首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
通过对由盾构施工引起的地表沉降进行了深入研究,对某地铁隧道盾构施工过程的数值模拟和经验公式计算,分析了盾构推进过程中地表处土体的位移和变形以及沉降分布规律,得出数值模拟的地铁隧道横向地面沉降分布曲线与实际沉降非常接近。  相似文献   

2.
以沈阳地铁一号线重工街站至启工街站区间土压平衡盾构法施工为研究对象,利用FLAC3D软件对隧道工程进行三维模拟,对施工前后地表、围岩及支护结构的应力应变进行了分析,得出了地表沉降及支护结构应力变化的规律。结果表明,基于FLAC3D的盾构法开挖过程数值模拟结果直观、可靠,为盾构技术在沈阳地铁工程中的应用提供经验和依据。  相似文献   

3.
地表沉降是地铁盾构施工过程中最关心的工程问题之一,关乎近邻建筑物能否正常运营及盾构能否正常施工。故本文以地表沉降为关键目标进行地铁盾构参数研究。将影响地表沉降的盾构参数概括为开挖面支护压力比和等代层弹性模量。在此基础上,以长沙地铁1号线南门口—侯家塘区间为工程背景,采用FLAC3D软件对不同盾构参数下的施工过程进行数值模拟,分析了开挖面支护压力比及等代层弹性模量对地表沉降的影响,提出了研究区段的盾构参数建议值。研究同时得出了在建议盾构参数下,研究区段发生地表沉降的范围及地表沉降最大值。为长沙地铁后续建设及其他城市地铁建设盾构参数的选取提供理论依据和方法参考。  相似文献   

4.
以某软土地区邻近地铁车站及盾构隧道的双侧深基坑工程为背景,运用ABAQUS数值计算软件对邻近地铁车站及盾构隧道的双侧深基坑施工进行数值模拟,研究了双侧深基坑施工过程对基坑坑内土体隆起与坑外土体沉降的影响,分析了双侧深基坑施工过程中地铁车站及盾构隧道变形情况,得出地铁车站及盾构隧道变形规律。计算结果表明:基坑内侧土体隆起最大值为54.3 mm;围护结构X向位移最大值为32.8 mm,Y向位移最大值为26.8 mm;车站竖向位移最大值发生在A1区开挖至坑底工况,最大值为6.8 mm,而车站水平位移最大值为7.6 mm;弯矩累计增量最大值155.9 kN·m/m,经计算,施工过程对车站主体结构影响很小;盾构隧道X向水平位移最大值为4.7 mm;而盾构隧道沉降最大值为3.8 mm,发生在A1区开挖至坑底工况。   相似文献   

5.
依托上海轨道交通M6线9标双圆盾构区间隧道工程,选取试验段对双圆盾构施工参数进行了敏感性分析。试验过程中调整土舱压力、盾尾注浆量、推进速度等施工参数,动态监测双圆盾构施工引起的横向、纵向深层土体沉降规律。所得结论对于双圆盾构施工参数优化、减小环境土工影响具有一定借鉴意义。  相似文献   

6.
盾构隧道掘进过程中将不可避免地穿越建筑结构密集区域,尤其是当穿越的建筑结构建造时间较长、基础较为薄弱,且地层变形超过特定极限时,建筑基础容易发生不均匀沉降和上部结构的额外变形。为了明确大直径泥水盾构隧道穿越复杂环境地层变形影响因素,更好掌握地层变形规律,本文以武汉地铁8号线黄浦路站—徐家棚站越江隧道工程为依托,运用大型通用有限元软件Plaxis3D建立三维有限元模型进行施工过程模拟,分别研究了覆土厚度、开挖面支护压力、盾壳段土体损失、盾尾注浆压力对地表沉降规律的敏感程度;并将数值模拟结果与现场实测值进行对比分析,结果发现有限元计算结果与实测结果具有较好的一致性,从而验证了数值模型的有效性。本文研究将为后续大直径泥水平衡盾构参数的选取提供方法指导。  相似文献   

7.
李树锋  仇文革  郑余朝 《岩土力学》2006,27(Z1):606-610
结合上海轨道交通9号线R413标段三管并行盾构隧道下穿沪杭铁路段工程,通过模拟盾构隧道的地层损失的方法,进行了离心模型试验,研究了设置地层加固和不设置地层加固情况下三管并行盾构隧道近接施工时的衬砌内力纵向效应规律。试验结果表明,中间隧道施工时,受其影响左右隧道拱腰位置弯矩和轴力均出现较大变化,设置地层加固可以有效减小纵向效应的影响,但仍需注意在施工中加强盾构壁后注浆,设置纵向钢架以减小近接施工纵向效应对管片尤其是接头处的影响。  相似文献   

8.
盾构近距离穿越相邻隧道施工的数值解析   总被引:10,自引:5,他引:10  
廖少明  余炎  彭芳乐 《岩土力学》2004,25(Z2):223-226
近距离穿越施工时盾构对周围地层位移场的影响明显不同于常规施工.结合上海地铁隧道近距离穿越工程实例,运用边界单元法模拟分析了掘进施工过程中盾构对已建建筑的影响,同时对施工参数进行了理论探讨.结果表明,盾构壳体是影响周围地层的主要因素,而且其影响具有滞后性和累积特性,在施工中需要超前控制.  相似文献   

