision rules during control run (1990–2010 for Dez and 2000–2010 for Alavian). We use projected climate scenarios (plus statistical downscaling) from three general circulation models, EC‐Earth, CCSM4, and ECHAM6, and three emission scenarios, or representative concentration pathways (RCPs), RCP2.6, RCP4.5, and RCP8.5, for a grand total of nine scenarios, to mimic evolution of the hydrological cycle under future climate until 2100. We subsequently test the ORs under the future hydrological scenarios (at half century and end of century) and the need for reoptimization. Poly‐Hydro model when benchmarked against historical data well mimics the hydrological budget of both catchments, including the main processes of evapotranspiration and streamflows. Teaching–learning‐based optimization delivers the best performance in both reservoirs according to objective scores and is used for future operation. Our projections in Dez catchment depict decreased precipitation along the XXI century, with ?1% on average (of the nine scenarios) at half century and ?6% at the end of century, with changes in streamflows on average ?7% yearly and ?13% yearly, respectively. In Alavian, precipitation would decrease by ?10% on average at half century and ?13% at the end of century, with streamflows ?14% yearly and ?18% yearly, respectively. Under the projected future hydrology, reservoirs' operation would provide lower performance (i.e., larger lack of water) than now, especially for Alavian dam. Our results provide evidence of potentially decreasing water availability and less effective water management in water stressed areas like Northern Iran here during this century.  相似文献   

9.
The impact of road‐generated runoff on the hydrological response of a zero‐order basin was monitored for a sequence of 24 storm events. The study was conducted in a zero‐order basin (C1; 0·5ha) with an unpaved mountain road; an adjacent unroaded zero‐order basin (C2; 0·2 ha) with similar topography and lithology was used to evaluate the hydrological behaviour of the affected zero‐order basin prior to construction of the road. The impact of the road at the zero‐order basin scale was highly dependent on the antecedent soil‐moisture conditions, total storm precipitation, and to some extent rainfall intensity. At the beginning of the monitoring period, during dry antecedent conditions, road runoff contributed 50% of the total runoff and 70% of the peak flow from the affected catchment (C1). The response from the unroaded catchment was almost insignificant during dry antecedent conditions. As soil moisture increased, the road exerted less influence on the total runoff from the roaded catchment. For very wet conditions, the influence of road‐generated runoff on total outflow from the roaded catchment diminished to only 5·4%. Both catchments, roaded and unroaded, produced equivalent amount of outflow during very wet antecedent conditions on a unit area basis. The lag time between the rainfall and runoff peaks observed in the unroaded catchment during the monitoring period ranged from 0 to 4 h depending on the amount of precipitation and antecedent conditions, owing mainly to much slower subsurface flow pathways in the unroaded zero‐order basin. In contrast, the lag time in the roaded zero‐order basin was virtually nil during all storms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Regional climate models (RCMs) have emerged as the preferred tool in hydrological impact assessment at the catchment scale. The direct application of RCM precipitation output is still not recommended; instead, a number of alternative methods have been proposed. One method that has been used is the change factor methodology, which typically uses changes to monthly mean or seasonal precipitation totals to develop change scenarios. However, such simplistic approaches are subject to significant caveats. In this paper, 18 RCMs covering the UK from the ENSEMBLES and UKCP09 projects are analysed across different catchments. The ensembles' ability in capturing monthly total and extreme precipitation is outlined to explore how the ability to make confident statements about future flood risk varies between different catchments. The suitability of applying simplistic change factor approaches in flood impact studies is also explored. We found that RCM ensembles do have some skill in simulating observed monthly precipitation; however, seasonal patterns of bias were evident across each of the catchments. Moreover, even apparently good simulations of extreme rainfall can mis‐estimate the magnitude of flood‐generating rainfall events in ways that would significantly affect flood risk management. For future changes in monthly mean precipitation, we observe the clear ‘drier summers/wetter winters’ signal used to develop current UK policy, but when we look instead at flood‐generating rainfall, this seasonal signal is less clear and greater increases are projected. Furthermore, the confidence associated with future projections varies from catchment to catchment and season to season as a result of the varying ability of the RCM ensembles, and in some cases, future flood risk projections using RCM outputs may be highly problematic. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Climate change is affecting the hydrology of high‐elevation mountain ecosystems, with implications for ecosystem functioning and water availability to downstream populations. We directly and continuously measured precipitation and evapotranspiration (ET) from both subalpine forest and alpine tundra portions of a single catchment, as well as discharge fluxes at the catchment outlet, to quantify the water balance of a mountainous, headwater catchment in Colorado, USA. Between 2008 and 2012, the water balance closure averaged 90% annually, and the catchment ET was the largest water output at 66% of precipitation. Alpine ET was greatest during the winter, in part because of sublimation from blowing snow, which contributed from 27% to 48% of the alpine, and 6% to 9% of the catchment water balance, respectively. The subalpine ET peaked in summer. Alpine areas generated the majority of the catchment discharge, despite covering only 31% of the catchment area. Although the average annual alpine runoff efficiency (discharge/precipitation; 40%) was greater than the subalpine runoff efficiency (19%), the subalpine runoff efficiency was more sensitive to changes in precipitation. Inter‐annual analysis of the evaporative and dryness indices revealed persistent moisture limitations at the catchment scale, although the alpine alternated between energy‐limited and water‐limited states in wet and dry years. Each ecosystem generally over‐generated discharge relative to that expected from a Budyko‐type model. The alpine and catchment water yields were relatively unaffected by annual meteorological variability, but this interpretation was dependent on the method used to quantify potential ET. Our results indicate that correctly accounting for dissimilar hydrological cycling above and below alpine treeline is critical to quantify the water balance of high‐elevation mountain catchments over periods of meteorological variability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   

13.
This study analyzes the stable isotopic compositions of hydrogen and oxygen (δ2H, δ18O) in montane meteoric waters including precipitation and stream water of central Taiwan to identify hydrological processes in montane catchments. Results of precipitation demonstrate that monsoon and altitude effects are two principal processes affecting δ and deuterium excess (dE) values of inland precipitation in central Taiwan. Furthermore, slope and intercept values of summer and winter local meteoric water line are modified by secondary evaporation effects such as moisture recycling and raindrop evaporation. Additionally, stream water's results indicate that differences in δ values among stream waters reflect isotopic altitude effect whereby lower values are more evident in stream water originating from high‐elevation catchments than low‐elevation catchments. Comparison of the isotopic results between precipitation and stream water indicates that summer precipitation containing recycled moisture is the most important water source for the studied stream waters and indicates that catchment effect and base flow contribution are the two major hydrological processes affecting mountain stream hydrology. The hydrological processes identified by the isotopic study re‐stress the important role of forests in mountain hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Snow and glaciers are known to be important sources for freshwater; nevertheless, our understanding of the hydrological functioning of glacial catchments remains limited when compared with lower altitude catchments. In this study, a temperate glacial region located in the southeast margin of the Tibetan Plateau is selected to analyse the characteristics of δ18O and δD in different water sources and the contribution of glacier–snow meltwater to streamflow. The results indicate that the δ18O of river water ranges from ?16.2‰ to ?10.2‰ with a mean of ?14.1‰ and that the δD values range from ?117.0‰ to ?68.0‰ with a mean of ?103.1‰. These values are more negative than those of glacier–snow meltwater but less negative than those of precipitation. The d ‐excess values are found to decrease from meltwater to river to lake/reservoir water as a result of evaporation. On the basis of hydrograph separation, glacier–snow meltwater accounts for 51.5% of river water in the Baishui catchment in the melting season. In the Yanggong catchment, snow meltwater contributes 47.9% to river water in the premonsoon period, and glacier meltwater contributes only 6.8% in the monsoon period. The uncertainty in hydrograph separation is sensitive to the variation of tracer concentrations of streamflow components. The input of meltwater to a water system varies with local climate and glacier changes. The results confirm that hydrograph separation using water isotopes is valuable for evaluating the recharge sources of rivers, especially in ungauged glacial regions. This study provides insights into the hydrological processes of glacial catchments on the Tibetan Plateau, which is important for water resource management.  相似文献   

15.
