首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear diffraction of 2D single and twin hulls are studied by employing a mixed Eulerian–Lagrangian model based on a higher-order cubic-spline boundary element solver. Two types of simulations are considered. In the first, waves are generated by a piston-type wave-maker in a rectangular tank and in the second case a nonlinear incident wave is assumed to exist in the tank in which the body is introduced. For the application of this model, the full nonlinear diffraction problem is recast in terms of a perturbation wave-field. Computations are performed for rectangular and triangular hull geometries. Computed results show significant nonlinearities, particularly in the heave force. The twin hull results show the influence of wave interference on the diffraction forces. This interference influences the surge force considerably, but heave force is less affected.  相似文献   

2.
Nonlinear hydrodynamics of a twin rectangular hull under heave oscillation is analyzed using numerical methods. Two-dimensional nonlinear time-domain solutions to both inviscid and viscous problems are obtained and the results are compared with linear, inviscid frequency-domain results obtained in [26] to quantify nonlinear and viscous effects. Finite-difference methods based on boundary-fitted coordinates are used for solving the governing equations in the time domain [2]. A primitive-variables based projection method [6] is used for the viscous analysis and a mixed Eulerian–Lagrangian formulation [11] for inviscid analysis. The algorithms are validated and the order of accuracy determined by comparing the results obtained from the present algorithm with the experimental results of Vugt [22] for a heaving rectangle in the free surface. The present study on the twin-hull hydrodynamics shows that at large and non-resonant regular frequencies, and small amplitude of body oscillation, the fluid viscosity does not significantly affect the wave motion and the radiation forces. At low frequencies however the viscosity effect is found to be significant even for small amplitude of body oscillation. In particular, the hydrodynamic force obtained from the nonlinear viscous analysis is found to be closer to the linear inviscid force than the nonlinear inviscid force to the linear inviscid force, the reason for which is attributed to the wave dampening effect of viscosity. Since the wave lengths generated at smaller frequencies of oscillation are longer and therefore the waves could have a more significant effect on the dynamic pressure on the bottom of the hulls which contribute to the heave force, the correlation between the heave force and the wave elevation is found to be larger at smaller frequencies. Because of nonlinearity, the wave radiation and wave damping force remained nonzero even at and around the resonant frequencies – with the resonant frequencies as determined in [26] using linear potential flow theory. As to be expected, the nonlinear effect on the wave force is found to be significant at all frequencies for large amplitude of oscillation compared to the hull draft. The effect of viscosity on the force, by flow separation, is also found to be significant for large amplitude of body oscillation.  相似文献   

3.
The paper presents a comparison between experimental data and numerical results of the hydrodynamic coefficients and also of the wave induced motions and loads on a fast monohull model. The model with 4.52 m length was constructed in Fibre Reinforced Plastic (FRP), and made up of 4 segments connected by a backbone in order to measure sectional loads. The objective of the investigation was to assess the capability of a nonlinear time domain strip method to represent the nonlinear and also the forward speed effects on a displacement high speed vessel advancing in large amplitude waves. With this objective in mind the experimental program included forced oscillation tests in heaving and pitching, for a range of periods, three different amplitudes and several speeds of advance. In head regular waves comprehensive ranges of wave periods, wave steepness and speeds, were tested in order to measure heave, pitch and loads in three cross sections.

The numerical method assumes that the radiation and diffraction hydrodynamic forces are linear and the nonlinear contributions arise from the hydrostatics and Froude–Krilov forces and the effects of green water on deck. The assumption of linearity of the radiation forces is validated by comparing calculated hydrodynamic coefficients with experimental data for three different amplitudes of the forced oscillations. Both global coefficients and sectional coefficients are compared. The motions and loads in waves are compared in terms of first and higher harmonic amplitudes and also in terms of sagging and hogging peaks.  相似文献   


4.
Current paper presents a mathematical model based on 2D-asymmetric wedge water entry to model heave and pitch motions of planing hulls at non-zero heel angles. Vertical and horizontal forces as well as heeling moment due to asymmetric water entry are computed using momentum theory in conjunction with added mass of impact velocity in vertical and horizontal directions. The proposed model is able to compute sway and yaw forces, roll moment, as well as heave and pitch motions in calm water and regular waves. Validity of the proposed model is verified by comparing the results against existing experimental data in both symmetric and asymmetric conditions. Ultimately, different parametric studies are conducted to examine the effects of non-zero heel angle on dynamic vertical motions. The resulting sway and yaw forces due to asymmetric motion are also derived and effects of heel angle on these side forces are investigated.  相似文献   

