首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
本文对2016年春节期间(2月7—13日)上海市空气质量及其成因进行了分析,并与2014年和2015年同期空气质量进行对比。结果表明:2016年春节期间上海市空气质量以优良为主,仅正月初一受除夕夜烟花爆竹燃放及不利大气扩散条件的影响,为三级轻度污染;通过对春节期间气象条件、后向轨迹及全国污染分布分析可知,除夕夜上海市大气扩散条件较差,有利于污染物在本地累积,另外上游地区污染物向本地输送也是造成2016年上海市除夕夜空气污染的主要原因之一;通过对比分析上海市烟花禁燃区域内外PM_(2.5)小时浓度的变化及PM_(2.5)浓度差值的绝对值可知,烟花禁燃对污染排放具有一定的控制作用。通过对2014—2016年春节期间上海市PM_(2.5)浓度的分析可知,总体2016年春节期间细颗粒物PM_(2.5)污染明显低于2014年同期,与2015年同期相比2016年春节期间空气质量具有PM_(2.5)峰值浓度低且污染持续时间短等特点,春节期间由于停产和停工使排放源减少,因此对上海市空气质量的改善效果明显。  相似文献   

2.
利用京津冀地区80个环境监测站PM_(2.5)浓度的逐时监测资料和常规气象站的观测资料,分析了2013年1月京津冀地区3次典型重污染天气过程PM_(2.5)浓度的分布和演变特征,选取PM_(2.5)浓度快速增长时段的风场特征分析外来源对北京地区污染输送的影响。结果表明:2013年1月京津冀地区存在3个PM_(2.5)浓度高值中心,分别位于石家庄—保定、廊坊和唐山地区。北京地区外来源主要来自河北省中南部的石家庄—保定及廊坊一带,主要通过边界层偏南风远距离输送影响北京地区,边界层辐合线和逆温结构加剧了污染物在北京地区的累积。随着静稳时间的增长,PM_(2.5)污染物向燕山和太行山前输送堆积,造成北京地区PM_(2.5)浓度高于河北省中南部地区,北京市郊区PM_(2.5)浓度高于城区。  相似文献   

3.
研究使用全球大气化学传输模式GEOS-Chem高分辨率(1/4°×5/16°)区域嵌套版本评估2014年亚洲-太平洋经济合作峰会(APEC)期间不同地区不同污染物减排对北京地区PM_(2.5)(粒径小于2.5μm的气溶胶颗粒,本文中定义为硫酸盐、硝酸银、铵盐、一次有机碳和黑碳气溶胶浓度之和)浓度降低的不同影响。在2014年10月15日至11月29日期间,模拟结果表明:模式可以重现观测结果中PM_(2.5)及主要气态污染物(一氧化碳、二氧化氮和二氧化硫)浓度的日变化趋势。在APEC期间,模拟PM_(2.5)浓度相比会议前期和会议后期下降55.9%–58.5%,与观测结果具有较好的一致性。敏感性实验结果表明:APEC期间华北地区氮氧化物和一次有机碳的减排对于北京地区PM_(2.5)浓度的降低影响最为显著,相应减排措施致使北京地区PM_(2.5)浓度分别下降5.7%和4.6%。同时,对氨气排放的控制可以有效地降低整个华北地区在APEC期间的PM_(2.5)浓度。  相似文献   

4.
将先进的在线源追踪模拟模块ISAM与空气质量模式系统RAMS-CMAQ耦合,对2015年7月华北地区主要气溶胶物种(硫酸盐、硝酸盐、铵盐、黑碳、有机碳、沙尘和海盐)进行模拟,并且深入探讨了不同地区排放源对PM_(2.5)质量浓度的贡献特征。模拟结果显示PM。2.5质量浓度高值主要出现在河北省南部和山东省西部北京和天津市的排放源对PM_(2.5)质量浓度的贡献主要集中在本地,而河北和山东省则为华北地区PM_(2.5)质量浓度的主要贡献者。就北京市而言,由于近年执行了多项减排措施,目前该地区的本地贡献占20%-30%。而河北和山东省是北京市PM_(2.5)的主要区域传输贡献者,分别可超过25%和10%。此外,在污染背景下周边地区传输贡献的比重更大。当空气质量恶化时,河北和山东省的传输贡献比例均有所提升。因此,建议在污染期间,应重点基于对区域尺度的排放源开展协同控制,制定综合的减排措施方可进一步降低北京市的PM_(2.5)质量浓度。  相似文献   