Hydrological events transport large proportions of annual or seasonal dissolved organic carbon (DOC) loads from catchments to streams. The timing, magnitude and intensity of these events are very sensitive to changes in temperature and precipitation patterns, particularly across the boreal region where snowpacks are declining and summer droughts are increasing. It is important to understand how landscape characteristics modulate event-scale DOC dynamics in order to scale up predictions from sites across regions, and to understand how climatic changes will influence DOC dynamics across the boreal forest. The goal of this study was to assess variability in DOC concentrations in boreal headwater streams across catchments with varying physiographic characteristics (e.g., size, proportion of wetland) during a range of hydrological events (e.g., spring snowmelt, summer/fall storm events). From 2016 to 2017, continuous discharge and sub-daily chemistry grab samples were collected from three adjacent study catchments located at the International Institute for Sustainable Development-Experimental Lakes Area in northwestern Ontario, Canada. Catchment differences were more apparent in summer and fall events and less apparent during early spring melt events. Hysteresis analysis suggested that DOC sources were proximal to the stream for all events at a catchment dominated by a large wetland near the outlet, but distal from the stream at the catchments that lacked significant wetland coverage during the summer and fall. Wetland coverage also influenced responses of DOC export to antecedent moisture; at the wetland-dominated catchment, there were consistent negative relationships between DOC concentrations and antecedent moisture, while at the catchments without large wetlands, the relationships were positive or not significant. These results emphasize the utility of sub-daily sampling for inferring catchment DOC transport processes, and the importance of considering catchment-specific factors when predicting event-scale DOC behaviour.  相似文献   

16.
Changes in climate and land use can significantly influence the hydrological cycle and hence affect water resources. Understanding the impacts of climate and land‐use changes on streamflow can facilitate development of sustainable water resources strategies. This study investigates the flow variation of the Zamu River, an inland river in the arid area of northwest China, using the Soil and Water Assessment Tool distributed hydrological model. Three different land‐use and climate‐change scenarios were considered on the basis of measured climate data and land‐use cover, and then these data were input into the hydrological model. Based on the sensitivity analysis, model calibration and verification, the hydrological response to different land‐use and climate‐change scenarios was simulated. The results indicate that the runoff varied with different land‐use type, and the runoff of the mountain reaches of the catchment increased when grassland area increased and forestland decreased. The simulated runoff increased with increased precipitation, but the mean temperature increase decreased the runoff under the same precipitation condition. Application of grey correlation analysis showed that precipitation and temperature play a critical role in the runoff of the Zamu River basin. Sensitivity analysis of runoff to precipitation and temperature by considering the 1990s land use and climate conditions was also undertaken. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Land cover changes associated with urbanization have negative effects on downstream ecosystems. Contemporary urban development attempts to mitigate these effects by designing stormwater infrastructure to mimic predevelopment hydrology, but their performance is highly variable. This study used in situ monitoring of recently built neighbourhoods to evaluate the catchment‐scale effectiveness of landscape decentralized stormwater control measures (SCMs) in the form of street connected vegetated swales for reducing runoff volumes and flow rates relative to curb‐and‐gutter infrastructure. Effectiveness of the SCMs was quantified by monitoring runoff for 8 months at the outlets of 4 suburban catchments (0.76–5.25 ha) in Maryland, USA. Three “grey” catchments installed curb‐and‐gutter stormwater conveyances, whereas the fourth “green” catchment built parcel‐level vegetated swales. The catchment with decentralized SCMs reduced runoff, runoff ratio, and peak runoff compared with the grey infrastructure catchments. In addition, the green catchment delayed runoff, resulting in longer precipitation–runoff lag times. Runoff ratios across the monitoring period were 0.13 at the green catchment and 0.37, 0.35, and 0.18 at the 3 grey catchments. Runoff only commenced after 6 mm of precipitation at the decentralized SCM catchment, whereas runoff occurred even during the smallest events at the grey catchments. However, as precipitation magnitudes reached 20 mm, the green catchment runoff characteristics were similar to those at the grey catchments, which made up 37% of the total precipitation in only 10 of 72 events. Therefore, volume‐based reduction goals for stormwater using decentralized SCMs such as vegetated swales require additional redundant SCMs in a treatment train as source control and/or end‐of‐pipe detention to capture a larger fraction of runoff and more effectively mimic predevelopment hydrology for the relatively rare but larger precipitation events.  相似文献   

18.
