首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have performed dissections of two diamondiferous eclogites (UX-1 and U33/1) from the Udachnaya kimberlite, Yakutia in order to understand the nature of diamond formation and the relationship between the diamonds, their mineral inclusions, and host eclogite minerals. Diamonds were carefully recovered from each xenolith, based upon high-resolution X-ray tomography images and three-dimensional models. The nature and physical properties of minerals, in direct contact with diamonds, were investigated at the time of diamond extraction. Polished sections of the eclogites were made, containing the mould areas of the diamonds, to further investigate the chemical compositions of the host minerals and the phases that were in contact with diamonds. Major- and minor-element compositions of silicate and sulfide mineral inclusions in diamonds show variations among each other, and from those in the host eclogites. Oxygen isotope compositions of one garnet and five clinopyroxene inclusions in diamonds from another Udachnaya eclogite (U51) span the entire range recorded for eclogite xenoliths from Udachnaya. In addition, the reported compositions of almost all clinopyroxene inclusions in U51 diamonds exhibit positive Eu anomaly. This feature, together with the oxygen isotopic characteristics, is consistent with the well-established hypothesis of subduction origin for Udachnaya eclogite xenoliths. It is intuitive to expect that all eclogite xenoliths in a particular kimberlite should have common heritage, at least with respect to their included diamonds. However, the variation in the composition of multiple inclusions within diamonds, and among diamonds, from the same eclogite indicates the involvement of complex processes in diamond genesis, at least in the eclogite xenoliths from Yakutia that we have studied.  相似文献   

2.
 One diamond-bearing and eight graphite-bearing eclogite xenoliths are described from the Bellsbank kimberlites, Cape Province, South Africa. Graphite mostly occurs as discrete grains which are commonly in the form of tabular prisms. Diamond is octahedral. Both Group I and Group II eclogite varieties are represented by the graphite-bearing specimens, while the single diamond-bearing eclogite is of the Group I variety. The carbon isotopic composition of the graphite varies from δ13C=−7‰ to δ13C=−2.8‰. This is within the range of carbon isotopic compositions for inclusion-free diamonds in kimberlite from this locality, suggesting that the carbon for the eclogites as well as some of the kimberlite diamonds are derived from the same source. The present day Nd isotopic compositions of clinopyroxene from three graphite-bearing xenoliths are slightly higher than the bulk earth estimate. Sr isotopic compositions of the clinopyroxene in these xenoliths vary from 87Sr/86Sr=0.703 to 87Sr/86Sr=0.706. This could be due to derivation of the xenoliths from a protolith with variable 87Sr/86Sr isotopic composition or could be the result of mixing between a low-Sr, high 87Sr/86Sr component and a high Sr, low 87Sr/86Sr component. Received: 1 June 1994/Accepted: 6 March 1995  相似文献   

3.
Eclogitic (E-type) and related parageneses of natural diamonds are represented by suites of diamond inclusions and xenoliths of diamondiferous eclogites. Major-element data are presented for 32 coexisting minerals forming 19 bimineralic and trimineralic inclusions from diamonds, including omphacite-orthopyroxene (1 sample), garnet-omphacite (5 samples), garnet-coesite (5 samples), omphacite-coesite (2 samples), garnet-picroilmenite (2 samples), garnet-kyanite (1 sample), omphacite-phlogopite (2 samples), and garnel-omphacite-phlogopite (1 sample). Major-element variations of coexisting minerals are typical of corresponding eclogites. Omphacite with 5.02 wt% Na2O, inter-grown with orthopyroxene with Mg# 83.7, represents the first example of a diamondiferous websterite paragenesis including Na-clinopyroxene. This indicates a broader range in mineral compositions of E-type-related websteritepyroxenite-associated diamonds than known previously. This unique websterite-pyroxenitic mineral assemblage represents a transitional paragenesis between peridotitic or ultramafic (U-type) and E-type parageneses.

