首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphological changes of multiple intertidal bars (ridges) on a macrotidal beach were examined under low-energy wave conditions during a spring-to-spring tidal cycle. The morphological response was coupled to the tidal water level variations and related residence times for swash processes and surf (breaking waves and bores) over the cross-shore profile. Spring tides induced a large spatial variation in water lines and small residence times for distinct processes. Neap tides narrowed the intertidal area and increased the time for certain processes to work on the sediment at one location. The observed morphological changes could be coupled to the stagnation of processes at a certain bar crest position. The action of surf (breaking waves and bores) played the major role in the onshore migration of the intertidal bars and the simultaneous erosion of the seaward flank. Swash action, responsible for the generation and migration of intertidal bars in microtidal settings, was not the dominant process in causing the observed morphological changes. Intertidal ridges on macrotidal beaches cannot be considered swash bars as suggested by most previous investigations into these morphological features.  相似文献   

2.
A laboratory study on the turbulence and wave energy dissipations of spilling breakers in a surf zone is presented. Instantaneous velocity fields of propagating breaking waves on a 1/20 slope were measured using Particle Image Velocimetry (PIV). Due to the large region of the evolving wave breaking generated turbulent flow, seven PIV fields of view (FOVs) were mosaicked to form a continuous flow field in the surf zone. Mean and turbulence quantities were extracted by ensemble averaging 25 repeated instantaneous measurements at each FOV. New results for distribution and evolution of turbulent kinetic energy, mean flow energy, and total energy across the surf zone were obtained from analyzing the data. The turbulence dissipation rate was estimated based on several different approaches. It was found that the vertical distribution of the turbulence dissipation rate decays exponentially from the crest level to the bottom. The resulting energy budget and energy flux were also calculated. The calculated total energy dissipation rate was compared to that based on a bore approximation. It was found that the ratio of turbulence dissipation rate to total energy dissipation rate was about 0.01 in the outer surf zone and increased to about 0.1 after the breaking waves transformed into developed turbulent bores in the inner surf zone.  相似文献   

3.
Experimental Study on the Bed Shear Stress Under Breaking Waves   总被引:1,自引:0,他引:1  
The object of present study is to investigate the bed shear stress on a slope under regular breaking waves by a novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor. The sensors were calibrated before application, and then a wave flume experiment was conducted to study the bed shear stress for the case of regular waves spilling and plunging on a 1:15 smooth PVC slope. The experiment shows that the sensor is feasible for the measurement of the bed shear stress under breaking waves. For regular incident waves, the bed shear stress is mainly periodic in both outside and inside the breaking point. The fluctuations of the bed shear stress increase significantly after waves breaking due to the turbulence and vortexes generated by breaking waves. For plunging breaker, the extreme value of the mean maximum bed shear stress appears after the plunging point, and the more violent the wave breaks, the more dramatic increase of the maximum bed shear stress will occur. For spilling breaker, the increase of the maximum bed shear stress along the slope is gradual compared with the plunging breaker. At last, an empirical equation about the relationship between the maximum bed shear stress and the surf similarity parameter is given, which can be used to estimate the maximum bed shear stress under breaking waves in practice.  相似文献   

4.
Ambient noise in the surf zone, in the frequency range 120 Hz to 5 kHz, was recorded using a broad-band hydrophone, located approximately 1 m above bottom and 1-2 m below the mean sea surface. The predominant source of this noise is breaking waves. Analysis of simultaneous land-based video observations of the sea surface in the region of the hydrophone, along with wave height data, reveals quantitative correlation between wave-breaking events and the hydrophone signal. In energetic surf, locally breaking waves appear as discrete events in the ambient noise spectra. Distant breaking events do not appear to be detected, as distinct events above the ambient background noise, by the hydrophone. The noise events associated with local breakers are characterized by an asymmetry in the time envelope: low frequencies (less than 500 Hz) are observed leading the breaking crest, followed by a broader range of frequencies peaking in intensity with the passage of the wave crest above the hydrophone, and then decreasing abruptly at all frequencies. Low frequencies are generally not observed trailing the breaking wave. The detection by the hydrophone of breaking waves in the immediate vicinity implies that ambient noise in heavy surf provides a means of studying breaking-wave statistics in the surf zone in situ: in particular, the frequency of occurrence of local breaking  相似文献   