5.
利用陕西关中多站气象观测资料和颗粒物浓度监测资料,对2013年12月16—26日关中一次持续多日重霾污染天气过程的颗粒物污染特征及气象条件进行统计分析。结果表明,此次重霾污染事件主要是由细粒子PM_(2.5)造成。关中各站颗粒物浓度在污染过程中的变化具有区域同步性特征,各站PM_(2.5)浓度日均值的相关系数达0.71~0.96,且严重超标,区域最高小时浓度均值达508μg·m~(-3),污染非常严重。关中盆地特殊的喇叭口地形以及关中东部持续的强东风使得区域污染传输叠加本地污染循环累积,是17日关中各站PM_(2.5)浓度剧增的主要原因。污染严重阶段,西安和渭南持续的弱风和静风使得局地排放的污染物聚集,引起PM_(2.5)浓度振荡上扬;宝鸡21日PM_(2.5)浓度的爆发式增长则是由上游西安和渭南储备的高浓度PM_(2.5)在持续偏东风作用下远程传输所致;而铜川受山谷风影响,PM_(2.5)浓度具有显著日变化特征。长时间贴地、悬浮的多层逆温和低混合层高度的存在,抑制了污染物的垂直扩散,也造成低空水汽聚集在近地层,是PM_(2.5)浓度持续累积增长的重要原因。关中此次重霾污染的快速有效清除最终依赖于冷高压加强南下。  相似文献   

6.
通过国务院“大气十条”等严格的大气污染治理措施的实施,近年来我国空气质量得到全面改善。对大气污染治理效果开展科学分析研究,可为后续空气质量持续改善、污染科学精准治理提供有效科技支撑。由于气象条件是影响污染物浓度分布的重要因素,治理效果分析的一个重要问题是区分气象条件和减排措施对污染物浓度变化的具体贡献。本文利用京津冀地区13个城市2013~2018年86个监测站点逐日PM2.5浓度以及欧洲中期气象预报中心(ECMWF)气象再分析资料,采用KZ(Kolmogorov–Zurbenko)滤波分析PM2.5浓度观测序列的时频特性,将其分解为短期天气影响分量、中期季节变化分量以及长期趋势分量3个部分,针对分解浓度序列建立气象因子回归模型,实现定量评估气象和减排对治理效果的具体贡献。在研究时间段内,京津冀地区13个城市PM2.5浓度的长期分量显著下降(22.2%~58.0%),其中邢台市下降幅度最大(58.0%)。整体分析表明,气象条件和排放源均有利于大气污染的改善,但减排措施是空气质量显著改善的决定性原因,具体贡献为气象条件的影响占18.5%,排放源的影响占81.5%。逐城分析表明,唐山市的气象条件最有利于PM2.5浓度的减小(29.2%),而衡水市的减排措施最有利于PM2.5浓度的减小(92.0%)。  相似文献   

7.
姚青  刘敬乐  韩素芹  樊文雁 《气象》2016,42(4):443-449
利用天津城区2009-2014年春节期间大气气溶胶观测资料和相关气象资料,重点分析2013和2014年春节期间气溶胶污染特征,探求燃放烟花爆竹以及气象条件对春节期间大气气溶胶的影响。结果表明,受燃放烟花爆竹影响,春节期间PM_(2.5)质量浓度最高值均发生在除夕夜间;持续雾霾天气条件下燃放烟花爆竹,造成2013年除夕夜间PM_(2.5)质量浓度峰值达到1240μg·m~(-3),是近年来最严重的一次;2014年春节期间烟花爆竹燃放量有所减少,加之空气扩散条件较为有利,PM_(2.5)质量浓度显著低于2013年;不同天气条件下,气溶胶数浓度谱分布特征存在明显差异,燃放烟花爆竹期间气溶胶数浓度水平与严重雾-霾天气相当。  相似文献   