Bimineralic eclogites, ilmenite eclogites, coesite + corundum + kyanite eclogites, and grospydites occur not only as sets of inclusions in diamonds but, with a few exceptions (ilmenite and coesite eclogites), also as diamondiferous eclogite xenoliths. The coesite eclogite paragenesis is a significant inclusion suite in diamonds, and was detected in about 15 diamond occurrences worldwide. It represents from 15% to 22% of all E-type diamonds in several occurrences, and thus should not be considered as rare.  相似文献   

4.
The first results of study of minerals and diamonds of diamond-bearing eclogites from kimberlites of the Yubileinaya pipe with a variable percent amount of clinopyroxene and garnet are presented. Samples with a garnet content from 30 to 90% of the xenolith volume are dominant among the round to oval xenoliths with diamonds. Five eclogite samples contain grains of accessory rutile, as well as corundum and kyanite. Some samples host two or more diamond crystals.  相似文献   

5.
Iron isotopes, together with mineral elemental compositions of spinel peridotite xenoliths and clinopyroxenites from Hannuoba and Hebi Cenozoic alkaline basalts, were analyzed to investigate iron isotopic features of the lithospheric mantle beneath the North China Craton. The results show that the Hannuoba spinel peridotite xenoliths have small but distinguishable Fe isotopic variations. Overall variations in δ57Fe are in a range of −0.25 to 0.14‰ for olivine, −0.17 to 0.17‰ for orthopyroxene, −0.21 to 0.27‰ for clinopyroxene, and −0.16 to 0.26‰ for spinel, respectively. Clinopyroxene has the heaviest iron isotopic ratio and olivine the lightest within individual sample. No clear linear relationships between the mineral pairs on “δ-δ” plot suggest that iron isotopes of mineral separates analyzed have been affected largely by some open system processes. The broadly negative correlations between mineral iron isotopes and metasomatic indexes such as spinel Cr#, (La/Yb)N ratios of clinopyroxenes suggest that iron isotopic variations in different minerals and peridotites were probably produced by mantle metasomatism. The Hebi phlogopite-bearing lherzolite, which is significantly modified by metasomatic events, appears to be much heavier isotopically than clinopyroxene-poor lherzolite. This study further confirms previous conclusions that the lithospheric mantle has distinguishable and heterogeneous iron isotopic variations at the xenoliths scale. Mantle metasomatism is the most likely cause for the iron isotope variations in mantle peridotites.  相似文献   

6.
Diamond formation from metasomatic fluids, rather than from igneous melts, remains controversial but is paramount to our understanding of diamonds' mantle origin(s). Physical and chemical properties of diamonds, their inclusions, and host eclogites from the Mir kimberlite, Yakutia, Russia form the basis for our evaluation of diamond origin. Mir eclogitic diamonds and their multiple inclusions show a definite break in time and temperature between the formation of the core zones and the rims of the diamonds. Extreme changes in chemistry for multiple diamond inclusions (DIs) between the cores and the rims cannot be accounted for by magmatic fractional crystallization. Evidence also exists for large temperature decreases (40° to 140°C) from the cores to the rims of some diamonds. The distinct changes in nitrogen contents and aggregation states from cores to rims of diamonds would appear to reflect different residence times for these portions of the diamonds in the mantle- i.e., formation of cores and rims at vastly different times (e.g., 2 Gy). Many of the mineral-chemical characteristics, including C and N isotopes and N aggregation states of the diamond, can best be explained by crystallization of the diamonds after formation of the eclogite host. This suggests that the formation of the eclogite and the nucleation and growth of some diamonds are not coeval and possibly not cogenetic.

Most diamondiferous eclogite xenoliths probably have never experienced a major magmatic episode (i.e., complete melt stage) after subduction of their crustal protoliths into the mantle. Carbon isotopes in diamond, sulfur isotopes from sulfide DIs, and oxygen isotopes from eclogite minerals all point to crustal protoliths for many eclogites.