The hydrological and geomorphological effects of an exceptional rainstorm event that occurred in the central Spanish Pyrenees during 19–21 October 2012 were studied in five experimental catchments under various land covers: (i) subhumid badlands; (ii) dense forest; (iii) an abandoned farmland area recolonized by shrubs and forest patches; and (iv) subalpine grasslands. Hydrographs and sedigraphs demonstrated that vegetation cover is a major factor affecting the control of floods even during exceptional rainstorms, at least at the spatial scale at which the phenomenon was studied (catchment sizes: 0.3–2.8 km2) and under dry catchment conditions. The combined precipitation over the two days (c. 250 mm) was the greatest for any two‐day event recorded since 1950 in the central‐western Pyrenees for all but one of the stations in the study. Five pulses of most intense rainfall were recorded. The forested catchment did not react to the two most intense rainfall pulses, because of the very low antecedent level of the water table. The main peak flow occurred only when at least a part of the catchment was saturated. The abandoned farmland catchment had two small peak discharges at the beginning of the event, which were produced by infiltration excess overland flow from eroded areas close to the main stream. During the third most intense rainfall period a large part of this catchment contributed to runoff and a relatively high peak discharge was produced. The badland catchment reacted immediately from the beginning of the rainstorm, yielding very high discharges accompanied by high suspended sediment concentrations. The subalpine catchment showed a hydrograph mirroring the hyetograph, with brief but intense hydrological responses to increased precipitation, because of the marked gradients and the presence of bare rock in the headwaters. A high volume of bedload was carried during the peak discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Much of the discussion on hydrological trends and variability in the source region of the Yellow River centres on the mean values of the mainstream flows. Changes in hydrological extremes in the mainstream as well as in the tributary flows are largely unexplored. Although decreasing water availability has been noted, the nature of those changes is less explored. This article investigates trends and variability in the hydrological regimes (both mean values and extreme events) and their links with the local climate in the source region of the Yellow River over the last 50 years (1959–2008). This large catchment is relatively undisturbed by anthropogenic influences such as abstraction and impoundments, enabling the characterization of widely natural, climate‐driven trends. A total of 27 hydrological variables were used as indicators for the analysis. Streamflow records from six major headwater catchments and climatic data from seven stations were studied. The trend results vary considerably from one river basin to another, and become more accentuated with longer time period. Overall, the source region of the Yellow River is characterized by an overall tendency towards decreasing water availability. Noteworthy are strong decreasing trends in the winter (dry season) monthly flows of January to March and September as well as in annual mean flow, annual 1‐, 3‐, 7‐, 30‐ and 90‐day maxima and minima flows for Maqu and Tangnag catchments over the period 1959–2008. The hydrological variables studied are closely related to precipitation in the wet season (June, July, August and September), indicating that the widespread decrease in wet season precipitation is expected to be associated with significant decrease in streamflow. To conclude, decreasing precipitation, particularly in the wet season, along with increasing temperature can be associated with pronounced decrease in water resources, posing a significant challenge to downstream water uses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper provides the results of hydrological modelling in a mesoscale glaciated alpine catchment of the Himalayan region. In the context of global climate change, the hydrological regime of an alpine mountain is likely to be affected, which might produce serious implications for downstream water availability. The main objective of this study was to understand the hydrological system dynamics of a glaciated catchment, the Dudh Kosi River basin, in Nepal, using the J2000 hydrological model and thereby understand how the rise in air temperature will affect the hydrological processes. The model is able to reproduce the overall hydrological dynamics quite well with an efficiency result of Nash–Sutcliffe (0.85), logarithm Nash–Sutcliffe (0.93) and coefficient of determination (0.85) for the study period. The average contribution from glacier areas to total streamflow is estimated to be 17%, and snowmelt (other than from glacier areas) accounts for another 17%. This indicates the significance of the snow and glacier runoff in the Himalayan region. The hypothetical rise in temperature scenarios at a rate of +2 and +4 °C indicated that the snowmelt process might be largely affected. An increase in snowmelt volume is noted during the premonsoon period, whereas the contribution during the monsoon season is significantly decreased. This occurs mainly because the rise in temperature will shift the snowline up to areas of higher altitude and thereby reduce the snow storage capacity of the basin. This indicates that the region is particularly vulnerable to global climate change and the associated risk of decreasing water availability to downstream areas. Under the assumed warming scenarios, it is likely that in the future, the river might shift from a ‘melt‐dominated river’ to a ‘rain‐dominated river’. The J2000 model should be considered a promising tool to better understand the hydrological dynamics in alpine mountain catchments of the Himalayan region. This understanding will be quite useful for further analysis of ‘what‐if scenarios’ in the context of global climate and land‐use changes and ultimately for sustainable Integrated Water Resources Management in the Himalayan region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号