首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. The Atlantic segment of the Africa–Europe plate boundary has usually been interpreted as a transform boundary on the basis of the bathymetric expression of the Gloria fault and dextral strike-slip first-motion mechanisms aligned along the Azores–Gibraltar line of seismicity. The 1975 May 26 earthquake ( M s=7.9) was assumed to fit into this framework because it occurred in the general area of this line and has a similar first-motion focal mechanism (strike=288°, dip=72°, slip angle=184°). However, several anomalies cast doubt on this picture: the event is abnormally large for an oceanic transform event; a sizeable tsunami was excited; the aftershock area is unusually small for such a large event; and most significantly, the epicentre is 200 km south of the presumed plate boundary. The Rayleigh wave radiation pattern indicates a change in focal mechanism to one with a significant dip-slip component. The short duration of the source time history (20 s, as deconvolved from long-period P -waves), the lack of directivity in the Rayleigh waves, and the small one-day aftershock area suggest a fault length less than 80 km. One nodal plane of the earthquake is approximately aligned with the trace of an ancient fracture zone.
We have compared the Pasadena 1-90 record of the 1975 earthquake to that of the 1941 North Atlantic strike-slip earthquake (200 km to the NNW) and confirmed the large size of the 1941 event ( M =8.2). The non-colinear relationship of the 1975 and 1941 events suggests that there is no well-defined plate boundary between the Azores and Gibraltar. This interpretation is supported by the intraplate nature of both the 1975 event and the large 1969 thrust event 650 km to the east. This study also implies that the largest oceanic strike-slip earthquakes occur in old lithosphere in a transitional tectonic regime.  相似文献   

2.
Scaling relationships between seismic moment, rupture length, and rupture width have been examined. For this purpose, the data from several previous studies have been merged into a database containing more than 550 events. For large earthquakes, a dependence of scaling on faulting mechanism has been found. Whereas small and large dip-slip earthquakes scale in the same way, the self-similarity of earthquakes breaks down for large strike-slip events. Furthermore, no significant differences in scaling could be found between normal and reverse earthquakes and between earthquakes from different regions. Since the thickness of the seismogenic layer limits fault widths, most strike-slip earthquakes are limited to rupture widths of between 15 and 30 km while the rupture length is not limited. The aspect ratio of dip-slip earthquakes is similar for all earthquake sizes. Hence, the limitation in rupture width seems to control the maximum possible rupture length for these events. The different behaviour of strike-slip and dip-slip earthquakes can be explained by rupture dynamics and geological fault growth. If faults are segmented, with the thickness of the seismogenic layer controlling the length of each segment, strike-slip earthquakes might rupture connected segments more easily than dip-slip events, and thus could produce longer ruptures than dip-slip events of the same width  相似文献   

3.
Summary. A composite fault plane solution of aftershocks of the 4.8 ML Carlisle earthquake of 1979 December 26, and the geographic distribution of their epicentres, indicate the predominance of right-lateral strike-slip focal mechanisms, with a significant component of dip-slip faulting, on a NW–SE trending fault zone. Data presented here, combined with an alternative interpretation of the published results of King, closely constrain the possible fit of nodal planes. The strike of the NW–SE nodal plane is in excellent agreement with a trend in aftershock epicentres. The aftershock zone is close to the edge of a long positive NW–SE trending gravity anomaly.  相似文献   

4.
We evaluate the stress field in and around the southern Korean Peninsula with focal mechanism solutions, using the data collected from 71 earthquakes ( ML = 1.9–5.2) between 1999 and 2004. For this, the hypocentres were relocated and well-constrained fault plane solutions were obtained from the data set of 1270 clear P -wave polarities and 46 SH / P amplitude ratios. The focal mechanism solutions indicate that the prevailing faulting types in South Korea are strike-slip-dominant-oblique-slip faultings with minor reverse-slip component. The maximum principal stresses (σ1) estimated from fault-slip inversion analysis of the focal mechanism solutions show a similar orientation with E–W trend (269°–275°) and low-angle plunge (10°–25°) for all tectonic provinces in South Korea, consistent with the E–W trending maximum horizontal stress (σHmax) of the Amurian microplate reported from in situ stress measurements and earthquake focal mechanisms. The directions of the intermediate (σ2) and minimum (σ3) principal stresses of the Gyeongsang Basin are, however, about 90 deg off from those of the other tectonic provinces on a common σ2–σ3 plane, suggesting a permutation of σ2 and σ3. Our results incorporated with those from the kinematic studies of the Quaternary faults imply that NNW- to NE-striking faults (dextral strike-slip or oblique-slip with a reverse-slip component) are highly likely to generate earthquakes in South Korea.  相似文献   