All of the factors above, taken as a whole, indicate that many eclogitic diamonds are the result of petrogenesis by metasomatism over a prolonged period of time. Introduction of metasomatic fluids facilitates the precipitation of the diamonds, either in tolo or as rims on previously formed diamonds. Inasmuch as some eclogites are considered to be igneous in origine.g., Group-A eclogites of Taylor and Neal (1989)-it is entirely possible that these eclogites may contain truly igneous diamonds. However, even some of these diamonds may have later metasomatic overgrowths.  相似文献   

7.
The Jericho kimberlites are part of a small Jurassic kimberlitecluster in the northern Slave craton, Canada. A variety of datingtechniques were applied to constrain the nature and age of twoJericho kimberlites, JD-1 (170·2 ± 4·3Ma Rb–Sr phlogopite megacrysts, 172·8 ±0·7 Ma U–Pb eclogite rutile, 178 ± 5 MaU–Pb eclogite zircon lower intercept) and JD-3 (173 ±2 Ma Rb–Sr phlogopite megacryst; 176·6 ±3·2 Ma U–Pb perovskite), and all yielded identicalresults within analytical uncertainty. As there is no discernibledifference in the radiometric ages obtained for these two pipes,the composite Rb–Sr phlogopite megacryst date of 173·1± 1·3 Ma is interpreted as the best estimate forthe emplacement age of both Jericho pipes. The initial Sr isotopecomposition of 0·7053 ± 0·0003 derivedfrom phlogopite megacrysts overlaps the range (0·7043–0·7084)previously reported for Jericho whole-rocks. These strontiumisotope data, combined with the radiogenic initial 206Pb/204Pbratio of 18·99 ± 0·33 obtained in thisstudy, indicate that the Jericho kimberlites are isotopicallysimilar to Group 1 kimberlites as defined in southern Africa.The Jericho kimberlites are an important new source of mantlexenoliths that hold clues to the nature of the Slave cratonsubcontinental mantle. A high proportion (30%) of the Jerichomantle xenolith population consists of various eclogite typesincluding a small number (2–3%) of apatite-, diamond-,kyanite- and zircon-bearing eclogites. The most striking aspectof the Jericho zircon-bearing eclogite xenoliths is their peculiargeochemistry. Reconstructed whole-rock compositions indicatethat they were derived from protoliths with high FeO, Al2O3and Na2O contents, reflected in the high-FeO (22·6–27·5wt %) nature of garnet and the high-Na2O (8·47–9·44wt %) and high-Al2O3 (13·12–14·33 wt %)character of the clinopyroxene. These eclogite whole-rock compositionsare highly enriched in high field strength elements (HFSE) suchas Nb (133–1134 ppm), Ta (5–28 ppm), Zr (1779–4934ppm) and Hf (23–64 ppm). This HFSE enrichment is linkedto growth of large (up to 2 mm) zircon and niobian rutile crystals(up to 3 modal %) near the time of eclogite metamorphism. Thediamond-bearing eclogites on the other hand are characterizedby high-MgO (19·6–21·3 wt %) garnet andultralow-Na2O (0·44–1·50 wt %) clinopyroxene.Paleotemperature estimates indicate that both the zircon- anddiamond-bearing eclogites have similar equilibration temperaturesof 950–1020°C and 990–1030°C, respectively,corresponding to mantle depths of 150–180 km. Integrationof petrographic, whole-rock and mineral geochemistry, geochronologyand isotope tracer techniques indicates that the Jericho zircon-bearingeclogite xenoliths have had a complex history involving Paleoproterozoicmetamorphism, thermal perturbations, and two or more episodesof Precambrian mantle metasomatism. The oldest metasomatic event(Type 1) occurred near the time of Paleoproterozoic metamorphism(1·8 Ga) and is responsible for the extreme HFSE enrichmentand growth of zircon and high-niobian rutile. A second thermalperturbation and concomitant carbonatite metasomatism (Type2) is responsible for significant apatite growth in some xenolithsand profound light rare earth element enrichment. Type 2 metasomatismoccurred in the period 1·0–1·3 Ga and isrecorded by relatively consistent whole-rock eclogite modelNd ages and secondary U–Pb zircon upper intercept dates.These eclogite xenoliths were derived from a variety of protoliths,some of which could represent metasomatized pieces of oceaniccrust, possibly linked to east-dipping subduction beneath theSlave craton during construction of the 1·88–1·84Ga Great Bear continental arc. Others, including the diamond-bearingeclogites, could be cumulates from mafic or ultramafic sillcomplexes that intruded the Slave lithospheric mantle at depthsof about 150–180 km. KEY WORDS: zircon- and diamond-bearing eclogites; Jericho kimberlite, geochronology; Precambrian metasomatism, northern Slave Craton  相似文献   

