首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A numerical study is presented on roll damping of ships by solving Navier-Stokes equation.Two-Dimensional unsteady incompressible viscous flow around the rolling cylinders of various ship-likecross sections are numerically simulated by use of the computational scheme previously developed by theauthors.The numerical results show that the location of the vortices is very similar to the existing experi-mental result.For comparison of vortex patterns and roll damping on various ship-like cross sections,vari-ous distributions of shear stress and pressure on the rolling ship hull surface are presented in this paper.Itis found that there are two vortices around the midship-like section and there is one vortex around the foreor stern section.Based on these simulation results.the roll damping of a ship including viscous effects iscalculated.The contribution of pressure to the roll moment is larger than the contribution of frictionalshear stress.  相似文献   

2.
Two-dimensional unsteady incompressible viscous flow around a rolling cylinder with ship-like section is numerically simulated by employing the computational scheme previously developed by the authors, in which the continuity and momentum equations are satisfied simultaneously at each time step for oscillating flow. The numerical results show that the motion of vortices around a rolling ship hull is cyclical. It is found that the location of the vortices is very similar to the existing experimental result. Using these simulation results, we can calculate the roll damping of ships including viscous effects.  相似文献   

3.
The results of direct numerical simulations of the boundary layer generated at the bottom of a solitary wave are described. The numerical results, which agree with the laboratory measurements of Sumer et al. (2010) show that the flow regime in the boundary layer can be laminar, laminar with coherent vortices and turbulent. The average velocity and bottom shear stress are computed and the results obtained show that the logarithmic law can approximate the velocity profile only in a restricted range of the parameters and at particular phases of the wave cycle. Moreover, the maximum value of the bottom shear stress is found to depend on the dimensionless wave height only, while the minimum (negative) value depends also on the dimensionless boundary layer thickness. Diagrams and simple formulae are proposed to evaluate the minimum and maximum bottom shear stresses and their phase shift with respect to the wave crest.  相似文献   

4.
《Coastal Engineering》2006,53(5-6):441-462
The structure of large-scale turbulence under a broken solitary wave on a 1 in 50 plane slope was studied. Three-component velocity measurements were taken at different heights above a smooth bed in the middle surf zone using an acoustic Doppler velocimeter. The measured data showed that turbulent velocity components were well correlated in the middle part of the water column. The velocity correlations could be produced by an oblique vortex similar to the obliquely descending eddy observed previously by other investigators. The vertical distributions of the relative values of the components of the Reynolds stress tensor showed that the structure of turbulence evolved continuously between the free surface and the bottom. The evolution was related to transition from two-dimensional to three-dimensional flow structures and the effect of the solid bottom on flow structures. Time histories of measured turbulent kinetic energy and turbulence stresses showed episodic turbulent events near the free surface but more sporadic turbulence in the lower layer. Large or intense turbulent events were found to have short duration and time lag relative to the wave crest point. These events also maintained good correlations between the turbulence velocity components close to the bottom.Instantaneous turbulent velocity fields were measured near the bottom at the same cross-shore location by using a stereoscopic particle image velocimetry system. These measurements showed that the near-bed flow field was characterized by large-scale, coherent flow structures that were the sources of most of the turbulent kinetic energy and turbulence stresses. The types of organized flow structures observed included vortices and downbursts of turbulence descending directly from above, lateral spreading of turbulent fluid along the bed, and formation of vortices in shear layers between fluid streams. A common feature of the organized flow structures near the bed was the large turbulence velocities in the longitudinal and transverse directions, which reflected the influence of a solid bottom on the breaking-wave-generated turbulence arriving at the bed.  相似文献   

5.
A process-based, numerical, hydrodynamic vortex lattice mine scour/burial model (VORTEX) is presented that simulates scour and burial of objects of arbitrary shape resting on a granular bed in the nearshore. There are two domains in the model formulation: a far-field where burial and exposure occur due to changes in the elevation of the seabed and a near-field involving scour and transport of sediment by the vortices shed from the object. The far-field burial mechanisms are based on changes in the equilibrium bottom profiles in response to seasonal changes in wave climate and accretion/erosion waves spawned by fluxes of sediment into the littoral cell. The near-field domain consists of one grid cell extracted from the far-field that is subdivided into a rectangular lattice of panels having sufficient resolution to define the shape of the object. The vortex field induced by the object is constructed from an assemblage of horseshoe vortices excited by local pressure gradients and shear over the lattice panels. The horseshoe vortices of each lattice panel release a pair of vortex filaments into the neighboring flow. The induced velocity of these trailing vortex filaments causes scour of the neighboring seabed and induces hydrodynamic forces on the object. Scour around the object and its subsequent movement into the scour depression contribute to burial, while far-field changes in local sand level may increase burial depth or expose the object. Scour and burial predictions of mines and mine-like objects were tested in field experiments conducted in the nearshore waters off the Pacific coast of California at Scripps Pier, the Gulf Coast of Florida at Indian Rocks, and off the Atlantic coast of Massachusetts at Martha's Vineyard. Model predictions of mine scour and burial are in reasonable agreement with field measurements and underwater photographs.  相似文献   