5.
An Mw 5.9 earthquake occurred in the Lake Rukwa rift, Tanzania, on 1994 August 18, and was well recorded by 20 broad-band seismic stations at distances of 160 to 800 km and 21 broad-band stations at teleseismic distances. The regional and teleseismic waveforms have been used to investigate the source characteristics of the main shock, and also to locate aftershocks that occurred within three weeks of the main shock. Teleseismic body-wave modelling yields the following source parameters for the main shock: source depth of 25 ± 2 km, a normal fault orientation, with a horizontal tension axis striking NE-SW and an almost vertical pressure axis (Nodal Plane I: strike 126°–142°, dip 63°–66°, and rake 280°–290°; Nodal Plane II: strike 273°–289°, dip 28°–31°, and rake 235°–245°), a scalar moment of 4.1 times 1017 N m, and a 2 s impulsive source time function. Four of the largest aftershocks also nucleated at depths of 25 km, as deduced from regional sPmp–Pmp times. The nodal planes are broadly consistent with the orientation of both the Lupa and Ufipa faults, which bound the Rukwa rift to the northeast and southwest, respectively. The rupture radius of the main shock, assuming a circular fault, is estimated to be 4 km with a corresponding stress drop of 6.5 MPa. Published estimates of crustal thickness beneath the Rukwa rift indicate that the foci of the main shock and aftershocks lie at least 10 km above the Moho. The presence of lower-crustal seismicity beneath the Rukwa rift suggests that the pre-rift thermal structure of the rifted crust has not been strongly modified by the rifting, at least to depths of 25 km.  相似文献   

6.
Following the 1996 February 18 M L = 5.2 earthquake in the Agly massif in the eastern French Pyrenees, we installed a temporary network of seismometers around the epicentre. In this paper, we analyse 336 well-located aftershocks recorded from February 19 to February 23 by 18 temporary stations and two permanent stations located less than 35  km from the epicentre. Most aftershocks have been located with an accuracy better than 1.5  km in both horizontal and vertical positions. Their spatial distribution suggests the reactivation of a known fault system. We determined 39 fault-plane solutions using P -wave first motions. Despite their diversity, the focal mechanisms yield an E–W subhorizontal T-axis. We also determined fault-plane solutions and principal stress axes using the method developed by Rivera & Cisternas (1990 ) for the 15 best-recorded events. We obtain a pure-shear-rupture tectonic regime under N–S subhorizontal compression and E–W subhorizontal extension. These principal stress axes, which explain the focal mechanisms for at least 75 per cent of the 39 aftershocks, are different from the axes deduced from the main shock. The post-earthquake stress field caused by the main-shock rupture, modelled as sinistral strike slip on three vertical fault segments, is computed for various orientations and magnitudes of the regional stress field, assumed to be horizontal. The aftershock distribution is best explained for a compressive stress field oriented N30°E. Most aftershocks concentrate where the Coulomb failure stress change increases by more than 0.2  MPa. The diversity of aftershock focal mechanisms, poorly explained by this model, may reflect the great diversity in the orientations of pre-existing fractures in the Agly massif.  相似文献   

7.
Summary. The 1973 Hawaii earthquake occurred north of Hilo, at a depth of 40 to 50km. The location was beneath the east flank of Mauna Kea, a volcano dormant historically, but active within the last 4000 yr. Aftershocks were restricted to a depth of 55–35km. The event and its aftershock sequence are located in an area not normally associated with the seismicity of the Mauna Loa and Kilauea calderas. The earthquake was a double event, the epicentres trending NE-SW. The events were of similar size and faulting mechanism. The fault plane solutions obtained by seismic waveform analysis are a strike-slip fault striking EW and dipping 55° S, the auxiliary plane a NS vertical plane with a faulting plunge of 35°. The axis of maximum compressive stress is aligned with the direction of the gravity gradient associated with the island of Hawaii. The fault plane striking EW parallels a surface feature, the Mauna Kea east rift zone. The earthquakes were clearly not associated with volcanic activity normally associated with Mauna Loa and Kilauea and may indicate a deep seated prelude to a resumption of activity at Mauna Kea.  相似文献   