5.
This paper is concerned with nonlinear resonant heave motion of a semisubmersible vessel at the survival draft. Due to the small potential of the hulls at deep draft the resonant motion is governed almost entirely by nonlinear drag forces on the hull and bracing members.Long period ocean swell following a storm can excite semisubmersiblesat resonance in heave and delay the resumption of drilling activities.The paper presents a simple closed form solution for determining the heave motion at the natural period which agrees well with other theoretical and experimental results.  相似文献   

6.
Although Morison equation is often applied for simulating hydrodynamic force of marine structure, it may give poor results when non-linear behavior is severe or random wave is encountered. This leads to some modifications of Morison equation or other methods for predicting hydrodynamic force. One of them is the system identification technique. In this paper, NARMAX model theory is firstly used to identify the hydrodynamic system of heave damping plates, which are commonly installed on spar platform. Both linear and non-linear models are obtained. The comparisons between the predieted results and measured data indicate that NARMAX model can predict hydrodynamic force of a heave damping plate very well. The measured data for identification originate from forced oscillation tests, which are random records with given spectrum. The forced oscillation forms in experiment also contain simple harmonic, multi-frequency ones.  相似文献   

7.
针对圆筒型海上储油装置FPSO垂荡运动性能较差、无法安装干式井口的问题,设计了带延伸筒体与矩形阻尼结构的圆筒型FPSO,根据延伸筒体与矩形阻尼结构是否通海分为两种型式。建立水动力计算模型,比较分析不同延伸筒体和阻尼结构型式对FPSO水动力性能的影响。针对南海作业海域,设计了悬链式系泊系统,基于JONSWAP波浪谱对FPSO的运动进行时域预报,并对系泊系统进行校核。分析结果表明:通海型FPSO垂荡固有周期显著提升,可以错开南海百年一遇谱峰周期,通海型FPSO满足钻井、安装干式井口的运动响应要求,系泊系统系缆张力满足规范要求。  相似文献   

8.
合理的刚度和潜深设计可以使升沉水平板获得优异的消浪性能。基于考虑流体黏性的二维不可压缩Navier-Stokes方程,以高阶紧致插值CIP(constrained interpolation profile)方法求解方程对流项,采用VOF(volume of fluid)方法重构自由液面,构建二维数值波浪水槽。采用试验数据验证模型后,研究孤立波与升沉水平板相互作用,分析相对刚度K*、相对潜深d/h、相对波高H/h对于升沉板的消浪性能和运动响应的影响,揭示升沉板对孤立波的消浪机理。研究表明:在孤立波通过时,升沉板会经历一个先上升后下降的运动,随后非线性自由振动,板下方水体近似均匀流动,且水流的垂向流动与板的垂荡方向一致;升沉板主要通过不对称涡旋脱落、浅水变形、波浪反射与辐射波转化等方式消耗孤立波能量;一定条件下,采用最优相对刚度K*=4.0和最优相对潜深d/h=0.52可以取得良好的消浪效果,此时透射系数最小,同时升沉板的运动响应在合理的范围内。  相似文献   

9.
Abstract

The performance of steel caisson during and after installation with different penetration velocities in medium dense sand is presented. The applied jacking forces, the amount of formed soil heave and bearing capacity were measured in the model tests. The influence of penetration velocities on jacking forces, soil heave and bearing capacity were also discussed in detail. The results indicated that the jacking forces for caisson in medium dense sands were significantly affected by the penetration velocity. The larger the penetration velocity, the more soil flowed into the caisson cavity during installation. This will lead to larger inner shaft resistance and in turn more jacking forces required for the same penetration depth. The height of soil heave during installation increases with penetration velocity. The m value calculated by the ratio of the volumes of the soil heave to that of the penetrated caisson wall can be used to evaluate the soil heave. The larger the applied velocity, the larger the m value and larger bearing capacity of caisson after installation. The relationship between the m value and penetration velocity can be used to control the soil heave for a steel caisson with a wall thickness to external diameter ratio of 4.2% in medium dense sand by jacking method.  相似文献   

10.
针对海洋绞车主动升沉补偿系统的控制要求,通过对主动升沉补偿系统的控制机理进行分析,于Simulink软件中搭建海洋绞车主动升沉补偿控制系统的仿真模型。根据负载所处不同海况,设置相应仿真参数,得出负载在不同海况下主动升沉补偿控制系统的补偿特性,绘制了负载在升沉补偿作用下的位移响应曲线及补偿时电机转速响应曲线,并与无升沉补偿作用下的仿真结果进行对比。仿真结果表明,该主动升沉补偿控制系统具备理想的补偿精度。将主动升沉补偿控制系统应用于海洋绞车进行模拟试验,得到了电驱动海洋绞车主动升沉补偿控制系统在四级模拟海况下的试验数据。试验结果表明该主动升沉补偿控制系统满足补偿能力设计要求。研究可为海洋绞车主动升沉补偿控制系统补偿性能的改进与完善提供参考。  相似文献   

