首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Yao  Yibin  Hu  Mingxian  Xu  Xiayan  He  Yadong 《GPS Solutions》2017,21(4):1871-1882
GPS Solutions - GLONASS double-differenced (DD) ambiguity resolution is hindered by the inter-frequency bias (IFB) in GLONASS observation. We propose a new algorithm for IFB rate estimation to...  相似文献   

2.
通过2018年1月多全球卫星导航系统(GNSS)实验(MGEX)的十个测站数据,采用无电离层模型和非差非组合模型,对单系统、双系统和四系统精密单点定位(PPP)进行定位性能分析,定位性能包括收敛时间和定位精度. 实验结果表明,两种PPP模型定位性能相当,但优于单频PPP,在E、N和U方向收敛时间缩短20 min左右,定位精度提高1.6 cm左右;联合多系统能够增加卫星数,改善卫星间几何构型,提升PPP的定位性能. 对GLONASS伪距频间偏差(IFB)采用估计每颗GLONASS卫星的伪距IFB模型和伪距IFB为频率二次多项式模型提升PPP的定位性能,结果表明估计每颗GLONASS卫星的伪距IFB模型要优于伪距IFB为频率二次多项式模型,估计伪距IFB相比忽略伪距IFB在PPP定位性能上有不同程度的提升.   相似文献   

3.
GPS/GLONASS卫星钟差联合估计过程中,由于GLONASS系统采用频分多址技术区分卫星信号,因而会产生频率间偏差(IFB)[1]。本文在GPS/GLONASS卫星定轨过程中的IFB参数特性分析的基础上,引入IFB参数,实现顾及频率间偏差的GPS/GLONASS卫星钟差实时估计。同时,为解决实时估计中待估参数过多导致的实时性较弱等问题,基于非差伪距观测值和历元间差分相位观测值改进实时估计数学模型,实现多系统卫星钟差的联合快速估计。结果表明:GPS/GLONASS联合估计时需引入IFB参数并优化其估计策略,采用MGEX和iGMAS跟踪站的实测数据进行实时钟差解算,快速估计方法可实现1.6 s逐历元快速、高精度估计,与GBM提供的最终精密卫星钟差相比,GPS卫星钟差实时精度约为0.210 ns,GLONASS卫星约为0.298 ns。  相似文献   

4.
实时GLONASS相位频间偏差粒子群优化估计方法   总被引:1,自引:0,他引:1  
针对GLONASS相位频间偏差与模糊度线性相关所导致的难以对两者进行快速分离的问题,提出了一种实时GLONASS相位频间偏差估计方法。通过分析相位IFB与RATIO值之间的关系,将相位IFB估计问题归结为求解最优化问题,并将优化方法中的粒子群优化算法引入相位IFB估计中,该方法可在不增加待估参数数量以及先验信息的条件下,高效可靠地搜索出IFB变化率参数,实现GLONASS模糊度实时固定。测试结果表明,该方法在单历元解算条件下每历元平均搜索次数为32次,远低于基于粒子滤波的相位频间偏差估计方法的200次;在采用Kalman滤波方法进行解算条件下,每历元平均搜索次数仅为9次。无论采用单历元解还是滤波解,模糊度固定成功率均高于96.2%,模糊度固定解的最大坐标偏差均小于4 cm。  相似文献   

5.
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%.  相似文献   

6.
多全球导航卫星系统(Global Navigation Satellite System,GNSS)系统联合精密定轨需要考虑系统间及频率间偏差的影响。推导了多GNSS定轨系统间偏差(inter system bias,ISB)/频率间偏差(inter frequency bias,IFB)解算模型,以GPS系统硬件延迟为基准,给出了一种消除ISB/IFB秩亏的约束方法。试验数据结果表明,各系统ISB/IFB均表现出良好的稳定性及同一系统各卫星时间序列的一致性,BDS ISB的标准差为0.36 ns,Galileo ISB的标准差为0.18 ns,GLONASS IFB的标准差为0.51 ns;在接收机类型相同的情况下,不同跟踪站的ISB比较接近,但仍可达到ns级差异;GLONASS IFB在同一跟踪站相同频道号的卫星及不同跟踪站相同频道号卫星均表现出了良好的一致性。  相似文献   