8.
A moderate earthquake of   M w= 6.8  occurred on 2003 December 10. It ruptured the Chihshang Fault in eastern Taiwan which is the most active segment of the Longitudinal fault as a plate suture fault between the Luzon arc of the Philippine Sea plate and the Eurasian plate. The largest coseismic displacements were 13 cm (horizontal) and 26 cm (vertical). We analyse 40 strong motion and 91 GPS data to model the fault geometry and coseismic dislocations. The most realistic shape of the Chihshang fault surface is listric in type. The dipping angle of the seismic zone is steep (about 60°–70°) at depths shallower than 10 km and then gradually decreases to 40°–50° at depths of 20–30 km. Thus the polygonal elements in Poly3D are well suited for modelling complex surfaces with curving boundaries. Using the strong motion data, the displacement reaches 1.2 m dip-slip on the Chihshang Fault and decreases to 0.1 m near surface. The slip averages 0.34 m, releasing a scalar moment of 1.6E26 dyne-cm. For GPS data, our model reveals that the maximal dislocation is 1.8 m dip-slip. The dislocations decrease to 0.1 m near the surface. The average slip is 0.48 m, giving a scalar moment of 2.2E26 dyne-cm. Regarding post-seismic deformation, a displacements of 0.5 m were observed near the Chihshang Fault, indicating the strain had not been totally released, as a probable result of near-surface locking of the fault zone.  相似文献   

9.
53 local earthquakes recorded at 2.5 km depth in the Cajon Pass scientific borehole are analysed for shear-wave splitting. The time delays between the split shear waves can be positively identified for 32 of the events. Modelling these observations of polarizations and time delays using genetic algorithms suggests that the anisotropic structure near Cajon Pass has orthorhombic symmetry. The polarization of the shear waves and the inferred strike of the stress-aligned fluid-filled intergranular microcracks and pores suggests that the maximum horizontal compressional stress direction is approximately N13°W. This is consistent with previous results from earthquake source mechanisms and the right-lateral strike-slip motion on the nearby San Andreas Fault, but not with stresses measured within the uppermost 3 km of the borehole. This study suggests that the San Andreas Fault is driven by deeper tectonic stresses and the present understanding of a weak and frictionless San Andreas Fault may need to be modified. The active secondary faulting and folding close to the fault are probably driven by the relatively shallow stress as measured in the 3.5 km deep borehole.  相似文献   

10.
Surface integral formulae are derived expressing any one of certain field quantities, namely current functions, magnetic potentials and normal components of magnetic fields, in terms of any one other, for current systems flowing in concentric spherical surfaces. In all, 36 such formulae are obtained, which should prove useful in many geomagnetic studies, especially in geomagnetic induction problems.  相似文献   

11.
Recovering the internal geomagnetic vector field B on and outside the Earth's surface S from the knowledge of only its direction or its intensity ||B|| on S , and assessing the uniqueness of geomagnetic models computed in this way, have been long-standing questions of interest. In the present paper we address the second problem. Backus (1968, 1970) demonstrated uniqueness in some particular cases, but also produced a theoretical counter-example for which uniqueness could not be guaranteed. Using the same line of reasoning as Backus (1968), we show that adding the knowledge of the location of the dip equator on S to the knowledge of ||B|| everywhere on S guarantees the uniqueness of the solution, to within a global sign, provided that the dip equator is made of one or possibly several closed curves on S , across which the normal component of the field changes sign (this component not being zero anywhere else).  相似文献   

