首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
To understand the physics and dynamics of the ocean circulation, techniques of numerical bifurcation theory such as continuation methods have proved to be useful. Up to now these techniques have been applied to models with relatively few degrees of freedom such as multi-layer quasi-geostrophic and shallow-water models and relatively low-resolution (e.g., 4° horizontal resolution) primitive equation models. In this paper, we present a new approach in which continuation methods are combined with parallel numerical linear system solvers. With this implementation, we show that it is possible to compute steady states versus parameters (and perform fully implicit time integration) of primitive equation ocean models with up to a few million degrees of freedom.  相似文献   

2.
A method to reduce the spin-up time of ocean models   总被引:2,自引:2,他引:0  
The spin-up timescale in large-scale ocean models, i.e., the time it takes to reach an equilibrium state, is determined by the slow processes in the deep ocean and is usually in the order of a few thousand years. As these equilibrium states are taken as initial states for many calculations, much computer time is spent in the spin-up phase of ocean model computations. In this note, we propose a new approach which can lead to a very large reduction in spin-up time for quite a broad class of existing ocean models. Our approach is based on so-called Jacobian–Free Newton–Krylov methods which combine Newton’s method for solving non-linear systems with Krylov subspace methods for solving large systems of linear equations. As there is no need to construct the Jacobian matrices explicitly the method can in principle be applied to existing explicit time-stepping codes. To illustrate the method we apply it to a 3D planetary geostrophic ocean model with prognostic equations only for temperature and salinity. We compare the new method to the ‘ordinary’ spin-up run for several model resolutions and find a considerable reduction of spin-up time.  相似文献   

3.
A Wind stress–Current Coupled System (WCCS) consisting of the HYbrid Coordinate Ocean Model (HYCOM) and an improved wind stress algorithm based on Donelan et al. [Donelan, W.M., Drennan, Katsaros, K.B., 1997. The air–sea momentum flux in mixed wind sea and swell conditions. J. Phys. Oceanogr. 27, 2087–2099] is developed by using the Earth System Modeling Framework (ESMF). The WCCS is applied to the global ocean to study the interactions between the wind stress and the ocean surface currents. In this study, the ocean surface current velocity is taken into consideration in the wind stress calculation and air–sea heat flux calculation. The wind stress that contains the effect of ocean surface current velocity will be used to force the HYCOM. The results indicate that the ocean surface velocity exerts an important influence on the wind stress, which, in turn, significantly affects the global ocean surface currents, air–sea heat fluxes, and the thickness of ocean surface boundary layer. Comparison with the TOGA TAO buoy data, the sea surface temperature from the wind–current coupled simulation showed noticeable improvement over the stand-alone HYCOM simulation.  相似文献   

4.
 It has been known that the axisymmetric Cauchy–Poisson problem for dispersive water waves is well posed in the sense of stability. Thereby time evolution solutions of wave propagation depend continuously on initial conditions. However, in this paper, it is demonstrated that the axisymmetric Cauchy–Poisson problem is ill posed in the sense of stability for a certain class of initial conditions, so that the propagating solutions do not depend continuously on the initial conditions. In order to overcome the difficulty of the discontinuity, Landweber–Fridman's regularization, famous and well known in applied mathematics, are introduced and investigated to learn whether it is applicable to the present axisymmetric wave propagation problem. From the numerical experiments, it is shown that stable and accurate solutions are realized by the regularization, so that it can be applicable to the determination of the ill-posed Cauchy–Poisson problem.  相似文献   

5.
We present the derivation of the discrete Euler–Lagrange equations for an inverse spectral element ocean model based on the shallow water equations. We show that the discrete Euler–Lagrange equations can be obtained from the continuous Euler–Lagrange equations by using a correct combination of the weak and the strong forms of derivatives in the Galerkin integrals, and by changing the order with which elemental assembly and mass averaging are applied in the forward and in the adjoint systems. Our derivation can be extended to obtain an adjoint for any Galerkin finite element and spectral element system.We begin the derivations using a linear wave equation in one dimension. We then apply our technique to a two-dimensional shallow water ocean model and test it on a classic double-gyre problem. The spectral element forward and adjoint ocean models can be used in a variety of inverse applications, ranging from traditional data assimilation and parameter estimation, to the less traditional model sensitivity and stability analyses, and ensemble prediction. Here the Euler–Lagrange equations are solved by an indirect representer algorithm.  相似文献   