8.
基于肇庆市2014—2018年PM_(2.5)质量浓度数据,使用HYSPLIT模式计算肇庆市干季的后向气流轨迹,并应用聚类分析法、潜在源贡献因子分析和质量浓度权重轨迹分析方法评估PM_(2.5)污染物的外来输送特征和潜在源区。结果表明:(1)2015—2018年肇庆市PM_(2.5)污染维持在较高水平,2017—2018年PM_(2.5)污染略有加重趋势;(2)污染较重的月份主要在1—4和10—12月,1月PM_(2.5)污染最严重,而6月PM_(2.5)质量浓度最低,5、7和8月无PM_(2.5)污染超标;(3)全年PM_(2.5)日平均质量浓度与风速相关性最高,干季与风速的相关系数有所提高;(4)干季影响肇庆的气流有5条,其中超过1/2源自东北和偏北方向的气流,来自东北方向的气流轨迹对PM_(2.5)污染贡献最高,其次来自偏西方向绕过珠三角北部进入肇庆的轨迹和广东省内短距离输送的轨迹;(5)肇庆市干季PM_(2.5)外来输送潜在源区主要位于肇庆辖区内和珠三角中南部城市以及粤东、粤东北部分地区,其中佛山、珠海、中山、东莞、惠州、广州南部对肇庆PM_(2.5)质量浓度贡献均超过60μg/m;。  相似文献   

9.
通过对2015年1—12月上海崇明岛崇南地区颗粒物(PM_(2.5)、PM_(10))浓度的连续监测,研究了PM_(2.5)、PM_(10)在不同季节的动态变化特征及与其他因子(SO_2、NO_2、O_3)的相关性,分析了风向风速和降雨对颗粒物浓度的影响。结果表明:崇明岛PM_(2.5)和PM_(10)浓度的季节变化明显,呈现冬季的春季的秋季的夏季的的特征,冬季PM_(2.5)和PM_(10)小时浓度均值分别为0.058 mg/m~3和0.085 mg/m~3,夏季PM_(2.5)和PM_(10)均值分别为0.034 mg/m~3和0.054 mg/m~3。PM_(2.5)和PM_(10)浓度分别与SO_2浓度和NO_2浓度显著正相关,与O_3显著负相关。全年来看,在西南风向时PM_(2.5)和PM_(10)浓度较高,这主要受该方向上游吴淞工业区、宝钢、石洞口电厂、罗店工业区等工业排放影响;从高浓度颗粒物(PM_(2.5)质量浓度≥0.115 mg/m~3)来向看,北和西北风向时出现高浓度颗粒物的频率最高,这主要是受到我国北方采暖季大气颗粒物输送过程对崇明岛区域的脉冲式污染影响所致;PM_(2.5)、PM_(10)实时浓度与相应的风速呈显著负相关。降雨量大于5 mm或持续3 h及以上的连续降雨对大气颗粒物起到显著的湿清除作用,降雨后PM_(2.5)和PM_(10)质量浓度分别降低了68.0%和66.9%,降雨时和雨后PM_(2.5)浓度为0.025~0.033 mg/m~3,均低于我国环境空气PM_(2.5)的一级浓度限值。  相似文献   