8.
Diamonds from high- and low-MgO groups of eclogite xenoliths from the Jericho kimberlite, Slave Craton, Canada were analyzed for carbon isotope compositions and nitrogen contents. Diamonds extracted from the two groups show remarkably different nitrogen abundances and δ13C values. While diamonds from high-MgO eclogites have low nitrogen contents (5-82 ppm) and extremely low δ13C values clustering at ∼−40‰, diamonds from the low-MgO eclogites have high nitrogen contents (>1200 ppm) and δ13C values from −3.5‰ to −5.3‰.Coupled cathodoluminescence (CL) imaging and SIMS analysis of the Jericho diamonds provides insight into diamond growth processes. Diamonds from the high-MgO eclogites display little CL structure and generally have constant δ13C values and nitrogen contents. Some of these diamonds have secondary rims with increasing δ13C values from −40‰ to ∼−34‰, which suggests secondary diamond growth occurred from an oxidized growth medium. The extreme negative δ13C values of the high-MgO eclogite diamonds cannot be produced by Rayleigh isotopic fractionation of average mantle-derived carbon (−5‰) or carbon derived from typical organic matter (∼−25‰). However, excursions in δ13C values to −60‰ are known in the organic sedimentary record at ca. 2.7 and 2.0 Ga, such that diamonds from the high-MgO eclogites could have formed from similar organic matter brought into the Slave lithospheric mantle by subduction.SIMS analyses of a diamond from a low-MgO eclogite show an outer core with systematic rimwards increases in δ13C values coupled with decreases in nitrogen contents, and a rim with pronounced alternating growth zones. The coupled δ13C-nitrogen data suggest that the diamond precipitated during fractional crystallization from an oxidized fluid/melt from which nitrogen was progressively depleted during growth. Model calculations of the co-variation of δ13C-N yielded a partition coefficient (KN) value of 5, indicating that nitrogen is strongly compatible in diamond relative to the growth medium. δ13C values of diamond cores (−4‰) dictate the growth medium had higher δ13C values than primary mantle-derived carbon. Therefore, possible carbon sources for the low-MgO eclogite diamonds include oxidized mantle-derived (e.g. protokimberlite or carbonatite) fluids/melts that underwent some fractionation during migration or, devolatilized subducted carbonates.  相似文献   