6.
Water mass variations in the northeastern Atlantic Ocean along 20°W are analyzed with pentadal resolution over the past 15 years using data from four repeat occupations of a meridional hydrographic section running south from Iceland. The section was sampled in 1988, 1993, 1998, and 2003. The results are interpreted in the context of changes in air–sea forcing, ocean circulation, and water properties associated with the North Atlantic Oscillation (NAO). The NAO index oscillated around zero from 1984 to 1988, was strongly positive from 1989 to 1995, after which it shifted to lower positive, and occasionally negative values from 1996 to 2003. Previously published studies suggest that after the 1995–1996 shift of the NAO, the subpolar gyre largely retreated to the northwest in the northeastern Atlantic Ocean, resulting in an increasingly southeastern character of local water masses with time. Water property changes extending from the SubPolar Mode Water (SPMW) just below the seasonal pycnocline through the density range shared by Mediterranean Outflow Water and SubArctic Intermediate Water (SAIW) along 20°W are consistent with changes in wind-driven ocean circulation and air–sea heat flux associated with shifts in the NAO, especially after accounting for ocean memory. After periods of lower NAO index the SPMW is warmer, saltier, and lighter. At these same times, large increases of apparent oxygen utilization (AOU) and potential vorticity are found at the SPMW base, consistent with SPMW ventilation to lighter densities during lower NAO index periods. Deeper and denser in the water column, the cold, fresh, and dense SAIW signature within the permanent pycnocline that was most strongly present in 1993, near the culmination of a period of high NAO index, is much reduced in 1988 and 1998. In 2003, after a prolonged period of lower NAO index, increasing influence of warmer, saltier subtropical waters is clear within the permanent pycnocline. The deep penetration of the changes implies that they are caused primarily by circulation changes resulting from NAO-associated wind shifts, but changes in air–sea heat flux could also have played a role.  相似文献   

7.
Numerical ocean modelling is computationally very demanding. Traditionally, the hydrostatic approximation has been applied to reduce the computational burden. This approximation is valid in large scale studies with coarse grid resolution. With faster computers and gradually smaller grid sizes, we may expect that more studies will be performed with non-hydrostatic ocean models. In recent papers several methods for including non-hydrostatic pressure in σ-coordinate models have been suggested. In this paper the sensitivity of the non-hydrostatic pressure field, the velocity fields, and the density fields to changes in the method for computing non-hydrostatic pressure in σ-coordinate ocean models is addressed.The first test case used involves the propagation and breaking of an internal wave at an incline in a tank. The other test case concerns tidally driven flow over a sill in a stratified fjord. The results from our numerical exercises suggest that the velocity and density fields are very robust to the model choices investigated here. The differences between the model results are of the same order as the uncertainty due to the internal pressure gradient error, and they are smaller than an estimate of the uncertainty due to subgrid scale closure.  相似文献   