12.
ABSTRACT
Panamint Valley, in eastern California, is an extensional basin currently bounded by active, dextral-normal oblique-slip faults. There is considerable debate over the tectonic and topographic evolution of the valley. The least-studied structure, the Ash Hill fault, runs for some 50 km along the valley's western edge, and active strands of the fault continue south into the neighbouring Slate Range. Vertical displacement on the fault is valley-side up, creating topography that conflicts with the gross morphology of the valley itself. We use this topography, along with kinematic and geological markers, to constrain the Quaternary slip rate and orientation of the Ash Hill fault. The fault offsets all but the active channel deposits in the valley, and slickenlines indicate a strike-slip to dip-slip ratio of 3.5:1. An offset volcanic unit dated at 4 Ma provides a minimum slip rate of 0.3±0.1 mm yr−1, and a long-term strike-slip to dip-slip ratio of 5.2:1. Slip on the fault has warped a palaeolake shoreline within the valley. Simple elastic dislocation modelling of the vertical deformation of the shoreline suggests total fault slip of ≈60 m, valley-side up. The shoreline probably dates to 120–150 ka, implying a late Quaternary slip rate of 0.4–0.5 mm yr−1. We suggest two possible mechanisms for the apparently anomalous slip behaviour of the Ash Hill fault. The fault may be a listric structure related to the proposed low-angle fault underlying Panamint Valley. Alternatively, the Ash Hill fault is a high-angle fault, implying that the valley is currently bounded by high-angle dextral-slip faults. Lack of detailed subsurface information precludes any knowledge of the true relationships between the presently active faults.  相似文献   

13.
By inversion analysis of the baseline changes and horizontal displacements observed with GPS (Global Positioning System) during 1990–1994, a high-angle reverse fault was detected in the Shikoku-Kinki region, southwest Japan. The active blind fault is characterized by reverse dip-slip (0.7±0.2  m yr−1 within a layer 17–26  km deep) with a length of 208±5  km, a (down-dip) width of 9±2  km, a dip-angle of 51°±2° and a strike direction of 40°±2° (NE). Evidence from the geological investigation of subfaults close to the southwestern portion of the fault, two historical earthquakes ( M L=7.0, 1789 and 6.4, 1955) near the centre of the fault, and an additional inversion analysis of the baseline changes recorded by the nationwide permanent GPS array from 18 January to 31 December 1995 partially demonstrates the existence of the fault, and suggests that it might be a reactivation of a pre-existing fault in this region. The fact that hardly any earthquakes ( M L>2.0) occurred at depth on the inferred fault plane suggests that the fault activity was largely aseismic. Based on the parameters of the blind fault estimated in this study, we evaluated stress changes in this region. It is found that shear stress concentrated and increased by up to 2.1 bar yr−1 at a depth of about 20  km around the epicentral area of the 1995 January 17  Kobe earthquake ( M L=7.2, Japan), and that the earthquake hypocentre received a Coulomb failure stress of about 5.6 bar yr−1 during 1990–1994. The results suggest that the 1995  Kobe earthquake could have been induced or triggered by aseismic fault movement.  相似文献   

14.
The deep seismicity of the Tyrrhenian Sea   总被引:4,自引:0,他引:4  
The study reappraises the deep seismicity of the Tyrrhenian Sea. Careful examination of the quality of reported hypocentres shows that the earthquakes define a zone dipping NW, about 200 km along strike, 50 km thick, and reaching a depth of about 500 km. The zone is slightly concave to the NW at a depth of 300 km, but, contrary to many previous reports, is not tightly concave, nor are there significant spatial gaps in the seismicity, which is effectively continuous with depth. Seismicity is, however, concentrated in the depth interval 250–300 km, where the dip of the seismic zone changes from 70° (above 250 km) to a more gentle dip of 45° at greater depths. Seven fault-plane solutions are available for the largest earthquakes in this depth interval, all of them consistent with a P -axis down the dip of the seismic zone, and all of them requiring movement on faults out of the plane of the subducting slab.
Two deep earthquakes near Naples lie well outside the main zone of activity; for one of which a fault-plane solution is available that has a P -axis not aligned with the dip of the seismic zone. The tightly concave slab-geometry favoured by other reports is supported mainly by the location of these events near Naples, which we think may represent deformation in a separate, probably shallower dipping, piece of subducted lithosphere.
The lack of shallow seismicity, and particularly of thrust faulting earthquakes, at the surface projection of the Benioff zone suggests that active subduction has ceased. Estimates of the convergence rate responsible for subduction in the last 10 Myr far exceed the present convergence rate of Africa and Eurasia, suggesting that the subduction was related instead to the stretching and thinning of the crust in the Tyrrhenian Sea.  相似文献   