9.
Petrochemistry of eclogites from the Koidu Kimberlite Complex,Sierra Leone   总被引:1,自引:0,他引:1  
Petrography, mineral and bulk chemistry of upper mantle-derived eclogites (garnet and clinopyroxene) from the Koidu Kimberlite Complex, Sierra Leone, are presented in the first comprehensive study of these xenoliths from West Africa. Although peridotite-suite xenoliths are generally more common in kimberlites, the upper mantle sample preserved in Pipe Number 1 at Koidu is exclusively eclogitic, making this the fifth locality in which eclogite is the sole polymineralic xenolith in kimberlite. Over 2000 xenoliths were collected, of which 47 are described in detail that include diamond, graphite, kyanite, corundum, quartz after coesite, and amphibole eclogites. Grossular-pyrope-almandine garnets are chromium-poor (<0.72 wt% Cr2O3) and fall into two distinct groups based on magnesium content. High-MgO garnets have an average composition of Pyr67Alm22Gross11, low-MgO garnets are grossular- and almandine-rich with an average composition of Gross34Pyr33Alm33. Clinopyroxenes are omphacitic with a range in jadeite contents from 7.7 to 70.1 mol%. Three eclogites contain zoned and mantled garnets with almandine-rich cores and pyrope-rich rims, and zoned clinopyroxenes with diopside-rich cores and jadeite-rich rims, and are among a very rare group of eclogites reported on a world-wide basis. The bulk compositions of eclogites have ranges comparable to that of basalts. High-MgO eclogites (16–20 wt% MgO) have close chemical affinities to picrites, whereas low-MgO eclogites (6–13 wt% MgO) are similar to alkali basalts. High-MgO eclogites contain high-MgO garnets and jadeiterich clinopyroxenes. Low-MgO eclogites contain low-MgO garnets, diopside and omphacite, and the group of primary accessory phases (diamond, graphite, quartz after coesite, kyanite, and corundum); grospydites are peraluminous. Estimated temperatures and pressures of equilibration of diamond-bearing eclogites, using the diamond-graphite stability curve and the Ellis and Green (1979) geothermometer, are 1031°–1363° C at 45–50 kb.K D values of Fe-Mg in garnet and clinopyroxene range from 2.3 to 12.2. Diamonds in eclogites are green, yellow, and clear, and range from cube to octahedral morphologies; the entire spectrum in color and morphology is present in a single metasomatized eclogite with zoned garnet and clinopyroxene. Ages estimated from Sm-Nd mineral isochrons range from 92–247 Ma. Nd values range from +4.05 to 5.23. Values of specific gravity range from 3.06–3.60 g/cc, with calculated seismic Vp of 7.4–8.7 km/s. Petrographie, mineral, and bulk chemical data demonstrate an overall close similarity between the Koidu xenolith suite and upper mantle eclogites from other districts in Africa, Siberia and the United States. At least two origins are implied byP-T, bulk chemistry and mineral compositions: low-MgO eclogites, with diamond and other accessory minerals, are considered to have formed from melts trapped and metamorphically equilibrated in the lithosphere; high-MgO eclogites are picritic and are the products of large degrees of partial melting, with equilibration in the asthenosphere. Fluid or diluted melt metasomatism is pervasive and contributed here and elsewhere to the LIL and refractory silicate incompatible element signature in kimberlites and lamproites, and to secondary diamond growth.  相似文献   

10.
Diamonds: time capsules from the Siberian Mantle   总被引:1,自引:0,他引:1  
Diamonds are thought to be “time capsules” from the Earth's mantle. However, by themselves, consisting of nearly pure carbon, diamonds provide little geochemical information about their conditions of formation and the nature of their mantle hosts. This obstacle to studying the origin of diamonds and their hosts can be overcome by using two main approaches that focus on studying: (1) the rocks that contain diamonds, i.e., diamondiferous xenoliths; and (2) mineral inclusions within the diamonds, the time capsule's little treasures, if you will. Diamondiferous xenoliths, their diamonds, and mineral inclusions within the diamonds are the subject of this review, focusing on studies of samples from the Yakutian kimberlites in the Siberian Platform.Studies of diamondiferous eclogite xenoliths significantly enhance our understanding of the complex petrogenesis of this important group of rocks and their diamonds. Such studies involve various geochemical and petrological investigations of these eclogites, including major and trace-element, radiogenic as well as stable isotopic analyses of whole rocks and minerals. The results from these studies have clearly established that the Group A-C eclogites originate from subduction of ancient oceanic crust. This theory is probably applicable worldwide.Within the last several years, our research group at Tennessee has undertaken the systematic dissection (pull apart) of diamondiferous eclogites from Siberia, consisting of the following steps: (1) high-resolution computed X-ray tomography of the xenoliths to produce 3D images that relate the minerals of the xenoliths to their diamonds; (2) detailed dissection of the entire xenolith to reveal the diamonds inside, followed by characterization of the setting of the diamonds within their enclosing minerals; and (3) extraction of diamonds from the xenolith for further investigation of the diamonds and their inclusions. In this last step, it is important that the nature and relative positions of the diamond inclusions are carefully noted in order to maximize the number of inclusions that can be exposed simultaneously on one polished surface. In this modus operandi, cathodoluminescence imaging, plus FTIR/N aggregation and C/N isotopic analyses are performed on polished diamond surfaces to reveal their internal growth zones and the spatial relationship of the mineral inclusions to these zones.Knowledge gained by such detailed, albeit work-intensive, studies continues to add immensely to the constantly evolving models of the origin of diamonds and their host rocks in the Earth's mantle, as well as to lithospheric stability models in cratonic areas. Multiple lines of evidence indicate the ultimate crustal origin for the majority of mantle eclogites. Similar pieces of evidence, particularly from δ13C in P-type diamonds and δ18O in peridotitic garnets lead to the suggestion that at least some of the mantle peridotites, including diamondiferous ones, as well as inclusions in P-type diamonds, may have had a crustal protolith as well.  相似文献   