10.
京津冀地区霾成因机制研究进展与展望   总被引:9,自引:3,他引:6  
为满足当前对京津冀地区霾研究和控制的迫切要求,本文梳理了近年来京津冀地区霾的长期变化特征、天气学特征、污染物来源等相关研究成果,发现:从2000年以后,京津冀地区的霾日数呈现出了下降趋势;北京细颗粒物(PM2.5)质量浓度也在总体上呈现下降的趋势,但2013年年均质量浓度仍高达89.5μg m–3,约为我国空气质量标准的3倍(35μg m–3),京津冀空气污染的形势依然严峻;近年来京津冀地区的霾污染事件频发可以归因为不利天气条件与大量污染物人为排放的共同作用;大量的研究表明,区域输送对京津冀地区霾事件的形成和维持有不可忽视的影响;京津冀地区的大气污染不再局限于一时一地,针对重污染天气的预警以及应急控制应该以区域预报为基础实现区域联动;京津冀地区独特的地理环境条件加上城市群的快速发展,形成的局地大气环流也会对局地的污染过程产生重大的影响;大气边界层内气象要素的变化对重污染发生具有显著贡献。京津冀地区的污染控制需要城市群的联动应对治理。  相似文献   

11.
利用2013—2014年上海地区6种空气污染物小时浓度和逐日空气质量分指数(IAQI)的监测资料,统计分析了上海地区空气污染的变化特征及其气象影响因子。结果表明:2014年上海地区空气质量优良率达77.0%,空气质量总体较2013年明显好转。2013—2014年上海地区AQI具有季节性特征,表现为冬季空气质量较差、秋季空气质量较好的特征,其中12月空气质量最差。由首要污染物分布可知,上海地区最主要的污染物为PM_(2.5),其中冬季PM_(2.5)污染出现最多;O_3则为夏季的主要污染物。由污染物浓度的周循环变化可知,上海地区PM_(2.5)、PM_(10)、NO_2和O_3浓度均存在周末低于工作日的"周末效应",但PM_(10)和NO_2浓度的"周末效应"更显著。由2014年上海地区霾日与PM_(2.5)浓度的变化可知,当PM_(2.5)浓度达到轻度及以上污染时,霾天气出现的概率大幅提高,但二者并非对应的关系。天气形势对PM_(2.5)污染影响较大,基于上海地区天气形势特点可以将PM_(2.5)污染的地面形势分为7种类型,其中高压中心型和高压楔型为PM_(2.5)污染的主要天气型。由于上海地区冬季冷空气活动频繁,西北风将上游地区颗粒物输送至本地,易造成较严重的污染天气;同时在冷高压的控制下,高压中心型和高压楔型天气频繁出现,导致颗粒物不易扩散,也易造成空气污染。夏季和秋季在副热带高压的控制下,水平和垂直扩散条件均较好,不易出现PM_(2.5)污染,但由于气温较高,光照条件较好,易出现O_3污染。  相似文献   

12.
合肥市PM_(2.5)对城市辐射和气温的影响   总被引:2,自引:0,他引:2  
本文利用2013年2月—2014年3月安徽省合肥市地面总辐射(即向下短波辐射)、气温、地面温度、相对湿度等气象资料和PM_(2.5)浓度资料,分析了合肥地区PM_(2.5)和地面总辐射、地温和气温的关系,研究发现:(1)PM_(2.5)浓度是影响总辐射的重要人为因子,在中午无云条件下,地面总辐射与PM_(2.5)的浓度呈现较强的负相关关系,相关系数为-0.62。归一化地面总辐射和PM_(2.5)的相关系数为-0.76,在早晨和傍晚的相关系数较小。平均而言,白天无云时PM_(2.5)浓度每增加1μg·m-3,地面总辐射下降0.92 W·m-2。(2)在白天无云时,气温、地面温度和PM_(2.5)浓度有明显负相关关系,PM_(2.5)浓度对地面温度的影响远大于对气温的影响,在夏季的影响高于其它季节。气温、地温和PM_(2.5)浓度的线性拟合直线的平均斜率分别为-0.022和-0.12,相当于PM_(2.5)浓度增加10μg·m-3,地温和气温分别平均下降0.22℃和1.2℃。(3)在天气尺度上,PM_(2.5)浓度对总辐射、气温和地面温度有非常明显的影响,在2013年9月清洁个例和2013年12月的污染个例中,PM_(2.5)浓度每增加1μg·m-3,将引起总辐射下降1.8 W·m-2和0.5 W·m-2,地温下降0.11℃和0.02℃,气温下降0.03℃和0.01℃,因此在天气预报过程中也需要考虑空气污染状况。  相似文献   