11.
The hydrodynamic characteristics of heave plates with different form edges of Truss Spar Platform are studied in this paper.Numerical simulations are carried out for the plate forced oscillation by the dynamic mesh method and user defined functions of FLUENT.The added mass coefficient and the damping coefficient of heave plate with tapering condition and the chamfer condition are calculated.The results show that,in a certain range,the hydrodynamic performance of heave plate after being tapered is better.  相似文献   

12.
On the nonlinear hydrodynamic forces for a ship advancing in waves   总被引:1,自引:0,他引:1  
In this paper, using a second-order steady-state approach and a three-dimensional (3D) pulsating source distribution method derives the nonlinear hydrodynamic forces on a ship advancing in waves. The nonlinear hydrodynamic forces considered here consist of the mean lateral drifting force and the added resistance, which can be expressed as products of the ship-motion responses, the radiation potential, diffraction potential and the incident-wave potential. All related velocity potentials applied in the calculations are in 3D form. The Series 60 and Marine ship hulls are used for numerical calculations and the results are compared with existing experimental data and two-dimensional (2D) solutions. The comparisons show that the results obtained in the paper generally agree with experimental data well. It is also found that the nonlinear hydrodynamic forces obtained based on the present 3D source distribution methods are indeed improved in some calculations compared with the 2D method, especially for the mean lateral drifting force.  相似文献   

13.
Based on a two dimensional linear water wave theory, the boundary element method (BEM) is developed and applied to study the heave and the sway problem of a floating rectangular structure in water to finite depth with one side of the boundary is a vertical sidewall and the other boundary is an open boundary. Numerical results for the added mass and radiation damping coefficients are presented. These coefficients are not only depend on the submergence and the width of the structure, but also depend on the clearance between structure and sidewall. Negative added mass and sharp peaks in the damping and added mass coefficients have been found when the clearance with a value close to integral times of half wave length of wave generated by oscillation structure. The important effect of the clearance on the added mass and radiation damping coefficients are discussed in detail. An analytical solution method is also presented. The BEM solution is compared with the analytical solution, and the comparison shows good agreement.  相似文献   

14.
Nonlinear interactions between waves and floating bodies are investigated using the weakly compressible Smoothed Particle Hydrodynamic (WCSPH) method. An improved algorithm based on the dynamic boundary particles (DBPs) is proposed to treat the moving boundary of the floating body. The force exerted on the floating body boundary particle by the particles surrounding it is evaluated using the volume integration of the stress tensors obtained from the momentum equation in its compact support. The improved WCSPH model is validated by the experimental results. The numerical test cases of the vertical oscillation of a rectangular box, the damped rolling oscillation of a floating box and the wave forces on a fixed rectangular box are then carried out to demonstrate the performance of the proposed model. Finally the evolution in time of the dynamic response of the freely floating body under nonlinear waves are discussed and compared with experimental results.  相似文献   

15.
The paper presents the results of an experimental investigation of added masses and damping coefficients of a model of a fast monohull. A model of 4.5 m length between perpendiculars was constructed of fiber glass reinforced plastic (FRP) with four segments connected by a backbone. The backbone was instrumented with load cells at the positions of the cuts. This configuration, combined with load cells measuring the force exerted by the forced motion actuators, made it possible to obtain the hydrodynamic coefficients for each of the four hull segments.

The investigation focused on the vertical motions. Thus, the experimental program included forced harmonic heave and pitch motions in calm water (no incident waves). Subtracting inertial and restoring forces from total measured forces, one obtained the hydrodynamic component, which then resulted in the hydrodynamic coefficients. The effects of steady forward speed on the radiation forces were investigated by conducting model tests at four forward speeds. Finally, nonlinear effects were assessed by conducting model tests for three amplitudes of forced heave and forced pitch motions.  相似文献   


16.
This paper investigates the performance of a small axisymmetric buoy under wave-by-wave near optimal control in surge, heave, and pitch modes in long-crested irregular waves. Wave prediction is obtained using a deterministic propagation model. The paper describes the overall formulation leading up to the derivation of the feedforward control forces in surge and heave, and the control moment in pitch. The radiation coupling between surge and pitch modes is accounted for in the model. Actuation is relative to deeply submerged reaction masses. Heave oscillations are constrained by the swept-volume limit. Oscillation constraints are also applied on the surge and pitch oscillations. The paper discusses time-domain simulations for an irregular wave input with and without the present control. Also discussed are results obtained over a range of irregular wave conditions derived for energy periods from 7 s to 17 s, and a significant wave height of 1 m. It is found that, while the gains in power capture enabled by the present control are significant, the actuation forces are also very large, given the small size of the buoy. Further, due to the small size, heave is found to be the dominant contributor to power capture, with relatively modest contributions from surge and pitch.  相似文献   