5.
低频长波对港湾共振、泥沙输运、波浪爬高与越浪等过程有重要影响。采用非静压模型SWASH模拟了不规则波在浅滩上的传播及破碎过程,重点探讨了滩顶短波破碎程度对低频波能演变的影响。模拟结果显示,当滩顶短波处于临界破碎状态时,低频波能流沿浅滩持续增长,浅滩对低频长波的放大效应(滩后与滩前低频波能流之比)显著;当滩顶短波轻微破碎、破波仅发生在外破波区时,低频波能流的沿滩增长率进一步变大;当滩顶短波剧烈破碎、破波延续到内破波区时,低频波能流沿滩先增长而后转为衰减,滩后放大率较临界破碎时明显减小。研究结果表明,浅滩顶部水深改变了短波破碎程度,进而影响低频长波的演化过程,浅滩上长波总体增长率随滩顶水深的减小呈现先增大后减小的规律,在短波轻微破碎时最大。  相似文献   

6.
Cross-shore variations of wave groupiness by wavelet transform   总被引:1,自引:0,他引:1  
This paper proposes a new definition of groupiness factor (GF) based on the local wavelet energy density of the wave time series to describe the groupiness degree of waves. The main advantage of this new GF is that the effect of the operational definition on it is smaller than that on SIWEH-based GF or envelop-based GF. Then, the new GF is used to study the groupiness variations of mechanically generated irregular waves in a wave flume propagating on a slope of 1:45. The results of present study show that the decrease of groupiness in the coast is triggered by breaking. And energy distribution along the record time for the first harmonics of waves in the surf zone, which becomes more uniform than that out the surf zone, is the main reason causing the decrease of groupiness.  相似文献   

7.
A surf zone with large breaking waves produces more spray than do offshore regions. Latent heat of spray evaporation causes change in the surrounding temperature and wind velocity, resulting in further alterations in temperature, wind velocity and heat flux. Spray in a surf zone with large breaking waves may have unignorable effect on determination of a local meteorological field because of this interconnected relationship as well as its higher population than in the open ocean. In this study, the effects of the spray latent heat on a meteorological field were investigated. The authors propose a method for estimating latent heat of spray vaporization over the ocean. The method was applied to a meso-scale meteorological model to perform numerical experiments with consideration of heat flux by spray. Although the contribution of heat flux on the ocean was as small as 2.5%, fluctuations of air temperature and wind velocity increased over time due to the effects of spray. The fluctuations are thought to cause uncertainty in weather prediction. Numerical experiments with spray provided predictions of air temperature and wind velocity near a coast line that were consistent with observational data, especially when the population of spray droplets increased by two orders of magnitude as is often observed in a coastal area.  相似文献   

8.
Wave elevations and water particle velocities were measured in a laboratory surf zone created by the breaking of a narrow-band irregular wave train on a 1/35 plane slope. The incident waves form wave groups that are strongly modulated. It is found that the waves that break close to the shoreline generally have larger wave-height-to-water-depth ratios before breaking than the waves that break farther offshore. After breaking, the wave-height-to-water-depth ratio for the individual waves approaches a constant value in the inner surf zone, while the standard deviation of the wave period increases as the still water depth decreases. In the outer surf zone, the distribution of the period-averaged turbulent kinetic energy is closely correlated to the initial wave heights, and has a wider variation for narrow-band waves than for broad-band waves. In the inner surf zone, the distribution of the period-averaged turbulent kinetic energy is similar for narrow-band waves and broad-band waves. It is found that the wave elevation and turbulent kinetic energy time histories for the individual waves in a wave group are qualitatively similar to those found in a spilling regular wave. The time-averaged transport of turbulent kinetic energy by the ensemble-averaged velocity and turbulence velocity under the irregular breaking waves are also consistent with the measurements obtained in regular breaking waves. The experimental results indicate that the shape of the incident wave spectrum has a significant effect on the temporal and spatial variability of wave breaking and the distribution of turbulent kinetic energy in the outer surf zone. In the inner surf zone, however, the distribution of turbulent kinetic energy is relatively insensitive to the shape of the incident wave spectrum, and the important parameters are the significant wave height and period of the incident waves, and the beach slope.  相似文献   

9.
The run-up and back-wash processes of single and double solitary waves on a slope were studied experimentally. Experiments were conducted in three different wave flumes with four different slopes. For single solitary wave, new experimental data were acquired and, based on the theoretical breaking criterion, a new surf parameter specifically for breaking solitary waves was proposed. An equation to estimate maximum fractional run-up height on a given slope was also proposed. For double solitary waves, new experiments were performed by using two successive solitary waves with equal wave heights; these waves were separated by various durations. The run-up heights of the second wave were found to vary with respect to the separation time. Particle image velocimetry measurements revealed that the intensity of the back-wash flow generated by the first wave strongly affected the run-up height of the second wave. Showing trends similar to that of the second wave run-up heights, both the back-wash breaking process of the first wave and the reflected waves were strongly affected by the wave–wave interaction. Empirical run-up formula for the second solitary wave was also introduced.  相似文献   