11.
We report on a suite of diamonds from the Cretaceous Collier 4 kimberlite pipe, Juina, Brazil, that are predominantly nitrogen-free type II crystals showing complex internal growth structures. Syngenetic mineral inclusions comprise calcium- and titanium-rich phases with perovskite stoichiometry, Ca-rich majoritic-garnet, clinopyroxene, olivine, TAPP phase, minerals with stoichiometries of CAS and K-hollandite phases, SiO2, FeO, native iron, low-Ni sulfides, and Ca–Mg-carbonate. We divide the diamonds into three groups on the basis of the carbon isotope compositions (δ13C) of diamond core zones. Group 1 diamonds have heavy, mantle-like δ13C (−5 to −10‰) with mineral inclusions indicating a transition zone origin from mafic protoliths. Group 2 diamonds have intermediate δ13C (−12 to −15‰), with inclusion compositions indicating crystallization from near-primary and differentiated carbonated melts derived from oceanic crust in the deep upper mantle or transition zone. A 206Pb/238U age of 101 ± 7 Ma on a CaTiSi-perovskite inclusion (Group 2) is close to the kimberlite emplacement time (93.1 ± 1.5 Ma). Group 3 diamonds have extremely light δ13C (−25‰), and host inclusions have compositions akin to high-pressure–temperature phases expected to be stable in pelagic sediments subducted to transition zone depths. Collectively, the Collier 4 diamonds and their inclusions indicate multi-stage, polybaric growth histories in dynamically changing chemical environments. The young inclusion age, the ubiquitous chemical and isotopic characteristics indicative of subducted materials, and the regional tectonic history, suggest a model in which generation of sublithospheric diamonds and their inclusions, and the proto-kimberlite magmas, are related genetically, temporally and geographically to the interaction of subducted lithosphere and a Cretaceous plume.  相似文献   

12.
Three-dimensional neutron and X-ray tomography reveals the textural and spatial relationship of diamonds and associated minerals in situ, in a unique suite of 17 diamondiferous eclogites. We emphasize the reporting of X-ray imaging on mantle xenoliths, which in combination with neutron imaging enables the clear identification of diamonds and interstitial metasomatic secondary minerals. In particular, neutrons are highly sensitive to hydrogen (H), allowing for the identification of OH- and H2O-bearing metasomatic minerals. The identification of metasomatic minerals allows for the delineation of distinct metasomatic pathways through the eclogite xenoliths. Diamonds are readily identified as the darkest greyscales due to their low attenuation, and are typically surrounded by secondary minerals, never in contact with primary minerals, and always confined within metasomatic pathways. The ubiquitous occurrence of diamonds in association with pathways suggests a potential genetic link. Both octahedral and dodecahedral diamonds are observed within individual xenoliths, suggesting multiple heterogeneous growth and dissolution processes at small scales. The distinct age dichotomy between eclogite xenoliths and metasomatic mineral assemblages implies that the observed textural relationship of diamonds and late-stage metasomatic pathways for this suite of 17 eclogites casts doubt on the theory that eclogitic diamonds formed billions of years ago. Diamonds are interpreted to have formed from multiple growth episodes, with the last of these episodes represented by the metasomatic assemblages observed in this study. This further indicates that eclogitic diamond inclusions may span large time scales from ancient ages (>2 Ga) all the way to the last growth event, perhaps even close to the time of kimberlite emplacement (~360 Ma), which has significant implications for age-dating of diamonds and the study of diamonds as a whole.  相似文献   

13.