17.
Three-dimensional fully nonlinear waves generated by moving disturbances with steady forward speed without motions are solved using a mixed Eulerian–Lagrangian method in terms of an indirect boundary integral method and a Runge–Kutta time marching approach which integrates the fully nonlinear free surface boundary conditions with respect to time.A moving computational window is used in the computations by truncating the fluid domain (the free surface) into a computational domain. The computational window maintains the computational domain and tracks the free surface profile by a node-shifting scheme applied within it. An implicit implement of far field condition is enforced automatically at the truncation boundary of the computational window.Numerical computations are applied to free surface waves generated by Wigley and Series 60 hulls for the steady problem. The present numerical results are presented and compared with existing linear theory, experimental measurements, and other numerical nonlinear computations. The comparisons show satisfactory agreements for these hydrodynamic problems.  相似文献   

18.
水下拖曳升沉补偿系统水动力数学模型研究   总被引:4,自引:2,他引:2  
建立变缆长的水下拖曳升沉补偿系统水动力学偏微分方程组和边界条件.拖缆动力学模型基于Ablow and Schechter模型,拖体采用水下运载体六自由度方程模拟,运用有限差分法离散偏微分方程组和牛顿迭代法计算变缆长情况下拖体深度与拖缆各点张力的动态取值.数值计算结果表明采用收放拖缆的升沉补偿方法能够有效削弱母船升沉运动对拖体深度和拖缆张力的影响.  相似文献   

19.
This paper investigates wave-by-wave control of a wave energy converter using incident wave prediction based on up-wave surface elevation measurement. The goal of control is to approach the hydrodynamically optimum velocity leading to optimum power absorption. This work aims to study the gains in energy conversion from a deterministic wave propagation model that accounts for a range of group velocities in deriving the prediction. The up-wave measurement distance is assumed to be small enough to allow a deterministic propagation model, and further, both wave propagation and device response are assumed to be linear. For deep water conditions and long-crested waves, the propagation process is also described using an impulse response function (e.g. [1]). Approximate low and high frequency limits for realistic band-limited spectra are used to compute the corresponding group velocity limits. The prediction time into the future is based on the device impulse response function needed for the evaluation of the control force. The up-wave distance and the duration of measurement are then determined using the group velocity limits above.A 2-body axisymmetric heaving device is considered, for which power capture is through the relative heave oscillation between the two co-axial bodies. The power take-off is assumed to be linear and ideal as well as capable of applying the necessary resistive and reactive load components on the relative heave oscillation. The predicted wave profile is used along with device impulse response functions to compute the actuator force components at each instant. Calculations are carried out in irregular waves generated using a number of uni-modal wave spectra over a range of energy periods and significant wave heights. Results are compared with previous studies based on the use of instantaneous up-wave wave-profile measurements, both without and with oscillation constraints imposed. Considerable improvements in power capture are observed with the present approach over the range of wave conditions studied.  相似文献   

20.
随着风电产业向深远海发展,浮式风机已经成为海上风机未来的发展趋势.由于复杂的风浪联合环境载荷作用,浮式风机作业时通常会产生大幅度的运动响应,这一方面会使得浮式风机系统受到的水动力载荷更加复杂,另一方面会影响浮式风机的输出功率.因此,如何有效地抑制浮式风机系统的运动响应就成为了设计的关键.基于非稳态致动线模型和两相流求解器naoeFOAM-SJTU,进行了带垂荡板的浮式风机耦合性能研究.首先在OC3-Hywind Spar平台上附加垂荡板,并结合NREL-5 MW风力机建立带垂荡板的浮式风机模型.其次对比不同形状的垂荡板对Spar-5 MW型浮式风机气动—水动耦合结果,分析相同风浪联合作用条件下垂荡板形状对浮式风机耦合响应的影响.研究结果表明:垂荡板能够减小纵荡和垂荡等运动响应幅值,但是对纵摇运动响应影响较小;当垂荡板直径和吃水位置相同时,相同风浪条件下圆形垂荡板能使浮式风机的气动平均功率增大约0.844%,而正方形垂荡板却使平均功率减小1.492%,这说明圆形垂荡板对浮式风机系统的作用效果整体而言优于正方形.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号