10.
New laboratory and field data are presented on fluid advection into the swash zone. The data illustrate the region of the inner surf zone from which sediment can be directly advected into the swash zone during a single uprush, which is termed the advection length. Experiments were conducted by particle tracking in a Lagrangian reference frame, and were performed for monochromatic breaking waves, solitary bores, non-breaking solitary waves and field conditions. The advection length is normalised by the run-up length to give an advection ratio, A, and different advection ratios are identified on the basis of the experimental data. The data show that fluid enters the swash zone from a region of the inner surf zone that can extend a distance seaward of the bore collapse location that is approximately equal to half of the run-up length. This region is about eight times wider than the region predicted by the classical swash solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. Journal of Fluid Mechanics 16, 113–125], as illustrated by Pritchard and Hogg [Pritchard, D., Hogg, A.J., 2005. On the transport of suspended sediment by a swash event on a plane beach. Coastal Engineering 52, 1–23]. Measured advection ratios for periodic waves show no significant trend with Iribarren number, consistent with self-similarity in typical swash flows. The data are compared to recent characteristic solutions of the non-linear shallow water wave (NLSW) equations and both finite difference and finite volume solutions of the NLSW equations.  相似文献   

11.
T.D. Price  B.G. Ruessink   《Marine Geology》2008,251(1-2):98-109
This paper builds on the work of Masselink [Masselink, G., 1993. Simulating the effects of tides on beach morphodynamics. J. Coast. Res. SI 15, 180–197.] on the use of the residence times of shoaling waves, breaking waves and swash/backwash motions across a cross-shore profile to qualitatively understand temporal beach behaviour. We use a data set of in-situ measurements of wave parameters (height and period) and water depth, and time-exposure video images overlooking our single-barred intertidal measurement array at Egmond aan Zee (Netherlands) to derive boundaries between the shoaling zone, the surf zone and the swash zone. We find that the boundaries are functional dependencies of the local relative wave height on the local wave steepness. This contrasts with the use of constant relative wave heights or water levels in earlier work. We use the obtained boundaries and a standard cross-shore wave transformation model coupled to an inner surf zone bore model to show that large (> 5) relative tide ranges (RTR, defined as the ratio tide range–wave height) indicate shoaling wave processes across almost the entire intertidal profile, with surf processes dominating on the beach face. When the RTR is between 2 and 5, surf processes dominate over the intertidal bar and the lower part of the beach face, while swash has the largest residence times on the upper beach face. Such conditions, associated with surf zone bores propagating across the bar around low tide, were observed to cause the intertidal bar to migrate onshore slowly and the upper beach face to steepen. For RTR values less than about 2, surf zone processes dominate across the intertidal bar, while the dominance of swash processes now extends across most of the beach face. The surf zone processes were now observed to lead to offshore bar migration, while the swash eroded the upper beach face.  相似文献   

12.
A new form of hyperbolic mild slope equations is derived with the inclusion of the amphtude dispersion of nonlinear waves. The effects of including the amplitude dispersion effect on the wave propagation are discussed. Wave breaking mechanism is incorporated into the present model to apply the new equations to surf zone. The equations are solved nu- merically for regular wave propagation over a shoal and in surf zone, and a comparison is made against measurements. It is found that the inclusion of the amplitude dispersion can also improve model' s performance on prediction of wave heights around breaking point for the wave motions in surf zone.  相似文献   

13.
The characteristics of wave and turbulence velocities created by a broad-banded irregular wave train breaking on a 1:35 slope were studied in a laboratory wave flume. Water particle velocities were measured simultaneously with wave elevations at three cross-shore locations inside the surf zone. The measured data were separated into low-frequency and high-frequency time series using a Fourier filter. The measured velocities were further separated into organized wave-induced velocities and turbulent velocity fluctuations by ensemble averaging. The broad-banded irregular waves created a wide surf zone that was dominated by spilling type breakers. A wave-by-wave analysis was carried out to obtain the probability distributions of individual wave heights, wave periods, peak wave velocities, and wave-averaged turbulent kinetic energies and Reynolds stresses. The results showed that there was a consistent increase in the kurtosis of the vertical velocity distribution from the surface to the bottom. The abnormally large downward velocities were produced by plunging breakers that occurred from time to time. It was found that the mean of the highest one-third wave-averaged turbulent kinetic energy values in the irregular waves was about the same as the time-averaged turbulent kinetic energy in a regular wave with similar deep-water wave height to wavelength ratio. It was also found that the correlation coefficient of the Reynolds stress varied strongly with turbulence intensity. Good correlation between u′ and w′ was obtained when the turbulence intensity was high; the correlation coefficient was about 0.3–0.5. The Reynolds stress correlation coefficient decreased over a wave cycle, and with distance from the water surface. Under the irregular breaking waves, turbulent kinetic energy was transported downward and landward by turbulent velocity fluctuations and wave velocities, and upward and seaward by the undertow. The undertow in the irregular waves was similar in vertical structure but lower in magnitude than in regular waves, and the horizontal velocity profiles under the low-frequency waves were approximately uniform.  相似文献   

