首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
The European project SERGISAI developed a computational tool where amethodology for seismic risk assessment at different geographical scales hasbeen implemented. Experts of various disciplines, including seismologists,engineers, planners, geologists, and computer scientists, co-operated in anactual multidisciplinary process to develop this tool. Standard proceduralcodes, Geographical Information Systems (GIS), and Artificial Intelligence(AI) techniques compose the whole system, that will enable the end userto carry out a complete seismic risk assessment at three geographical scales:regional, sub-regional and local. At present, single codes or models thathave been incorporated are not new in general, but the modularity of theprototype, based on a user-friendly front-end, offers potential users thepossibility of updating or replacing any code or model if desired. Theproposed procedure is a first attempt to integrate tools, codes and methodsfor assessing expected earthquake damage, and it was mainly designedto become a useful support for civil defence and land use planning agencies.Risk factors have been treated in the most suitable way for each one, interms of level of detail, kind of parameters and units of measure.Identifying various geographical scales is not a mere question of dimension;since entities to be studied correspond to areas defined by administrativeand geographical borders. The procedure was applied in the following areas:Toscana in Italy, for the regional scale, the Garfagnana area in Toscana, forthe sub-regional scale, and a part of Barcelona city, Spain, for the localscale.  相似文献   

2.
Recent earthquakes such as the MJMA 7.2 Hyogo-ken Nambu earthquake and the M 7.4 Kocaeli earthquake demonstrate once again the need to include detailed soil investigation into hazard evaluation, that is the need of microzonation. Seismic hazard assessment evaluated at a regional scale generally does not consider soil effects but only in a limited way using an attenuation law that can be ‘soft soil’ or ‘rock’. However, the relevant role of seismic hazard in the assessment of seismic coefficients for the definition of the actions in seismic codes must be properly considered. That is to say, the level of protection of buildings is proportional to a definite level of hazard (generally considered to be the ground motion with 10% probability of exceedence in 50 years). When a microzonation is performed, this criterion cannot be ignored, therefore, a clear linkage must be established between hazard (regional scale) and microzonation. The crucial point is represented by the reference motion (or input motion) to be used for site effects analysis, that must be compatible with the regional seismic hazard. In this paper, three different approaches for reference motion evaluation are analysed: probabilistic; stochastic; and deterministic. Through the case history of Fabriano microzonation the three approaches are compared. It is shown that each approach presents advantages and disadvantages with respect to the others. For example, the probabilistic approach (the reference motion is directly derived from the expected response spectra for a given return period) is linked with hazard, but produces an overestimation in short periods range, while the deterministic approach correctly simulates the wave propagation, but it ends with a kind of conditional probability. Until now, clear criteria to choose the right approach do not appear to exist and the expert experience is of fundamental importance.  相似文献   

3.
Seismic risk evaluation of built-up areas involves analysis of the level of earthquake hazard of the region, building vulnerability and exposure. Within this approach that defines seismic risk, building vulnerability assessment assumes great importance, not only because of the obvious physical consequences in the eventual occurrence of a seismic event, but also because it is the one of the few potential aspects in which engineering research can intervene. In fact, rigorous vulnerability assessment of existing buildings and the implementation of appropriate retrofitting solutions can help to reduce the levels of physical damage, loss of life and the economic impact of future seismic events. Vulnerability studies of urban centres should be developed with the aim of identifying building fragilities and reducing seismic risk. As part of the rehabilitation of the historic city centre of Coimbra, a complete identification and inspection survey of old masonry buildings has been carried out. The main purpose of this research is to discuss vulnerability assessment methodologies, particularly those of the first level, through the proposal and development of a method previously used to determine the level of vulnerability, in the assessment of physical damage and its relationship with seismic intensity. Also presented and discussed are the strategy and proposed methodology adopted for the vulnerability assessment, damage and loss scenarios for the city centre of Coimbra, Portugal, using a GIS mapping application.  相似文献   

4.
We present the basis for a method for estimating the return period of large and medium earthquakes that is independent of current deterministic and probabilistic approaches. The two standard techniques of seismic hazard assessment??probabilistic seismic hazard assessment (PSHA) and deterministic seismic hazard assessment (DSHA)??suffer from limited knowledge of seismic prehistory. A further weakness of PSHA is its requirement of homogeneous seismic activity within a seismic zone. Moreover, PSHA and DSHA were developed for seismically active areas and, thus, cannot reliably be used in areas of medium and low activity. In this paper we propose the combined use of geodetic strain rate data and the seismic moment data set determined for past seismic events. This combination represents a new and independent approach to estimation of future seismic activity. Using a modified version of Kostrov??s (Phys Solid Earth 1:23?C40, 1974) equation and the catalogue of seismic moments, the minimum return period of the strongest earthquakes of a source area is estimated.  相似文献   