13.
基于京津冀地区80个环境监测站PM_(2.5)浓度逐时监测资料和气象观测资料,以2016年12月16—21日和2017年1月1—7日雾和霾天气为例,分析PM_(2.5)浓度演变的气象条件。结果表明:气象条件在北京地区污染物浓度爆发性增长过程中具有重要作用。北京地区12月19—20日PM_(2.5)浓度出现爆发性增长,小时浓度在8 h内上升201μg·m~(-3),主要是边界层南风分量由地面增厚至700 m,700 m以上弱下沉抑制作用,结合地面辐合线维持所致;20—21日北京地区PM_(2.5)浓度维持高值且无日变化,是由于低空1.5 km出现弱回暖,逆温层显著增厚增强且无明显日变化,导致高浓度气溶胶无法有效扩散。综合来看,2016年12月16—21日污染物浓度爆发性增长的原因以外源性污染物输送为主;2017年1月3—4日污染物浓度爆发性增长原因与局地极端不利扩散条件及污染排放等其他因素有关。  相似文献   

14.
长时间序列空气质量数据和气象数据分析济南大气污染与气象条件关系的研究相对较少。利用2010-2016年济南市环境空气质量监测数据、气象再分析和观测数据,分析了济南市PM_(2.5)污染特征、PM_(2.5)浓度与2 m温度(T)、2 m相对湿度(RH)、10 m高度U和V风速(U和V)、10 m风速(WS)、K指数(K)、A指数(A)和边界层高度(BLH)的相关性、天气类型对PM_(2.5)浓度的影响,并基于逐步回归分析方法构建统计模型,利用解释方差量化气象条件对PM_(2.5)浓度变化的影响。分析发现,济南PM_(2.5)浓度存在显著的季节变化和年际变化特征,年均PM_(2.5)浓度呈下降趋势;近地面PM_(2.5)浓度与T、RH、K和A显著正相关,与WS和BLH显著负相关,U和V与PM_(2.5)浓度相关性不显著(p0. 05);不同天气类型对应的PM_(2.5)浓度均值存在显著差异;基于回归模型分析发现气象条件可以解释10%~40%的PM_(2.5)浓度逐日变化,气象条件的影响有明显的季节变化。  相似文献   

15.
随着大气污染防治计划的实施,我国SO_2排放量从2013年的25.4 Tg下降至2018年的10.5 Tg。SO_2排放的大幅变化是否会影响PM_(2.5)对NO_x和NH_3排放的敏感性尚不清楚。为此,本研究采用GEOSChem全球大气化学传输模式,评估了中国东部不同SO_2排放水平下PM_(2.5)对NO_x和NH_3敏感性的变化。结果表明:2013年, PM_(2.5)对NH_3的敏感性(0.31)比NO_x(0.21)更强。2013~2018年,由于SO_2排放大幅下降, PM_(2.5)对NO_x的敏感性上升至0.33,而对NH_3的敏感性则下降到0.22。因此,在较低的SO_2排放情景下,考虑到PM_(2.5)对NH_3的敏感性降低,进一步消减NO_x排放可能对降低PM_(2.5)浓度有更好的效果。  相似文献   