6.
Yves Morel  Leif N. Thomas   《Ocean Modelling》2009,27(3-4):185-197
In this article, the authors study the influence of a constant wind on the displacement of a vortex. The well known Ekman current develops in the surface layer and is responsible for a transport perpendicular to the wind: the Ekman drift.An additional process is, however, evidenced, whose importance is as strong as the Ekman drift. There indeed exists a curl of the wind-driven acceleration along isopycnic surfaces when they are spatially variable (they enter and leave the depth where the wind stress acts), which generates potential vorticity anomalies. This diabatic effect is shown to generate potential vorticity anomalies which acts on the propagation of vortical waves and non linear vortices.It is shown that this effect drastically reduces the effect of the Ekman drift for linear waves and surface intensified vortices, while extending its effect to subsurface vortices. It also generates along wind propagation, whose sign depends on the vortex characteristics.  相似文献   

7.
采用移动粒子半隐式法(moving particle semi-implicit,简称MPS)对自由漂浮二维方舱的破舱瞬时进水过程进行数值模拟。首先,采用基于GPU平台自主开发的MPS软件模拟破舱进水问题,并与其他方法得到的数值模拟结果进行对比验证。然后,对该二维方舱的各种模型进行了数值模拟,其中开孔位于不同位置以表示舷侧不同高度下的损坏。此外,还研究了不同类型的挡板对破舱进水后方舱稳定性的影响。结果表明损坏的孔洞和内部挡板会影响损坏舱段的运动特性,开孔距静水面的距离越大引起舱段的横摇等运动幅度越大,垂直挡板比水平挡板对舱内洪水的影响更大。  相似文献   

8.
The instantaneous turbulent velocity field produced by a broken solitary wave propagating on a 1 in 50 plane slope was measured in the longitudinal transverse plane in the middle part of the water column and near the bottom using a stereoscopic particle image velocimetry system. These measurements showed that large-scale turbulence first arrived in the form of a downburst of turbulent fluid. In the middle of the water column, the downbursts arrived shortly after the wave crest had passed. Each downburst was accompanied by two counter-rotating vortices. The latter grew rapidly in size to become a prominent feature of the flow field. Each vortex had a typical length scale of 1/2 to 1 water depth, and carried most of the turbulent kinetic energy in the region between the vortices. Near the bottom, the counter-rotating vortices were not as well defined and covered only a small plane area compared to the entire flow structure. The turbulent fluid descending from above diverged at the bed and the resulting flow structure developed an elongated shape as the source of down-flow travelled onshore with the broken wave. It was found that the transverse spacing between adjacent downbursts ranged from 2 to 5 times the local still water depth. Since vortices cannot end in the interior of the fluid, the counter-rotating vortices must extend to the free surface in the form of a vortex loop. It was suggested that these vortex loops were produced by bending and stretching of primary vorticity generated in the wave breaking process, possibly as a result of three-dimensional water surface deformation. The vortex loops were then carried downward by the falling water from the broken wave.  相似文献   

9.
A method is suggested for simulating axisymmetric laminar or turbulent flows formed during the motion of a vortex-ring bunch of given geometry and circulation toward a plane screen. Earlier, similar problems were simulated with the numerical solution of the Navier-Stokes equations for laminar flows. Turbulent flows have remained unconsidered until now. When a vortex ring approaches the screen, the secondary nonstationary flow is induced near the screen’s surface and this secondary flow causes the formation of the radial boundary layer (provided that air viscosity is taken into account). First, the medium spreads out from the critical point at the screen’s center with the negative pressure gradient along the radial coordinate and then detaches in the region of the positive pressure gradient. This radial wall flow and the corresponding boundary layer are considered in the quasi-stationary approximation. When the boundary layer detaches at successive instances, the flow is replenished with the radially moving secondary vortex rings whose circulations have the sign opposite to that of the circulation of the primary vortex ring. It is the interaction of the primary and secondary vortices that governs process dynamics, which differs substantially from that in the case when the formation of secondary vortices is disregarded. The suggested method is based on the method of discrete vortices (a perfect liquid) and the boundary-layer (laminar or turbulent) theory. During the development of the flow under investigation, the nonstationary ascending flow in the direction perpendicular to the screen’s plane is formed and then this flow decays and dissipates. Simulations for large Reynolds numbers corresponding to the formation of the turbulent boundary layer show that the velocity of ascending vortices in the plane of the initial vortex bunch is less than one-tenth of the initial velocity of the descending vortex ring. The boundary layer is introduced into calculations with the sole goal of determining the parameters of the secondary vortex rings formed during boundary-layer detachments. The interaction of the primary and secondary vortices is then considered within the framework of a perfect medium. Simulations for large Reynolds numbers corresponding to the formation of the turbulent boundary layer on the screen were correlated with the available data obtained in laboratory experiments for small Reynolds numbers. Qualitative agreement between the simulations and experiments is fairly satisfactory. The simulation for one combination of the circulation and vortex-ring geometry takes at most 10–15 min with the use of an average PC.  相似文献   