9.
盾构法施工过程的有限元模拟   总被引:3,自引:0,他引:3  
在综合考虑了现有的有限元模拟方法的基础上,对部分仿真模拟细节进行了改进,改进了水平荷载的施加方法,用"等代层"来模拟盾尾建筑空隙,用预设单元的刚度迁移来模拟盾构的推进过程。通过对某地铁隧道盾构施工过程的模拟,分析了盾构推进过程中地表土体的位移与变形,计算得到的隧道横断面和隧道纵向地面沉降分布曲线与实测数据比较接近,结果证明了模拟方法是可行的。  相似文献   

10.
盾构偏航引起的地表位移预测   总被引:2,自引:1,他引:2  
陈枫  胡志平 《岩土力学》2004,25(9):1427-1431
对于盾构隧道的设计和施工,解析方法预测地表沉降,具有使用简便、物理意义明确的特点。在Sagaseta提出的基于由地层损失引起的地表沉降理论基础上,结合工程实际情况,提出了模拟盾构推进过程的三维地层损失模式,并推导了相应的地表位移计算解析公式,对实际工程具有参考价值。  相似文献   

11.
盾构法隧道施工阶段管片的力学分析   总被引:6,自引:1,他引:5  
盾构隧道衬砌管片在施工阶段处于复杂的受力状态,易出现局部破损现象。阐明了盾构施工阶段管片的受力特点,对其常见的局部破损现象及产生原因进行了总结与分析,在此基础上构建了施工阶段的管片力学模型,即一端固定、一端简支的受力构件。以某盾构工程施工参数为例,运用有限元方法实现该力学模型,按不同工况对其进行了数值模拟,并与现场实测结果进行了对比分析。研究表明:盾构施工阶段,衬砌管片会在第5~7环之间产生局部破损,与现场出现的管片破损部位十分接近;千斤顶推力的大小、倾角及偏差是导致施工阶段管片局部破损的主要原因,并给出了盾构施工阶段减轻管片破损的一些建议。  相似文献   

12.
地铁隧道施工对邻近建筑物影响的研究   总被引:6,自引:0,他引:6  
姜忻良  贾勇  赵保建  王涛 《岩土力学》2008,29(11):3047-3053
以某框架结构办公楼为研究对象,将建筑物和开洞地基看作一个有机的整体,按照结构-土体-隧道共同作用进行分析。利用有限元软件ANSYS10.0建立三维非线性有限元模型,研究计算了盾构法地铁隧道穿越建筑物时对建筑物自身沉降和内力的影响。分析结果表明,建筑物基础的沉降主要发生在地铁隧道穿越建筑物的区间段内;建筑物的横向倾斜随着盾构的掘进逐渐增大,而其纵向倾斜量最大值则出现在开挖面在建筑物中线附近时;在盾构穿越建筑物的过程中柱子的等效应 力增幅可达20.1 %;相对于弯矩而言,建筑物构件的扭矩变化更为显著;当开挖面越过建筑物20 m时其变形和内力均趋于稳定。  相似文献   

13.
盾构隧道管片上浮问题研究   总被引:10,自引:1,他引:9  
肖明清  孙文昊  韩向阳 《岩土力学》2009,30(4):1041-1045
盾构隧道施工过程中衬砌管片上浮问题是客观存在的,且一直是较难解决的问题之一,而大直径盾构隧道的上浮问题表现的更为突出。应用有限元法,对地层材料的物理力学性质、注浆材料的性质等影响盾构衬砌环上浮的因素进行了分析。根据分析结果,结合对衬砌结构在施工过程中受力状态的分析,对衬砌环上浮的原因进行了阐述,据此针对大直径盾构隧道的特点,提出了施工、设计过程中控制衬砌管片上浮的对策和措施,可为盾构隧道的施工和设计提供参考。  相似文献   

14.
城市地铁隧道施工对管线的影响研究   总被引:26,自引:4,他引:22  
结合深圳地铁大剧院-科学馆区间隧道非降水施工对管线的影响问题,阐明了该工程的施工方案,给出了管线安全性的评价标准。在此基础上,首先利用土工离心模型试验,模拟了隧道开挖对管线的影响,然后,利用三维弹塑性有限元法模拟了隧道施工过程中管线的动态响应。通过离心模型试验、数值模拟分析、现场量测的地表沉降值的对比分析可知,三者的数据基本吻合,论证了分析结果的合理性和可靠性,并对施工期间管线的安全性做出了评价,为该工程顺利实施提供了理论依据和指导作用,并取得了一些有意义的成果。  相似文献   