16.
利用2009-2018年桂林大气成分站的大气气溶胶质量浓度观测资料,分析了PM_(10)、PM_(2.5)、PM_1统计值的变化规律,结果表明:(1)2009-2018年桂林ρ(PM_(10))、ρ(PM_(2.5))、ρ(PM_1)年平均值变化趋势基本相同,2012-2014年,年平均值相对较高,自2015年后有下降的趋势。一年中月变化基本呈冬高夏低的正V字型分布,月平均峰值出现在1月,谷值出现在7月。质量浓度小时平均值从数值上呈现出冬春秋夏的趋势,并呈现明显的双峰分布特征。ρ(PM_(2.5))/ρ(PM_(10))、ρ(PM_1)/ρ(PM_(10))、ρ(PM_1)/ρ(PM10_(2.5))介于60%-93%之间,说明全年可吸入颗粒物中细粒子占大多数。桂林大气气溶胶质量浓度月平均分布规律可能与天气气候特点有密切关系,日变化主要受到气象条件和污染物排放的影响。(2)桂林ρ(PM_(10))、ρ(PM_(2.5))和ρ(PM_1)与日均气温、日均湿度、日降水量、日均风速显著负相关,与日均气压显著正相关。中雨及大雨、暴雨可明显稀释污染物的浓度,细颗粒物易被雨水冲刷清除。2级以上的风力对于污染物有一定的驱散作用,尤其粗颗粒物下降的程度较明显。  相似文献   

17.
长三角4个省会(直辖市)城市(上海、南京、合肥、杭州)中,合肥与南京的PM_(2.5)浓度演变有较高的一致性。应用聚类分析的方法对2013—2015年合肥非降水日(日降水量低于10 mm)100 m高度(代表近地层)和1000 m高度(代表边界层中上部)的72 h后向轨迹进行分类,结合合肥2013—2015年PM_(2.5)日均浓度资料,探讨近地层和边界层中上部输送轨迹与长三角西部PM_(2.5)浓度的关系。近地层和边界层中上部分别得到7组和6组不同的后向轨迹;不同输送轨迹对应的PM_(2.5)浓度、重污染(重度以上污染,PM_(2.5)日均浓度大于150μg/m3)天数、能见度、地面风速、相对湿度等都有显著不同,尤其是在近地层。100 m高度,平均长度最短、来向偏东的轨迹组对应的PM_(2.5)浓度均值最高(约是组内均值最低值的2倍)、重污染天数最多,且占比最高(30%),重污染日对应的气流在过去72 h下降高度均值仅28 m,明显低于其他PM_(2.5)污染等级日;来向偏西北、长度较短的轨迹组,PM_(2.5)浓度均值和重污染天数为第2高,这一类轨迹占比14%,气流到达本地前存在明显的下沉运动,反映了远距离输送加剧本地PM_(2.5)重污染的特征。这两类轨迹常对应PM_(2.5)日均浓度的上升。PM_(2.5)平均浓度最低的2个轨迹组分别是来自东北和西南的较长轨迹组,所占比例分别为6.4%和10.3%,这2类轨迹往往对应着PM_(2.5)日均浓度下降。1000 m高度的结果与100 m高度结果类似,但PM_(2.5)平均浓度的组间差异不及100 m高度,与2001—2005年PM10浓度与输送轨迹的关系不同。对3 a中84个重污染日两个高度的后向轨迹进行聚类,近地层和边界层中上部各得到7类和6类PM_(2.5)重污染日的天气形势。近地层92%的重污染日对应的海平面气压形势场上,从华北到华东属于均压区,气压梯度小,轨迹来向以偏东到偏北方向为主,垂直方向延伸高度在950 hPa以下。1000 m高度,77%的重污染日属于相对较短的轨迹组,对应的850 hPa高度场特征为从中国西北(新疆)到东南受高压控制,长三角或位于高压底部,或位于两高压之间的均压区。这对PM_(2.5)浓度预报有较好的指示意义。  相似文献   