10.
Direct numerical simulation was conducted to investigate the flow past a slotted cylinder at low Reynolds number (Re) of 100. The slotting of cylinder affects the boundary layer separation, vortex formation position, recirculation region length and wake width, which are determined by the type of slit. The streamwise slit (SS1), T-shaped slit (SS3) and Y-shaped slit (SS4) act as passive jets, while the transverse slit (SS2) achieves an alternate self-organized boundary layer suction and blowing. The flow rate in slits fluctuates over time due to the alternate vortex shedding and fluctuating pressure distribution around the cylinder surface. One fluctuation cycle of flow rate is caused by a pair of vortices shedding for SS2, SS3 and SS4, while it is created by each vortex shedding for SS1. The wall shear stress and flow impact on the slit wall partly contribute to the hydrodynamic forces acting on the slotted cylinder. Taking into account the internal wall of slit, the transverse slit plays the best role in suppressing the fluid forces with drag reduction of 1.7% and lift reduction of 17%.  相似文献   

11.
1 .IntroductionUnder the influence of surface waves ,sandripples often appear on beaches . Whenthe amplitudeof water oscillationis sufficientlylarge ,vortices are formed onthe lee of every sand ripple crest . A-mongthese vortices ,the most important are t…  相似文献   

12.
罗德海  卢燕 《海洋与湖沼》2000,31(4):363-369
通过对海洋中长生命反气旋涡在Gauss型孤立地形上演变的研究,发现地形对长生命反气旋涡的发展和传播有相当重要的影响。在无地形作用的情况下,仅有反气旋涡能够存在于向西的均匀基流中,这个涡是长生命的,并且在西移过程中有明显的向西倾斜。然而当其上游存在一个孤立地形时,可以发现这个涡有一个向东的倾斜,它的强度将增强且向西的移速会增加,其规迹象陀螺的运动。另一方面,当两个强度相同的反气旋涡同时存在时,这两个  相似文献   

13.
The strong tidal current (tidal jet) in straits generates tidal vortices with a scale of several kilometers. The role of the vortices in material transport was investigated in the Neko Seto Sea, located in the western part of the Seto Inland Sea of Japan. A clockwise vortex with a diameter of about 0.8 km was observed in Nigata Bay (lying between two straits, the Neko Seto Strait and the Meneko Seto Strait). It was concluded that the clockwise vortex was the tidal vortex which was generated by the tidal jet in the Meneko Seto Strait. The vortex moved into the bay with the tide, but tended to stay on the sand bank in the bay. It was confirmed by current measurement with an ADCP and turbidity measurement that the secondary convergent flow was generated in the bottom layer of the vortex. This secondary flow seemed to contribute to the formation of the sand bank. It was suggested that tidal vortices may play an important role in the sediment transport and formation of topography in and around straits.  相似文献   

14.
We have investigated the three-dimensional Lagrangian motion of water particles related with tidal exchange between two basins with a constant depth connected through a narrow strait and the effects of density stratification on the exchange processes by tracking a number of the labeled particles. Tide-induced transient eddies (TITEs), which are similar to those in two-dimensional basin, are generated behind the headlands. Upwelling appears around the center of the eddy and sinking around the boundary. When the basins are filled with homogeneous water, a pair of vortices are produced in the vertical cross section of the strait due to bottom stress, with upwellings along the side walls of the strait and sinking in the center of the strait. These circulations form the horizontally convergent field in the cross-strait direction in the upper layers while the horizontal divergence takes place in the bottom layer. These vertical water-motions produce the three-dimensional distribution of velocity shear and phase lag of the tidal current around the strait, and the Lagrangian drifts of water particles become large. As a result, water exchange through the strait is greatly enhanced: The water exchange rate reaches 94.1% which is much larger than that obtained in the vertically integrated two-dimensional model. When the basins are stratified, the stable stratification suppresses the vertical motion so that a pair of vertical vortices are confined in the lower layers. This leads to a decrease in the exchange rate, down to 88.6%. Our numerical results show that the three-dimensional structure of tidal currents should be taken into account in tidal exchange through a narrow strait.  相似文献   