15.
The Gulf of Aqaba earthquake swarm of 1983 January-April   总被引:2,自引:0,他引:2  
Summary. In the period 1983 January 21 -April 20, more than 500 local earthquakes ( M L≤ 4.85) occurred in the Gulf of Aqaba area between latitudes 29°00'and 29°25'and longitudes 34°30'and 34°45'. Most of the activity including the largest shocks was restricted to the area between latitudes 29°07'and 29° 15'and longitudes 34°33'and 34°42'where the NW Atiya regional dyke crosses the area and is horizontally displaced by NE strike-slip faults. The first-motion directions of four large shocks, including the largest, at both UNJ and HLW stations are in agreement with a strike-slip mechanism at a NE-trending fault in this area. The b value showed a temporal increase with time from 0.43 to 0.69. This, together with other geological and geophysical observations may indicate that subsurface magmatic activity has affected the stressed crustal rocks, thus triggering earthquake activity.
This swarm and historical information indicate that the Gulf of Aqaba-Dead Sea Jordan transform is characterized by both swarm and foreshock-aftershock types of seismic activity and therefore the relatively large proportion of non-seismic slip along the southern part of this transform may actually be higher if swarm-type activities are considered.  相似文献   

16.
A region of enhanced conductivity at the base of the mantle is modelled by an infinitesimally thin sheet of uniform effective conductance adjacent to the core–mantle boundary. Currents induced in this sheet by the temporally varying magnetic field produced by the geodynamo give rise to a discontinuity in the horizontal components of the poloidal magnetic field on crossing the sheet, while the radial component is continuous across the sheet. Treating the rest of the mantle as an insulator, the horizontal components of the poloidal magnetic field and their secular variation at the top of the core are determined from geomagnetic field, secular variation and secular acceleration models. It is seen that for an assumed effective conductance of the sheet of 108  S, which may be not unrealistic, the changes produced in the horizontal components of the poloidal field at the top of the core are usually ≤10 per cent, but corrections to the secular variation in these components at the top of the core are typically 40 per cent, which is greater than the differences that exist between different secular variation models for the same epoch. Given the assumption that all the conductivity of the mantle is concentrated into a thin shell, the present method is not restricted to a weakly conducting mantle. Results obtained are compared with perturbation solutions.  相似文献   

17.
Summary. Detailed palaeomagnetic results from a rapidly deposited 12.5-m Younger Yoldia Clay sequence of age around 14 000 B.P. at the coast cliff at Nørre Lyngby (northern Jutland, Denmark) and a 2-m Older Yoldia Clay sequence of age somewhere between 23 000 and 40 000 B.P. are presented and discussed. The Younger Yoldia Clay spans some 1000–1500 yr and shows swings in inclination and declination of about that period, and also more rapid oscillations which are particularly marked in inclination, showing that rapid secular variations as have occurred during historic times were indeed also present back in time. There exist easterly declinations of 80° to 90° in the upper half of the Younger Yoldia Clay which cause the virtual geomagnetic pole to migrate clockwise to around 50° away from the rotation pole. This we name the 'Nørre Lyngby declination excursion'.
In the Older Yoldia Clay, as well as secular variations in both declination and inclination, significant low inclination values are found, confirming the existence of the recently named 'Rubjerg low inclination excursion', with the virtual geomagnetic pole moving first in a clockwise then in an anticlockwise sense at 40° to 60° away from the rotation pole.
It is therefore inferred that models for the Earth's geomagnetic field should involve at least local rapid eastward as well as westward 'drift' of the non-dipole field components at various times in the past.  相似文献   