14.
An experiment was carried out over a nine day period from August 18 to 27, 1996 to examine acoustic wave propagation in random media at frequencies applicable to synthetic aperture sonar. The objective was to test experimentally the hypothesized imaging effects of variations in the sound speed along two different acoustic paths as put forth by F.S. Henyey et al. (1997). The focus of this paper is on describing the experiment and carrying out an initial analysis of the data in the context of the effect of ocean internal waves on imaging resolution. The oceanography is summarized to the extent needed to discuss important aspects relative to the acoustics experiment. In the acoustics experiment transmissions at 6, 20, 75, and 129 kHz between sources and receiver arrays were carried out. Source to receiver separation was about 815 m. All sources and receivers were mounted on bottom-deployed towers and were at least 9 m off the seafloor. The analysis concentrates on the 75-kHz data acquired during one day of the experiment. The time span examined Is sufficient to examine a diurnal tidal cycle of the oceanographic conditions. The results indicate the IW phase perturbations would have a significant effect on imaging for even the most benign conditions of the experiment if no autofocusing scheme is used. Also, though autofocusing should be useful in recovering the focus for these conditions, there are conditions (e.g., for the path that has a turning point at the thermocline and during times when solibores are present), where more sophisticated compensation schemes would be needed  相似文献   

15.
New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations for regular waves to random waves. The nonlinear effect of amplitude dispersion is incorporated approximately into the model by only considering the nonlinear effect on the carrier waves of random waves, which is done by introducing a representative wave amplitude for the carrier waves. The computation time is greatly saved by the introduction of the representative wave amplitude. The extension of the present model to breaking waves is also considered in order to apply the new equations to surf zone. The model is validated for random waves propagate over a shoal and in surf zone against measurements.  相似文献   

16.
When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calcula...  相似文献   

17.
This paper considers the nonlinear transformation of irregular waves propagating over a mild slope (1:40). Two cases of irregular waves, which are mechanically generated based on JONSWAP spectra, are used for this purpose. The results indicate that the wave heights obey the Rayleigh distribution at the offshore location; however, in the shoaling region, the heights of the largest waves are underestimated by the theoretical distributions. In the surf zone, the wave heights can be approximated by the composite Weibull distribution. In addition, the nonlinear phase coupling within the irregular waves is investigated by the wavelet-based bicoherence. The bicoherence spectra reflect that the number of frequency modes participating in the phase coupling increases with the decreasing water depth, as does the degree of phase coupling. After the incipient breaking, even though the degree of phase coupling decreases, a great number of higher harmonic wave modes are also involved in nonlinear interactions. Moreover, the summed bicoherence indicates that the frequency mode related to the strongest local nonlinear interactions shifts to higher harmonics with the decreasing water depth.  相似文献   

18.
This paper considers the nonlinear transformation of irregular waves propagating over a mild slope (1?40). Two cases of irregular waves, which are mechanically generated based on JONSWAP spectra, are used for this purpose. The results indicate that the wave heights obey the Rayleigh distribution at the offshore location; however, in the shoaling region, the heights of the largest waves are underestimated by the theoretical distributions. In the surf zone, the wave heights can be approximated by the composite Weibull distribution. In addition, the nonlinear phase coupling within the irregular waves is investigated by the wavelet-based bicoherence. The bicoherence spectra reflect that the number of frequency modes participating in the phase coupling increases with the decreasing water depth, as does the degree of phase coupling. After the incipient breaking, even though the degree of phase coupling decreases, a great number of higher harmonic wave modes are also involved in nonlinear interactions. Moreover, the summed bicoherence indicates that the frequency mode related to the strongest local nonlinear interactions shifts to higher harmonics with the decreasing water depth.  相似文献   

19.
Waverider buoys were installed in approximately 16 m of water offshore of the Size-well-Dunwich Bank off the East Coast of England and in approximately 11 m of water inshore of it. Minimum water depth over the bank was approximately 4.5 m at mid-tide level. Simultaneous records were obtained for substantial periods between November 1978 and May 1979. These show negligible attenuation for small waves, but as the offshore waveheight increased, the inshore waveheight tended to saturate at an Hs of about 3 m. The form of the relationship between inshore and offshore waveheight is predicted theoretically assuming that high individual waves which cross the bank are limited by breaking. The theoretical curve agrees well with the measured data. The measured saturation level corresponds to a wave breaking when its height is approximately 0.5 the water depth, which is considerably lower than the usual engineering criterion. However, some published tank results also appear to show the same low value.  相似文献   

20.
The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号