15.
基于实验室水槽实验,研究了内孤立波在海底山脊地形存在下的破碎过程。实验设置了两层流体的分层环境,定量地控制了上下层水体厚度及密度,使用不同高度的高斯地形模拟实际的海山作用,讨论了不同高度地形作用下内孤立波破碎过程的异同。实验结果表明,内孤立波的破碎过程中由于逆压梯度的存在,在地形处发生边界层分离,产生了底边界层反向射流和涡脱落现象,计算了内孤立波破碎过程中产生的底部切应力的分布。本文通过实验模拟了内孤立波再海山作用下的破碎过程,进一步探究了海山对内孤立波破碎的影响和底部切应力的作用,对于研究自然界中海洋内孤立波在海山区域的破碎现象有参考价值。  相似文献   

16.
The results of experimental studies of the interaction between the horseshoe vortices formed in nonuniform water flows and a sand surface are presented. The central part of the initial cylindrical vortex ascends, driven by the Kutta—Joukowski force. The vortex tails submerged into sand approach each other, grabbing the sand by their ends. Sharp bends are formed at the axes of the vortex tails. If the bends occlude, a ring vortex is formed above the bends. The ring approaches the surface at an angle of 40° and moves along the flow: the angle decreases, and the radius of the ring increases. When the whole vortex reaches the water surface, it breaks, loses the entrapped sand, and forms a ridge on the bottom.  相似文献   

17.
The structure of turbulence in the ocean surface layer is investigated using a simplified semi-analytical model based on rapid-distortion theory. In this model, which is linear with respect to the turbulence, the flow comprises a mean Eulerian shear current, the Stokes drift of an irrotational surface wave, which accounts for the irreversible effect of the waves on the turbulence, and the turbulence itself, whose time evolution is calculated. By analysing the equations of motion used in the model, which are linearised versions of the Craik–Leibovich equations containing a ‘vortex force’, it is found that a flow including mean shear and a Stokes drift is formally equivalent to a flow including mean shear and rotation. In particular, Craik and Leibovich’s condition for the linear instability of the first kind of flow is equivalent to Bradshaw’s condition for the linear instability of the second. However, the present study goes beyond linear stability analyses by considering flow disturbances of finite amplitude, which allows calculating turbulence statistics and addressing cases where the linear stability is neutral. Results from the model show that the turbulence displays a structure with a continuous variation of the anisotropy and elongation, ranging from streaky structures, for distortion by shear only, to streamwise vortices resembling Langmuir circulations, for distortion by Stokes drift only. The TKE grows faster for distortion by a shear and a Stokes drift gradient with the same sign (a situation relevant to wind waves), but the turbulence is more isotropic in that case (which is linearly unstable to Langmuir circulations).  相似文献   

18.
19.
Sand banks around straits are used as a commercial fishing ground. In order to clarify the mechanism of sand bank formation, the Lagrangian method was used to measure currents and turbidity around the banks in the Neko Seto Sea in the Seto Inland Sea of Japan. A neutrally buoyant float released in the Neko Seto Strait at the maximum tidal flow stage was engulfed in a pair of tidal vortices and moved around one of the sand banks. The vertical distribution of turbidity, which was measured by the vessel moving with the neutral float, showed an extremely high turbidity in the bottom layer of this bank area. According to the analysis of these observational data, the process of sand bank formation around straits is as follows. The tidal vortex transports water mass with suspended materials (including sand) which are whirled up at the bottom by the tidal jet. In the decaying stage of the vortex, the materials in the bottom layer are gathered in the central part of the vortex by the secondary convergent flow in the vortex. Among these materials, a large-size sand particle with a high critical erosion velocity accumulates at the bottom and forms banks. The distribution of bottom sediment and the thickness of alluvium support this result.  相似文献   

20.
A two-cell circulation associated with a front observed in coastal upwelling regions is studied numerically in a three-dimensional level model. An ocean with a flat bottom is forced by the wind stress with a longshore variation. Upwelling is induced in the region next to the coast. In association with the upwelling, the pycnocline slopes up toward the coast and intersects the sea surface forming a front. After that, downwelling is induced just inshore-side of the front and upwelling offshore-side. The transverse circulation in the present model seems to reproduce the observed two-cell circulation. It is found that the generation of the two-cell circulation is due to deviations of the longshore flow from the thermal-wind relation (geostrophy). The deviations are caused by the onshore-offshore movements of the front. Although no vorticity input through the wind stress is assumed, several barotropic vortices are induced by the effect of the inclination of the pycnocline and grow as long as the winds continue to blow. The observed poleward undercurrent may be interpreted as a combination of motions of the internal mode associated with the front and a barotropic flow associated with a cyclonic vortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号