8.
In this study, we present the results of the combined analyses of ocean bottom seismometer and multi-channel seismic reflection data collection offshore southwestern Taiwan, with respect to the presence of gas hydrates and free gas within the accretionary wedge sediments. Estimates of the compressional velocities along EW9509-33 seismic reflection profile are obtained by a series of pre-stack depth migrations in a layer stripping streamlined Deregowski loop. Strong BSR is imaged over most of the reflection profile while low velocity zones are imaged below BSR at several locations. Amplitude versus angle analysis that are performed within the pre-stack depth migration processes reveal strong negative P-impedance near the bottom of the hydrate stability zone, commonly underlain by sharp positive P impedance layers associated with negative pseudo-Poisson attribute areas, indicating the presence of free gas below the BSR. Ray tracing of the acoustic arrivals with a model derived from the migration velocities generally fits the vertical and hydrophone records of the four ocean-bottom seismographs (OBS). In order to estimate the Poisson’s ratios in the shallow sediments at the vicinity of the OBSs, we analyze the mode-converted arrivals in the wide-angle horizontal component. P-S mode converted reflections are dominant, while upward P-S transmissions are observed at large offsets. We observe significant compressional velocity and Poisson’s ratio pull-down in the sediment below the BSR likely to bear free gas. When compared to Poisson’s ratio predicted by mechanical models, the values proposed for the OBSs yield rough estimates of gas hydrate saturation in the range of 0–10% in the layers above the BSR and of free gas saturation in the range of 0–2% just below the BSR.  相似文献   

9.
10.
Carbon dioxide flux techniques performed during GasEx-98   总被引:2,自引:0,他引:2  
A comprehensive study of air–sea interactions focused on improving the quantification of CO2 fluxes and gas transfer velocities was performed within a large open ocean CO2 sink region in the North Atlantic. This study, GasEx-98, included shipboard measurements of direct covariance CO2 fluxes, atmospheric CO2 profiles, atmospheric DMS profiles, water column mass balances of CO2, and measurements of deliberate SF63He tracers, along with air–sea momentum, heat, and water vapor fluxes. The large air–sea differences in partial pressure of CO2 caused by a springtime algal bloom provided high signals for accurate CO2 flux measurements. Measurements were performed over a wind speed range of 1–16 m s−1 during the three-week process study. This first comparison between the novel air-side and more conventional water column measurements of air–sea gas transfer show a general agreement between independent air–sea gas flux techniques. These new advances in open ocean air–sea gas flux measurements demonstrate the progress in the ability to quantify air–sea CO2 fluxes on short time scales. This capability will help improve the understanding of processes controlling the air–sea fluxes, which in turn will improve our ability to make regional and global CO2 flux estimates.  相似文献   

11.
Ocean surface mixing and drift are influenced by the mixed layer depth, buoyancy fluxes and currents below the mixed layer. Drift and mixing are also functions of the surface Stokes drift Uss, volume Stokes transport TS, a wave breaking height scale Hswg, and the flux of energy from waves to ocean turbulence Φoc. Here we describe a global database of these parameters, estimated from a well-validated numerical wave model, that uses traditional forms of the wave generation and dissipation parameterizations, and covers the years 2003–2007. Compared to previous studies, the present work has the advantage of being consistent with the known physical processes that regulate the wave field and the air–sea fluxes, and also consistent with a very large number of in situ and satellite observations of wave parameters. Consequently, some of our estimates differ significantly from previous estimates. In particular, we find that the mean global integral of Φoc is 68 TW, and the yearly mean value of TS is typically 10–30% of the Ekman transport, except in well-defined regions where it can reach 60%. We also have refined our previous estimates of Uss by using a better treatment of the high frequency part of the wave spectrum. In the open ocean, Uss  0.013U10, where U10 is the wind speed at 10 m height.  相似文献   

12.
The steady state bifurcation structure of the double-gyre wind-driven ocean circulation is examined in a shallow water model where the upper layer is allowed to outcrop at the sea surface. In addition to the classical jet-up and jet-down multiple equilibria, we find a new regime in which one of the equilibrium solutions has a large outcropping region in the subpolar gyre. Time dependent simulations show that the outcropping solution equilibrates to a stable periodic orbit with a period of 8 months. Co-existing with the periodic solution is a stable steady state solution without outcropping.A numerical scheme that has the unique advantage of being differentiable while still allowing layers to outcrop at the sea surface is used for the analysis. In contrast, standard schemes for solving layered models with outcropping are non-differentiable and have an ill-defined Jacobian making them unsuitable for solution using Newton’s method. As such, our new scheme expands the applicability of numerical bifurcation techniques to an important class of ocean models whose bifurcation structure had hitherto remained unexplored.  相似文献   