18.
In a tectonically active setting large earthquakes are always threats; however, they may also be useful in elucidating the subsurface geology. Instrumentally recorded seismicity is, therefore, widely utilized to extend our knowledge into the deeper crust, especially where basement is involved. It is because the earthquakes are triggered by underground stress changes that usually corresponding to the framework of geological structures. Hidden faults, therefore, can be recognized and their extension as well as orientation can be estimated. Both above are of relevance for assessment on seismic hazard of a region, since the active faults are supposed to be re-activated and cause large earthquakes. In this study, we analysed the 1999 October 22 earthquake sequence that occurred in southwestern Taiwan. Two major seismicity clusters were identified with spatial distribution between depths of 10 and 16 km. One cluster is nearly vertical and striking 032°, corresponding to the strike-slip Meishan fault (MSF) that generated the 1906 surface rupture. Another cluster strikes 190° and dips 64° to the west, which is interpreted as west-vergent reverse fault, in contrast to previous expectation of east vergence. Our analysis of the focal solutions of all the larger earthquakes in the 1999 sequence with the 3-D distribution of all the earthquakes over the period 1990–2004 allows us reinterpret the structural framework and suggest previously unreognized seismogenic sources in this area. We accordingly suggest: (1) multiple detachment faults are present in southwestern Taiwan coastal plain and (2) additional seismogenic sources consist of tear faults and backthrust faults in addition to sources associated with west-vergent fold-and-thrust belt.  相似文献   

19.
The M w 7.6 1997 Manyi earthquake occurred in an area of central northern Tibet where sparse vegetation coverage and a lack of human habitation provide excellent conditions for Interferometric Synthetic Aperture Radar (InSAR) studies. We use coseismic pairs of radar images acquired by the ESA ERS-2 satellite to construct interferograms of the surface displacement field due to the earthquake. The location and extent of the coseismic fault rupture are mapped using a combination of optical satellite imagery, high-resolution digital topography, interferometric correlation and azimuth offset measurements; in so doing, we are able to relate prominent geomorphic features in the fault zone to bends in the fault.
Using elastic dislocation models consistent with this mapped fault trace, we then test a range of fault geometries and slip conditions to find the combination which best explains the InSAR displacements. Our favoured model contains a reversal in fault dip, approximately halfway along its length, occurring at the location of a restraining bend. Slip on this model fault is heterogeneous, with two areas of peak slip of 7 m or greater, and components of dip-slip displacement which vary significantly along-strike. The success of this model in fitting the data implies that an observed asymmetry in the coseismic interferograms can be explained in terms of the local fault geometry, rather than by using non-linear elastic rheologies as suggested by earlier authors.  相似文献   

20.
Source history of the 1905 great Mongolian earthquakes (Tsetserleg, Bolnay)   总被引:1,自引:0,他引:1  
Two great Mongolian earthquakes, Tsetserleg and Bolnay, occurred on 1905 July 9 and 23. We determined the source history of these events using body waveform inversion. The Tsetserleg rupture (azimuth N60°) correspond to a N60° oriented branch of the long EW oriented Bolnay fault.
Historical seismograms recorded by Wiechert instruments are digitized and corrected for the geometrical deformation due to the recording system. We use predictive filters to recover the signals lost at the minute marks.
The total rupture length for the Tsetserleg earthquake may reach up to 190 km, in order to explain the width of the recorded body waves. This implies adding 60 km to the previously mapped fault. The rupture propagation is mainly eastward. It starts at the southwest of the central subsegment, showing a left lateral strike-slip with a reverse component. The total duration of the modelled source function is 65 s. The seismic moment deduced from the inversion is 1021 N m, giving a magnitude   M w = 8  .
The nucleation of the Bolnay earthquake was at the intersection between the main fault (375 km left lateral strike-slip) and the Teregtiin fault (N160°, 80 km long right lateral strike-slip with a vertical component near the main fault). The rupture was bilateral along the main fault: 100 km to the west and 275 km to east. It also propagated 80 km to the southeast along the Teregtiin fault. The source duration was 115 s. The moment magnitude Mw varies between 8.3 and 8.5.
The nucleation and rupture depths remain uncertain. We tested three cases: (1) nucleation and rupture depth limited to the seismogenic zone; (2) nucleation in the seismogenic zone and rupture propagation going to the base of the crust and (3) nucleation within the crust–upper mantle interface and rupture propagation within the upper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号