18.
利用2014年本溪市大气颗粒物质量浓度监测资料和风速、气温、相对湿度、气压等常规地面气象要素观测资料,分析了本溪地区大气颗粒物质量浓度的月、季变化特征及其与气象要素的相关性。结果表明:2014年7月和10月本溪市大气颗粒物质量浓度较高,5月和9月大气颗粒物质量浓度较低,6月和11月大气颗粒物质量浓度比值较高。夏季PM10质量浓度较低,平均浓度为115.1μg·m~(-3);冬季PM_(2.5)和PM_(1.0)质量浓度较高,平均浓度分别为99.5μg·m~(-3)和86.1μg·m~(-3)。春季和冬季平均风速与大气颗粒物质量浓度的相关性最好,夏季和冬季相对湿度与大气颗粒物质量浓度的相关性最好。当ρ(PM_(2.5))≥200.0μg·m~(-3)时,ρ(PM_(2.5))与平均气温呈显著的正相关关系,相关系数为0.5288,ρ(PM_(2.5))与相对湿度的相关系数也高达0.6981,高温、高湿和小风等气象条件是本溪地区大气颗粒物高质量浓度事件发生的有利气象条件。  相似文献   

19.
2014年深圳市东北部吓陂监测站PM_(2.5)的年均质量浓度为47.0μg/m~3,在全市处于较高污染状态,并呈现出冬季秋季春季夏季的季节变化特征。气象要素的分析表明,2014年吓陂监测站夏季时降水较多、湿度最大、风速最大、气温最高、边界层高度最高,最有利于污染物的扩散和清除;冬季时降水最少、湿度最小、风速最小、气温最低、边界层高度最低,最不利于污染物的扩散和清除。后向轨迹聚类分析表明,吓陂监测站的后向轨迹主要分为5类,其中来自北方内陆地区的气团污染最重,来自南海地区的气团污染最轻。进一步利用潜在源贡献因子进行源区识别分析,结果表明:2014年吓陂监测站的PM_(2.5)主要来源于本地源的排放及周边地区(尤其是广东东北部地区)的短距离输送,此外江西等内陆地区的长距离传输在一定程度上也可能导致吓陂监测站PM_(2.5)质量浓度的升高。  相似文献   

20.
利用2013—2014年银川地区大气颗粒物质量浓度和同期气象要素的观测资料,分析了银川地区大气颗粒物浓度的分布特征及其与气象条件的关系。结果表明:2013—2014年银川地区PM_(10)、PM_(2.5)、PM1年平均浓度分别为167.3μg·m-3、67.2μg·m-3和45.0μg·m-3,年平均PM_(2.5)/PM_(10)、PM1/PM_(10)、PM1/PM_(2.5)分别为45.0%、32.0%和65.0%;PM_(10)浓度3月最高,8月最低,PM_(2.5)和PM1最高浓度均出现在1月,PM_(2.5)最低浓度出现在8月,PM1最低浓度出现5月;3—5月为PM_(2.5)/PM_(10)、PM1/PM_(10)和PM1/PM_(2.5)最低的3个月。不同天气类型PM_(10)浓度由高至低依次为浮尘/扬沙典型天气平均霾晴天雾,不同天气类型PM_(2.5)浓度由高至低依次为扬沙/浮尘霾典型天气平均晴天雾,不同天气类型PM1浓度由高至低依次为霾典型天气平均雾晴天浮尘/扬沙。风速与PM_(10)浓度呈正相关关系,风速与PM_(2.5)和PM1浓度均呈负相关关系;PM_(10)浓度在偏西北风时较高,PM_(2.5)和PM1浓度在偏西南风与偏东北风时较高;气温与PM_(10)、PM_(2.5)、PM1浓度均呈显著的负相关关系;相对湿度与PM_(10)浓度呈显著的负相关关系,相对湿度与PM1浓度呈显著的正相关关系,相对湿度与PM_(2.5)相关性较弱;气压对PM_(10)浓度变化的影响较小,气压与PM_(2.5)、PM1浓度呈正相关关系;降水对PM_(10)的清除作用最强,对PM_(2.5)的清除作用次之,对PM1基本无清除作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号