13.
An exact solution for the title problem is obtained using the Bernoulli–Euler theory of beam vibrations. Natural frequencies are obtained for a wide range of the intervening physical parameters. The problem is of interest in naval and ocean engineering systems since in order to avoid dangerous resonance conditions the designer must be able to predict natural frequencies of the overall mechanical system: structure–motor and its elastic mounting.  相似文献   

14.
The design of submarines has continually evolved to improve survivability. Explosions may induce local damage as well as global collapse to a submarine. Therefore, it is important to realistically estimate the possible damage conditions due to underwater explosions in the design stage. The present study applied the Arbitrary Lagrangian–Eulerian (ALE) technique, a fluid–structure interaction approach, to simulate an underwater explosion and investigate the survival capability of a damaged submarine liquefied oxygen tank. The Lagrangian–Eulerian coupling algorithm, the equations of state for explosives and seawater, and the simple calculation method for explosive loading were also reviewed. It is shown that underwater explosion analysis using the ALE technique can accurately evaluate structural damage after attack. This procedure could be applied quantitatively to real structural design.  相似文献   

15.
Numerical models of the ocean play an important role in efforts to understand past climate variability and predict future climate changes. In many studies, ocean models are driven by forcings that are either time-independent or vary periodically (seasonally) and it is often highly desirable or even essential to obtain equilibrium solutions of the model. Existing methods, based on the simple, expedient idea of integrating the model until the transients have died out, are too expensive to use routinely because the ocean takes several thousand years to equilibrate. Here, we present a novel approach for efficiently computing equilibrium solutions of ocean models. Our general approach is to formulate the problem as a large system of nonlinear algebraic equations to be solved with a class of methods known as matrix-free Newton–Krylov, a combination of Newton-type methods for superlinearly convergent solution of nonlinear equations, and Krylov subspace methods for solving the Newton correction equations. As an initial demonstration of the feasibility of this approach, we apply it to find the equilibrium solutions of a quasi-geostrophic ocean model for both steady forcing and seasonally-varying forcing. We show that the matrix-free Newton–Krylov method converges to the solutions obtained by direct time integration of the model, but at a computational cost that is between 10 and 100 times smaller than direct integration. A key advantage of our approach is that it can be applied to any existing time-stepping code, including ocean general circulation models and biogeochemical models. However, effective preconditioning of the linear equations to be solved during the Newton iteration remains a challenge.  相似文献   

16.
A computational method has been developed to predict the hydrodynamic performance of the propeller–rudder systems (PRS) and azimuthing podded drive (AZIPOD) systems. The method employs a vortex-based lifting theory for the propeller and the potential surface panel method for the steering system. Three propeller models along with three steering systems (rudder and strut, flap and pod (SFP)) are implemented in the present calculations for the cases of uniform and non-uniform conditions. Computed velocity components show good agreement with the experimental measurements behind a propeller with or without the rudder. Calculated thrust, torque and lift also agree well with the experimental results. Computations are also performed for an AZIPOD system in order to obtain the pressure distributions on the SFP, and the hydrodynamic performance (thrust, torque and lift coefficients). The present method is useful for examining the performance of the PRS and AZIPOD systems in the hope of estimating the propulsion and the maneuverability characteristics of the marine vehicles more accurately.  相似文献   