7.
Rapid PPP ambiguity resolution using GPS+GLONASS observations   总被引:1,自引:1,他引:0  
Integer ambiguity resolution (IAR) in precise point positioning (PPP) using GPS observations has been well studied. The main challenge remaining is that the first ambiguity fixing takes about 30 min. This paper presents improvements made using GPS+GLONASS observations, especially improvements in the initial fixing time and correct fixing rate compared with GPS-only solutions. As a result of the frequency division multiple access strategy of GLONASS, there are two obstacles to GLONASS PPP-IAR: first and most importantly, there is distinct code inter-frequency bias (IFB) between satellites, and second, simultaneously observed satellites have different wavelengths. To overcome the problem resulting from GLONASS code IFB, we used a network of homogeneous receivers for GLONASS wide-lane fractional cycle bias (FCB) estimation and wide-lane ambiguity resolution. The integer satellite clock of the GPS and GLONASS was then estimated with the wide-lane FCB products. The effect of the different wavelengths on FCB estimation and PPP-IAR is discussed in detail. We used a 21-day data set of 67 stations, where data from 26 stations were processed to generate satellite wide-lane FCBs and integer clocks and the other 41 stations were selected as users to perform PPP-IAR. We found that GLONASS FCB estimates are qualitatively similar to GPS FCB estimates. Generally, 98.8% of a posteriori residuals of wide-lane ambiguities are within \(\pm 0.25\) cycles for GPS, and 96.6% for GLONASS. Meanwhile, 94.5 and 94.4% of narrow-lane residuals are within 0.1 cycles for GPS and GLONASS, respectively. For a critical value of 2.0, the correct fixing rate for kinematic PPP is only 75.2% for GPS alone and as large as 98.8% for GPS+GLONASS. The fixing percentage for GPS alone is only 11.70 and 46.80% within 5 and 10 min, respectively, and improves to 73.71 and 95.83% when adding GLONASS. Adding GLONASS thus improves the fixing percentage significantly for a short time span. We also used global ionosphere maps (GIMs) to assist the wide-lane carrier-phase combination to directly fix the wide-lane ambiguity. Employing this method, the effect of the code IFB is eliminated and numerical results show that GLONASS FCB estimation can be performed across heterogeneous receivers. However, because of the relatively low accuracy of GIMs, the fixing percentage of GIM-aided GPS+GLONASS PPP ambiguity resolution is very low. We expect better GIM accuracy to enable rapid GPS+GLONASS PPP-IAR with heterogeneous receivers.  相似文献   

8.
在分析传统GPS/GLONASS组合PPP数学模型中忽略GLONASS码IFB不足的基础上,提出一种基于"多参数"的组合PPP与码IFB估计算法。将"频间偏差"与"系统时差"参数进行合并,通过引入多个独立的"时频偏差"参数对组合PPP中的GLONASS码IFB进行函数模型补偿,同时可实现基于单个测站观测数据的码IFB精确估计。对配备6种GNSS品牌接收机的30个IGS站实测数据进行GLONASS码IFB估计与分析。结果表明:各品牌接收机不同频率通道的GLONASS码IFB可达数米,且表现出与频率的明显相关性,但难以通过简单函数建模为其提供精确的先验改正值;相同品牌接收机的GLONASS码IFB整体上具有相似的特性,而在个别测站会表现出异常特征;即使接收机类型、固件版本及天线类型完全相同的测站,GLONASS码IFB值也可能存在显著差异。新算法能实现对GLONASS码IFB的有效补偿,明显加快组合PPP的收敛速度。虽然引入多个附加参数会导致函数模型自由度减小,但对定位精度的影响有限,与传统"单参数"法进行组合PPP的定位精度相当。  相似文献   