15.
丁智  魏新江  魏纲  陈伟军 《岩土力学》2009,30(Z2):550-554
在建筑物密集的城区,盾构施工使周围一定范围内的既有建筑物受到影响。在考虑建筑物基础形式的不同的情况下,采用二维有限元方法对邻近不同位置建筑物工况下的盾构隧道施工进行了模拟和分析。研究表明,建筑物轴线到隧道轴线的水平距离和建筑物基础形式是影响邻近建筑物工况下隧道开挖引起地面沉降的重要因素,建筑物的存在会增大隧道开挖引起的地面沉降,建筑物对隧道开挖引起的地面沉降的影响存在一个影响范围,超过该范围时建筑物的影响可忽略不计  相似文献   

16.
丁智  魏新江  魏纲  李晓珍 《岩土力学》2011,32(Z1):749-0754
在建筑物密集的城区,盾构施工通常会使周围一定范围内的既有建筑物受到影响。在考虑建筑物基础形式不同情况下,采用有限元方法对邻近不同位置建筑物工况下的盾构隧道施工进行了模拟和分析。研究表明:建筑物基础形式不同,对隧道衬砌的受力状况的影响也不同,在邻近建筑物的盾构隧道施工时衬砌要承受更大的内力值。对于隧道邻近浅基础建筑物的工况,隧道开挖对建筑物的影响比较大;但对于桩基础建筑物,邻近基础一侧隧道开挖引起的建筑物内力变化相对较小  相似文献   

17.
盾构隧道抗震分析的静力推覆方法   总被引:2,自引:0,他引:2  
杨智勇  黄宏伟  张冬梅  张洁 《岩土力学》2012,33(5):1381-1388
利用动力时程法对盾构隧道进行抗震分析时,计算时间长,工作量大,土体本构以及阻尼的选择困难,不利于工程设计广泛应用。为了解决这些困难,借鉴地上结构静力推覆分析方法的思想,并结合盾构隧道的地震响应主要由周围土体的地震响应所控制的这一特点,改进了静力推覆方法中的水平加载模式,提出了适用于盾构隧道抗震分析的静力推覆分析方法,并引入了隧道倾斜度的概念来衡量隧道的抗震性能。此法通过对计算模型施加沿地层深度方向分布的倒三角侧向水平位移,来模拟地震对盾构隧道的作用,概念清楚,考虑了隧道与周围土体的相互作用,避免了在动力时程分析中所涉及的土体本构和阻尼的选择、计算模型边界条件等复杂问题,大大降低了盾构隧道抗震分析的难度,同时,可以得到隧道的抗震能力曲线。与动力时程分析的对比结果表明,在弹性阶段,此法的计算结果合理,具有较高的精度,适用于盾构隧道抗震设计。  相似文献   

18.
地震荷载作用下地铁盾构隧道动力响应分析   总被引:2,自引:0,他引:2       下载免费PDF全文
动力荷载作用下的土与地下结构的相互作用是工程研究的一个热点。基于动力学基本方程,运用有限单元法和振型迭加法,对位于黄土地区的盾构地铁隧道在El Centro地震波动力荷载作用下的动力反应进行弹塑性数值分析。从计算结果分析得出在El Centro地震波作为动力激励时地铁盾构隧道的动力反应特征。分析得出盾构隧道在地震波作用下拱底所产生的加速度最大,且这一部位的动应力最大。同时隧道结构内侧的累积变形大于其外侧所对应各点的累积变形,且最大变形出现在隧道结构的侧墙部位。  相似文献   

19.
钟宇  陈健  陈国良  吴佳明 《岩土力学》2018,39(5):1867-1876
为解决隧道工程建设各阶段之间的信息交流和数据共享困难的问题,前期在工业基础类(industry foundation classes,简称IFC)标准的基础上实现了盾构隧道建模数据模型。在此基础上,提出基于建筑信息模型(building information modeling,简称BIM)技术的盾构隧道结构信息模型建模方法。根据扩展的盾构隧道结构信息模型的IFC表达,提出了单个管片块建模方法和隧道线路解算流程和步骤。在此基础上,进行盾构管片拼装与隧道建模,建立了盾构隧道建模流程和参数化建模方法,形成了基于BIM技术的盾构隧道结构信息模型建模方法。最后,通过实例验证了建模方法的可行性。工程应用表明,通过借鉴和引入BIM技术,建立基于统一IFC数据标准的盾构隧道结构信息模型,可以实现盾构隧道信息的无损交换与充分共享,从而进一步验证了前期提出的基于IFC的盾构隧道建模数据模型的正确性。研究成果可为隧道数值计算分析提供初始模型,为实现隧道三维可视化模型和分析计算模型的无缝对接提供基础。  相似文献   

20.
This paper presents a finite element approach to solve geotechnical problems with interfaces. The behaviours of interfaces obey the Mohr–Coulomb law. The FEM formulae are constructed by means of the principle of virtual displacement with contact boundary. To meet displacement compatibility conditions on contact boundary, independent degrees of freedom are taken as unknowns in FEM equations, instead of conventional nodal displacements. Examples on pressure distribution beneath a rigid strip footing, lateral earth pressure on retaining walls, behaviours of axially loaded bored piles, a shield‐driven metro tunnel, and interaction of a sliding slope with the tunnels going through it are solved with this method. The results show good agreement with analytical solutions or with in situ test results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号