17.
Arcandra Tahar  M.H. Kim   《Ocean Engineering》2008,35(17-18):1676-1685
A theory and numerical tool are developed for the coupled-dynamic analysis of a deepwater floating platform with polyester mooring lines. The formulas allow relatively large elongation and nonlinear stress–strain relationships, as typically observed in polyester fibers. The mooring-line dynamics are based on a rod theory and the finite element method (FEM), with the governing equations described in a generalized coordinate system. The original rod theory [Nordgren, R.P., 1974. On Computation of the Motion of Elastic Rods. Journal of Applied Mechanics, 41, 777–780] is generalized to allow larger elongation and nonlinear stress–strain relationship. The dynamic modulus of polyester is modeled following an empirical regression formula suggested by [Bosman, R.L.M., Hooker, J., 1999. The Elastic Modulus Characteristic of Polyester Mooring Ropes. In: Proceedings of the Offshore Technology Conference, OTC 10779. Houston, Texas], in which the axial stiffness is not constant, but depends on loading conditions. Two case studies, the static and dynamic behavior of a tensioned buoy and a classic spar with polyester mooring lines, are conducted. The time-domain simulation results are systematically compared with those from the original rod theory. The effects of large elongation and nonlinear stress–strain relations are separately assessed. It is seen that the mean offset, motions, and tension with polyester lines can be different from those by original rod theory with linear elastic lines.  相似文献   

18.
An exact solution for the title problem is obtained in closed form fashion in the case of a Bernoulli–Euler beam. It is assumed that the exciting force is applied to the mass which is elastically mounted on the beam. The mathematical model constitutes a first order approximation to a motor or engine elastically mounted on a structural element. The operation of the machine generates a transverse, sinusoidally varying force. The problem is of basic interest in mechanical, naval and ocean engineering systems from the point of view of the determination of dynamic displacements and stresses; sound radiation calculations, etc. The present problem arose in connection with the mounting of an engine on a structural beam in a small naval vessel and when excessive vibrational level was noted. This study was undertaken in order to understand the physical problem and to correct the mechanical situation  相似文献   

19.
Physical modeling of untrenched submarine pipeline instability   总被引:1,自引:0,他引:1  
F. P. Gao  X. Y. Gu  D. S. Jeng   《Ocean Engineering》2003,30(10):1283-1304
Wave-induced instability of untrenched pipeline on sandy seabed is a ‘wave–soil–pipeline’ coupling dynamic problem. To explore the mechanism of the pipeline instability, the hydrodynamic loading with U-shaped oscillatory flow tunnel is adopted, which is quite different from the previous experiment system. Based on dimensional analysis, the critical conditions for pipeline instability are investigated by altering pipeline submerged weight, diameter, soil parameters, etc. Based on the experimental results, different linear relationships between Froude number (Fr) and non-dimensional pipeline weight (G) are obtained for two constraint conditions. Moreover, the effects of loading history on the pipeline stability are also studied. Unlike previous experiments, sand scouring during the process of pipe’s losing stability is detected in the present experiments. In addition, the experiment results are compared with the previous experiments, based on Wake II model for the calculation of wave-induced forces upon pipeline. It shows that the results of two kinds of experiments are comparable, but the present experiments provide better physical insight of the wave–soil–pipeline coupling effects.  相似文献   

20.
Unstructured-grid models grounded on semi-implicit, finite-volume, Eulerian–Lagrangian algorithms, such as UnTRIM and ELCIRC, have enjoyed considerable success recently in simulating 3D estuarine and coastal circulation. However, opportunities for improving the accuracy of this type of models were identified during extensive simulations of a tightly coupled estuary–plume–shelf system in the Columbia River system. Efforts to improve numerical accuracy resulted in SELFE, a new finite-element model for cross-scale ocean modeling. SELFE retains key benefits, including computational efficiency of existing semi-implicit Eulerian–Lagrangian finite-volume models, but relaxes restrictions on grids, uses higher-order shape functions for elevation, and enables superior flexibility in representing the bathymetry. Better representation of the bathymetry is enabled by a novel, “localized” vertical grid that resembles unstructured grids. At a particular horizontal location, SELFE uses either S coordinates or SZ coordinates, but the equations are consistently solved in Z space. SELFE also performs well relative to volume conservation and spurious oscillations, two problems that plague some finite-element models. This paper introduces SELFE as an open-source code available for community use and enhancement. The main focus here is on describing the formulation of the model and on showing results for a range of progressively demanding benchmark tests. While leaving details to separate publications, we also briefly illustrate the superior performance of SELFE over ELCIRC in a field application to the Columbia River estuary and plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号