9.
格洛纳斯(Global Navigation Satellite System,GLONASS)采用了频分多址技术,接收机在接收不同卫星信号时会产生频间偏差,阻碍了GLONASS长基线模糊度固定,限制了其定位定轨的精度。提出了一种新的GLONASS模糊度固定方法。该方法基于全球电离层格网产品,根据频间偏差率的变化范围,采用搜索的方法和线性模型去除相位频间偏差对宽窄巷模糊度的影响,实现了GLONASS无电离层组合模糊度固定。利用平均基线长度为763 km的全球卫星导航系统(Global Navigation Satellite System,GNSS)服务站实验网数据对该方法进行分析,结果表明:连续30 d内,模糊度固定成功率最高为95.4%,最低为88.8%,平均为93.45%;模糊度固定后,北(north,N)、东(east,E)、高(up,U)各分量重复性和均方根误差(root mean square er-ror,RMSE)值均得到不同程度的改善,E分量重复性和RMSE值分别改善了20%和14%,改善效果最为明显。  相似文献   

10.
The carrier phase inter-frequency bias (IFB) of GLONASS between receivers of different types is usually not zero. This bias must be estimated and removed in data processing so that the integer double difference (DD) ambiguities can be fixed successfully. Recently, the particle filter approach has been proposed to estimate the IFB rate in real time. In this approach, the IFB rate samples are first generated and used to correct the phase IFB in the GLONASS observations. Then, the weights of the rate samples are updated with a function related to RATIO which is for ambiguity acceptance testing in integer ambiguity resolution. Afterwards, the IFB rate is estimated according to the weighted particles. This approach can estimate IFB accurately with short convergence time and without prior information. However, when the system noise is set too low, the estimated results are unstable due to the serious problem of particle diversity-loss, even though the system model is accurate. Additionally, the computational burden is dependent on the number of particles, which has to be optimized for the computation at hand. Therefore, this study proposes two improvements for the IFB estimation in regard to the above two aspects. The first improvement is to solve the noise setting problem by employing a regularized particle filter (RPF). The second improvement optimizes the number of particles in the resampling step according to the standard deviation (STD) of the weighted particles via a controlling function. The two improvements result in significantly better performances. The regularization method allows for the system noise to be set as zero without disturbing the estimates, and consequently, more precise estimates can be achieved. In addition, the approach using the controlling function for adapting the number of particles has comparable performance in precision but the computation load is largely reduced.  相似文献   

11.
Utilization of frequency-division multiple access (FDMA) leads to GLONASS pseudorange and carrier phase observations suffering from variable levels inter-frequency bias (IFB). The bias related with carrier phase can be absorbed by ambiguities. However, the unequal code inter-frequency bias (cIFB) will degrade the accuracy of pseudorange observations, which will affect positioning accuracy and convergence of precise point positioning (PPP) when including GLONASS satellites. Based on observations made on un-differenced (UD) ionospheric-free combinations, GLONASS cIFB parameters are estimated as a constant to achieve GLONASS cIFB real-time self-calibration on a single station. A total of 23 stations, with different manufacturing backgrounds, are used to analyze the characteristics of GLONASS cIFB and its relationship with variable receiver hardware. The results show that there is an obvious common trend in cIFBs estimated using broadcast ephemeris for all of the different manufacturers, and there are unequal GLONASS inter-satellite cIFB that match brand manufacture. In addition, a particularly good consistency is found between self-calibrated receiver-dependent GLONASS cIFB and the IFB products of the German Research Centre for Geosciences (GFZ). Via a comparative experiment, it is also found that the algorithm of cIFB real-time self-calibration not only corrects receiver-dependent cIFB, but can moreover eliminate satellite-dependent cIFB, providing more stable results and further improving global navigation satellite system (GNSS) point positioning accuracy. The root mean square (RMS) improvements of single GLONASS standard point positioning (SPP) reach up to 54.18 and 53.80% in horizontal and vertical direction, respectively. The study’s GLONASS cIFB self-estimation can realize good self-consistency between cIFB and stations, working to further promote convergence efficiency relative to GPS?+?GLONASS PPP. An average improvement percentage of 19.03% is observed, realizing a near-consistent accuracy with GPS?+?GLONASS fusion PPP.  相似文献   