5.
Seismic Hazard Assessment: Issues and Alternatives   总被引:3,自引:0,他引:3  
Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used interchangeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been proclaimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications.  相似文献   

6.
The main features of the Risk-UE project approach to assessing the ground-shaking (and related hazards) distribution within urban areas are described, as a basis for developing seismic damage scenarios for European cities. Emphasis was placed in the project on adoption of homogeneous criteria in the quantitative treatment of seismicity and in constructing the ground-shaking scenarios, despite wide differences in amount and quality of data available for the cities involved. The initial steps of the approach include treatment of the regional seismotectonic setting and the geotechnical zonation of the urban area, while the hazard assessment itself takes the form of both a deterministic analysis, and of a probabilistic, constant-hazard spectra analysis. Systematic 1D site response analyses were used, mostly in the softer soil zones, to modify (when needed) the obtained ground motion maps. Earthquake induced hazard effects, such as liquefaction and landsliding, are also briefly dealt with at the end.  相似文献   

7.
Seismotectonic zonation studies in the Tell Atlas of Algeria, a branch of the Africa-Eurasia plate boundary, provide a valuable input for deterministic seismic hazard calculations. We delineate a number of seismogenic zones from causal relationships established between geological structures and earthquakes and compile a working seismic catalogue mainly from readily available sources. To this catalogue, for a most rational and best-justified hazard analysis, we add estimates of earthquake size translated from active faulting characteristics. We assess the regional seismic hazard using a deterministic procedure based on the computation of complete synthetic seismograms (up to 1 Hz) by the modal summation technique. As a result, we generate seismic hazard maps of maximum velocity, maximum displacement, and design ground acceleration that blend information from geology, historical seismicity and observational seismology, leading to better estimates of the earthquake hazard throughout northern Algeria. Our analysis and the resulting maps illustrate how different the estimate of seismic hazard is based primarily on combined geologic and seismological data with respect to the one for which only information from earthquake catalogues has been used.  相似文献   

8.
The tectonic system of the eastern flank of Mt. Etna volcano (Sicily, Italy) is the source of most of the strongest earthquakes occurring in the area over the last 205 years. A total of 12 events with epicentre intensities ≥VIII EMS have occurred at Mt. Etna, 10 of which were located on the eastern flank. This indicates a mean recurrence time of about 20 years. This area is highly urbanised, with many villages around the volcano at altitudes up to 700 m a.s.l. The southern and eastern flanks are particularly highly populated areas, with numerous villages very close to each other. The probabilistic seismic hazard due to local faults for Mt. Etna was calculated by adopting a site approach to seismic hazard assessment. Only the site histories of local volcano-tectonic earthquakes were considered, leaving out the effects due to strong regional earthquakes that occurred in north-eastern and south-eastern Sicily. The inventory used in this application refers to residential buildings. These data were extracted from the 1991 census of the Italian National Institute of Statistics, and are grouped according to the census sections. The seismic vulnerability of the elements at risk belonging to a given building typology is described by a vulnerability index, in accordance with a damage model based on macroseismic intensities. For the estimation of economic losses due to physical damage to buildings, an integrated impact indicator was used, which is equivalent to the lost building volume. The expected annualised economic earthquake losses were evaluated both in absolute and in relative terms, and were compared with the geographical distribution of seismic hazard and with similar evaluations of losses for other regions.  相似文献   

9.
Modern engineering design methods require ground motion time histories as input for non-linear dynamic structural analysis. Non-linear dynamic methods of analysis are increasingly applied in the context of probabilistic risk assessments and for cost-effective design of critical infrastructures. In current engineering practice artificial time histories matching deterministic design spectra or probabilistic uniform hazard spectra are most frequently used for engineering analysis. The intermediate step of generation of response spectra can lead to a biased estimate of the potential damage from earthquakes because of insufficient consideration of the true energy content and strong motion duration of earthquakes. Thus, assessment of seismic risk may seem unrealistic. An engineering approach to the development of three-component ground motion time histories has been established which enables consideration of the typical characteristics of seismic sources, regional ground motion attenuation, and the main geotechnical characteristics of the target site. Therefore, the approach is suitable for use in scenario-based risk analysis a larger number of time histories are required for representation of the seismic hazard. Near-field effects are implemented in the stochastic source model using engineering approximations. The approach is suggested for use in areas of low seismicity where ground motion records of larger earthquakes are not available. Uncertainty analysis indicates that ground motions generated by individual earthquakes are well constrained and that the usual lognormal model is not the best choice for predicting the upper tail of the distribution of the ground motions.  相似文献   