12.
在进行GPS/GLONASS联合卫星钟差估计时,GLONASS码频间偏差(inter-frequency bias,IFB)因卫星频率间的差异而无法被测站接收机钟差参数吸收,其一部分将进入GLONASS卫星钟差估值中。通过引入多个"时频偏差"参数(inter-system and inter-frequency bias,ISFB)及附加基准约束对测站GLONASS码IFB进行函数模型补偿,实现其与待估卫星钟差参数的有效分离,并对所估计实时卫星钟差和实时精度单点定位(real-time precise point positioning,RT-PPP)进行精度评估。结果表明,在卫星钟差估计观测方程中忽略码IFB,会明显降低GLONASS卫星钟差估值精度;新方法能有效避免码IFB对卫星钟差估值的影响,所获得GPS、GLONASS卫星钟差与ESA(European Space Agency)事后精密钟差产品偏差平均均方根值分别小于0.2 ns、0.3 ns。利用实时估计卫星钟差进行静态RT-PPP,当观测时段长为2 h时,GPS单系统、GPS/GLONASS组合系统的3D定位精度优于10 cm,GLONASS单系统3D定位精度约为15 cm;三种模式24 h单天解的3D定位精度均优于5 cm。  相似文献   

13.
Integer ambiguity resolution (IAR) appreciably improves the position accuracy and shortens the convergence time of precise point positioning (PPP). However, while many studies are limited to GPS, there is a need to investigate the performance of GLONASS PPP ambiguity resolution. Unfortunately, because of the frequency-division multiple-access strategy of GLONASS, GLONASS PPP IAR faces two obstacles. First, simultaneously observed satellites operate at different wavelengths. Second and most importantly, distinct inter-frequency bias (IFB) exists between different satellites. For the former, we adopt an undifferenced method for uncalibrated phase delay (UPD) estimation and proposed an undifferenced PPP IAR strategy. We select a set of homogeneous receivers with identical receiver IFB to perform UPD estimation and PPP IAR. The code and carrier phase IFBs can be absorbed by satellite wide-lane and narrow-lane UPDs, respectively, which is in turn consistent with PPP IAR using the same type of receivers. In order to verify the method, we used 50 stations to generate satellite UPDs and another 12 stations selected as users to perform PPP IAR. We found that the GLONASS satellite UPDs are stable in time and space and can be estimated with high accuracy and reliability. After applying UPD correction, 91 % of wide-lane ambiguities and 99 % of narrow-lane ambiguities are within (?0.15, +0.15) cycles of the nearest integer. After ambiguity resolution, the 2-hour static PPP accuracy improves from (0.66, 1.42, 1.55) cm to (0.38, 0.39, 1.39) cm for the north, east, and up components, respectively.  相似文献   

14.
GLONASS precise point positioning (PPP) performance is affected by the inter-frequency biases (IFBs) due to the application of frequency division multiple access technique. In this contribution, the impact of GLONASS pseudorange IFBs on convergence performance and positioning accuracy of GLONASS-only and GPS + GLONASS PPP based on undifferenced and uncombined observation models is investigated. Through a re-parameterization process, the following four pseudorange IFB handling schemes were proposed: neglecting IFBs, modeling IFBs as a linear or quadratic polynomial function of frequency number, and estimating IFBs for each GLONASS satellite. One week of GNSS observation data from 132 International GNSS Service stations was selected to investigate the contribution of simultaneous estimation of GLONASS pseudorange IFBs on GLONASS-only and combined GPS + GLONASS PPP in both static and kinematic modes. The results show that considering IFBs can speed up the convergence of PPP using GLONASS observations by more than 20%. Apart from GLONASS-only kinematic PPP, the positioning accuracy of GLONASS-only and GPS + GLONASS PPP is comparable among the four schemes. Overall, the scheme of estimating IFBs for each GLONASS satellite outperforms the other schemes in both convergence time reduction and positioning accuracy improvement, which indicates that the GLONASS IFBs may not strictly obey a linear or quadratic function relationship with the frequency number.  相似文献   

15.
The potential 48-satellite constellation offered by the combination of observations from both the GPS and GLONASS positioning systems has created considerable interest among existing GPS users. In the published literature, a considerable amount of work has been devoted to the theoretical issue of algorithm design for combined GPS/GLONASS positioning solutions. Little work has been published, however, on the practical conversion of existing GPS software to include GLONASS observations. This paper considers the computation issues pertaining to the GLONASS broadcast ephemeris for inclusion of GLONASS observations into existing GPS software. The format of the GLONASS broadcast ephemeris is discussed and theory of satellite orbits and their stepwise numerical integration is reviewed. Finally, a strategy for GLONASS broadcast ephemeris computation is proposed to facilitate combination of GPS and GLONASS observations. ? 1998 John Wiley & Sons, Inc.  相似文献   