10.
11.
以汶川地震为研究背景,针对震后典型钢筋混凝土框架结构进行地震易损性研究。基于Cornell理论框架结合汶川地质资料,拟合出考虑场地特点的地震危险性模型,同时定义损伤水平状态及限值指标,以概率解析易损性研究方法为基础,运用考虑地震动参数的解析易损性评估方法绘制汶川地区钢筋混凝土框架建筑的地震易损性曲线。研究结果表明:考虑地震动参数的概率解析易损性研究方法是一种有效的地震易损性评估方法;以PGA作为地震强度输入指标的结构反应,随自振周期的增大体系最大响应的相关性降低,结构各个损伤状态的失效概率均随之增大。  相似文献   

12.
An approach that relates results from a regional seismic hazard assessment study with local-scale site-effect characterizations in an area of low-to-moderate seismic activity such as Andalusia (southern Spain), is presented. Results of a previous probabilistic seismic hazard analysis of Andalusia on rock conditions are disaggregated to infer hazard controlling earthquakes for different target motions. A collection of controlling magnitude-distance pairs and the corresponding site-specific response spectra at main capital cities of the region are obtained. These spectra are first-order approximations to expected seismic actions required in local earthquake risk assessments. In addition, results of independent, local-scale studies developed in Almeria City (SE Andalusia) are used to derive an updated seismic zonation of the city. These include predominant soil period estimates and shear-wave velocity profiles at different locations. If a local seismic risk assessment study or an earthquake-resistant structural design is to be developed, it may be recommended the use of different seismic actions on sites characterized by distinct response to seismic shaking (as derived from the seismic zonation). The seismic action related to worst-case scenarios may be modeled through a hazard-consistent response spectrum, obtained by hazard disaggregation at the spectral acceleration with period matching the prevailing resonant period of the target site or structure.  相似文献   

13.
The objectives of the Istanbul Seismic Risk Mitigation and Emergency Preparedness Project are to improve Istanbul’s preparedness for a potential earthquake. Within this framework “Risk Assessment of Cultural Heritage Buildings” was designed to address the vulnerability of cultural assets, specifically buildings with global cultural heritage value. One of the components of the project was the vulnerability and risk assessment of 170 historical buildings. After a discussion of the choice of the most appropriate earthquake scenario, the methodology used for assessing the effects of local site conditions on the seismic performance of selected cultural heritage buildings is presented. The purpose is to estimate the earthquake characteristics on the ground surface based on the earthquake characteristics on the engineering bedrock outcrop obtained from the probabilistic and deterministic hazard studies. The site specific elastic design spectra for each site are then further manipulated to obtain site specific non linear displacement spectra, so that these can be directly compared with capacity curves for the buildings obtained by using plasticity based limit state analysis. The procedure for obtaining the capacity curves is described and the choice of the most appropriate level of ductility and the equivalent reduction coefficient are discussed. A procedure to evaluate performance points and to define safety factors based on lateral acceleration, drift or expected damage level, is presented. The process of arriving at a risk evaluation and hence recommendation for strengthening or otherwise, is finally highlighted with respect to two comparable case studies.  相似文献   

14.
Surat, the financial capital of Gujarat, India, is a mega city with a population exceeding five millions. The city falls under Zone III of the Seismic Zoning Map of India. After the devastating 2001 Bhuj earthquake of Mw 7.7, much attention is paid towards the seismic microzonation activity in the state of Gujarat. In this work, an attempt has been made to evaluate the seismic hazard for Surat City (21.170?N, 72.830?E) based on the probabilistic and deterministic seismic hazard analysis. After collecting a catalogue of historical earthquakes in a 350?km radius around the city and after analyzing a database statistically, deterministic analysis has been carried out considering known tectonic sources; a further recurrence relationship for the control region is found out. Probabilistic seismic hazard analyses were then carried out for the Surat region considering five seismotectonic sources selected from a deterministic approach. The final results of the present investigations are presented in the form of peak ground acceleration and response spectra at bed rock level considering the local site conditions. Rock level Peak Ground Acceleration (PGA) and spectral acceleration values at 0.01?s and 1.0?s corresponding to 10% and 2% probability of exceedance in 50 years have been calculated. Further Uniform Hazard Response Spectrum (UHRS) at rock level for 5% damping, and 10% and 2% probability of exceedance in 50 years, were also developed for the city considering all site classes. These results can be directly used by engineers as basic inputs in earthquake-resistant design of structures in and around the city.  相似文献   

15.
This paper presents an integrated approach for evaluating seismic hazard and establishing ground motion at a site. In this approach, we combine the advantage of probabilistic and deterministic seismic hazard analyses and generate synthetic ground motion by considering the characteristics of seismic source, path attenuation, and local soil condition. Furthermore, uncertainties in seismic and soil parameters are taken into account. The proposed approach can be used to establish site-specific ground motion for engineering applications.  相似文献   