16.
实现了BDS/GPS/GLONASS三系统组合RTK定位算法,介绍了BDS/GPS/GLONASS三系统组合RTK数学模型,解决了多模融合导航定位时空基准统一问题,并针对附加模糊度参数的卡尔曼滤波函数模型,提出了一种确定实时动态定位中卡尔曼滤波参数的方法。编制了BDS/GPS/GLONASS RTK定位程序,并对28 m超短基线及31 km短基线实测数据进行了解算。对比分析了BDS、GPS、GLONASS、BDS/GPS、BDS/GLONASS、GPS/GLONASS、BDS/GPS/GLONASS七种模式下的定位结果。  相似文献   

17.
GLONASS作为与GPS同时开始研制和投入运行的系统,但在发展方面明显的滞后于GPS。综述了GLONASS现代化的计划和进程,分析了GLONASS现代化进程中各阶段的具体实施情况,论述了由GLONASS现代化为我们带来的机遇和挑战。  相似文献   

18.
GLONASS carrier phase and pseudorange observations suffer from inter-channel biases (ICBs) because of frequency division multiple access (FDMA). Therefore, we analyze the effect of GLONASS pseudorange inter-channel biases on the GLONASS clock corrections. Different Analysis Centers (AC) eliminate the impact of GLONASS pseudorange ICBs in different ways. This leads to significant differences in the satellite and AC-specific offsets in the GLONASS clock corrections. Satellite and AC-specific offset differences are strongly correlated with frequency. Furthermore, the GLONASS pseudorange ICBs also leads to day-boundary jumps in the GLONASS clock corrections for the same analysis center between adjacent days. This in turn will influence the accuracy of the combined GPS/GLONASS precise point positioning (PPP) at the day-boundary. To solve these problems, a GNSS clock correction combination method based on the Kalman filter is proposed. During the combination, the AC-specific offsets and the satellite and AC-specific offsets can be estimated. The test results show the feasibility and effectiveness of the proposed clock combination method. The combined clock corrections can effectively weaken the influence of clock day-boundary jumps on combined GPS/GLONASS kinematic PPP. Furthermore, these combined clock corrections can improve the accuracy of the combined GPS/GLONASS static PPP single-day solutions when compared to the accuracy of each analysis center alone.  相似文献   

19.
GPS-assisted GLONASS orbit determination   总被引:1,自引:0,他引:1  
 Using 1 week of data from a network of GPS/GLONASS dual-tracking receivers, 15-cm accurate GLONASS orbit determination is demonstrated with an approach that combines GPS and GLONASS data. GPS data are used to define the reference frame, synchronize receiver clocks and determine troposphere delay for the GLONASS tracking network. GLONASS tracking data are then processed separately, with the GPS-defined parameters held fixed, to determine the GLONASS orbit. The quality of the GLONASS orbit determination is currently limited by the size and distribution of the tracking network, and by the unavailability of a sufficiently refined solar pressure model. Temporal variations in the differential clock bias of the dual-tracking receivers are found to have secondary impact on the orbit determination accuracy. Received: 5 January 2000 / Accepted: 15 February 2001  相似文献   

20.
段举举  沈云中 《测绘学报》2012,41(6):825-830
论文介绍了GPS/GLONASS组合静态相位相对定位模型,将GLONASS双差观测方程的模糊度参数表示成参考卫星的单差模糊度和双差模糊度参数;用误差分析法证明了单差模糊度按实参数估计不影响基线解算精度,而GLONASS双差模糊度必须按整参数进行解算;用Helmert方差分量估计确定GPS和GLONASS观测值的合理权比。实际观测数据处理结果表明:GPS/GLONASS组合定位较单一系统解算的基线精度均有提高,尤其比GLONASS单系统的解算精度有显著提高,比GPS单系统的精度也有适当提高,其中单历元基线解算精度约提高了10%,当单一系统的可用卫星数少于4颗时,GPS/GLONASS组合定位更具有应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号