16.
盘锦、海城、营口地区是辽宁省内地震活动性最强、地震危险性最高的地区。该地区开展了大量重点工程地震安全性评价、区域性地震区划和地震小区划工作,但尚未开展基于场地条件的区域尺度地震危险性研究。独有的沉积特点使该地区场地条件较复杂,因此在地震危险性概率分析中考虑场地条件是必要的。本文基于新一代中国地震动参数区划图基本原理和技术原则,结合盘锦、海城、营口地区场地条件特征,采用基于地形坡度的方法对场地条件进行分类,确定场地地震动影响系数,给出该地区基于区域场地条件的地震危险性分布,相关研究结果可为地震风险评估和防震减灾规划提供参考。  相似文献   

17.
In all European countries the will to conserve the building heritage is very strong. Unfortunately, large areas in Europe are characterised by a high level of seismic hazard and the vulnerability of ancient masonry structures is often relevant. The large number of monumental buildings in urban areas requires facing the problem with a methodology that can be applied at territorial scale, with simplified models which need little easily obtainable, data. Within the Risk-UE project, a new methodology has been stated for the seismic vulnerability assessment of monumental buildings, which considers two different approaches: a macroseismic model, to be used with macroseismic intensity hazard maps, and a mechanical based model, to be applied when the hazard is provided in terms of peak ground accelerations and spectral values. Both models can be used with data of different reliability and depth. This paper illustrates the theoretical basis and defines the parameters of the two models. An application to an important church is presented.  相似文献   

18.
We present the results of probabilistic seismic hazard assessment for Iceland in the framework of the EU project UPStrat-MAFA using the so-called site approach implemented in the SASHA computational code. This approach estimates seismic hazard in terms of macroseismic intensity by basically relying on local information about documented effects of past seismic events in the framework of a formally coherent and complete treatment of intensity data. In the case of Iceland, due to the lack of observed intensities for past earthquakes, local seismic histories were built using indirect macroseismic estimates deduced from epicentral information through an empirical attenuation relationship in probabilistic form. Seismic hazard was computed for four exceedance probabilities for an exposure time of 50 years, equivalent to average return periods of 50, 200, 475 and 975 years. For some localities, further return periods were examined and deaggregation analysis was performed. Results appear significantly different from previous seismic hazard maps, though just a semi-qualitative comparison is possible because of the different shaking measure considered (peak ground acceleration versus intensity), and the different computational methodology and input data used in these studies.  相似文献   

19.
高菁阳 《地震工程学报》2020,42(6):1402-1408
桥梁作为交通中不可或缺的一部分,对其地震易损性进行研究具有现实意义。针对当前桥梁地震易损性分析方法存在准确性待提升的问题,提出基于模糊评定的钢筋混凝土桥梁地震易损性评估模型。以桥梁结构层次、材料层次及边界层几方面为主对桥梁评估过程中的不确定性参数进行分析。以分析结果为依据,考虑到桥梁损失是一个比较模糊的概念,引入模糊数学中的模糊评定方法对桥梁地震易损性进行评估。融合位移下桥梁支座损伤分析、能量下桥墩损伤分析、周期下桥梁结构整体损伤分析,构建可以反映钢筋混凝土桥梁由局部到整体的多层次模糊易损性评估模型。通过实验对所建模型进行验证,结果显示:在纵向只发生轻微破坏,且轻微破坏的概率较小,基本处于完好状态。而在横向,发生轻微破坏的概率较大,甚至还可能发生中等破坏。在地震作用下,桥梁破坏也基本以轻微破坏和中等破坏为主,严重破坏的概率很小。  相似文献   

20.
A seismic loss assessment for structural, non-structural, contents and business interruption is presented for precast reinforced concrete industrial buildings located in Italy. The correlation that exists between the performances of such spatially distributed buildings (i.e. spatial correlation) given a seismic event should be considered when estimating losses at a local or regional level. Loss assessment is thus performed herein using the OpenQuake-engine, an open-source tool capable of including the spatial correlation of ground-motion residuals and uncertainty in building vulnerability. The annual probability of structural collapse is employed as an initial risk measure, in which each industrial facility is considered as an individual asset. Then the economic loss for 300 buildings in the province of Arezzo is computed using a probabilistic event-based risk approach and presented in terms of annual average losses and losses at given annual rates of exceedance. The impact of the losses due to business interruption is also explored, and the extent of customer base is used as a prioritization metric for risk mitigation. It is observed that risk reduction should be applied as a priority in the facilities that are compromising the current level of acceptable risk, and the results show that business interruption has a significant contribution for economic losses, whose repercussions go beyond the regional level. Although this application is confined to the province of Arezzo, the same methodology can be used in other regions in Italy with similar building stock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号