The first studies of diamonds in eclogitic xenoliths from the Komsomolskaya kimberlite pipe are described. Among round and oval-shaped xenoliths with diamond ingrowths, samples with a garnet content of 40–90% of the xenolith volume dominate. Two eclogite samples contain grains of accessory rutile; a kyanite sample is also revealed. Certain samples contain two or more crystals of diamonds. Diamonds with an octahedral habit and crystals with transitional habits, which belong to an octahedral-rhombic dodecahedral row, dominate in eclogites; there are many variety VIII aggregates. A high concentration of structural nitrogen, commonly in the A form, was registered in most of the crystals. Diamonds with a small content of nitrogen impurities, 40–67% in the B1 form, are present in a number of xenoliths. The calculated temperatures of the formation of eclogitic xenoliths is 1100–1300°C. Diversity in the impurity compositions of diamonds in the same xenolith shows that these diamonds were formed at various times and in different settings. The diamond position in xenoliths, the various level of nitrogen aggregation in the diamonds, and a number of other factors point to the later formation of the diamonds, as compared to minerals of eclogites, from fluid or fluid-melts in the process of metasomatosis.

  相似文献   

14.
The mineral phases of 33 eclogite and garnet clinopyroxenite samples from various tectonic settings were analysed for Li by secondary ion mass spectrometry (SIMS). In all samples, Li is preferentially incorporated into clinopyroxene (0.4 to 80 µg/g), whereas co-existing garnet contains only minor amounts of Li (0.01 to 3.7 µg/g). When present, glaucophane shows Li abundances which are similar to those of clinopyroxene, but phengite contains significantly less Li than clinopyroxene. Additional phases, such as amphibole, quartz, clinozoisite and kyanite, have low Li concentrations (<1 µg/g). No correlation is apparent between the Li contents and major-element compositions of clinopyroxene or garnet. On the basis of both measured Li concentrations in clinopyroxene and estimated Li abundances in the whole rocks, the investigated samples can be subdivided into high-Li and low-Li groups. These groups coincide with the mode of origin of the rocks. Metabasaltic (metagabbroic) eclogites from high-pressure terranes belong to the high-Li group whereas, except for one eclogite, all kimberlite- and basanite-hosted xenoliths have low Li contents. Samples from eclogites and garnet clinopyroxenites associated with orogenic peridotites fall into both groups. It is suggested that the high-Li eclogites originated from basaltic oceanic crust whereby the notable Li enrichment of some samples was probably caused by low-temperature hydrothermal alteration prior to subduction. Furthermore, the low-Li eclogites and garnet clinopyroxenites may represent high-pressure cumulates from mafic melts percolating through the mantle.  相似文献   

15.
P. Peltonen  K. A. Kinnunen  H. Huhma 《Lithos》2002,63(3-4):151-164
Diamondiferous Group A eclogites constitute a minor portion of the mantle-derived xenoliths in the eastern Finland kimberlites. They have been derived from the depth interval 150–230 km where they are inferred to occur as thin layers or small pods within coarse-grained garnet peridotites. The chemical and isotopic composition of minerals suggest that they represent (Proterozoic?) mantle-derived melts or cumulates rather than subducted oceanic lithosphere. During magma ascent and emplacement of the kimberlites, the eclogite xenoliths were mechanically and chemically rounded judging from the types of surface markings. In addition, those octahedral crystal faces of diamonds that were partially exposed from the rounded eclogite xenolith became covered by trigons and overlain by microlamination due to their reaction with the kimberlite magma. The diamonds bear evidence of pervasive plastic deformation which is not, however, evident in the eclogite host. This suggests that annealing at ambient lithospheric temperatures has effectively recrystallised the silicates while the diamond has retained its lattice imperfections and thus still has the potential to yield information about ancient mantle deformation. One of our samples is estimated to contain approximately 90,000 ct/ton diamond implying that some diamonds occur within very high-grade pods or thin seams in the lithospheric mantle. To our knowledge, this is one of the most diamondiferous samples described.  相似文献   

16.
Major-element and REE compositions of 14 diamondiferous eclogites from the Udachnaya kimberlite in Yakutia, Siberia have been determined by electron microprobe and secondary ion mass spectrometer (SIMS). Based on previous clinopyroxene classification schemes (e.g., Taylor and Neal 1989), all of these eclogite xenoliths belong to Group B/C, although some of the garnet compositions and mineral REE abundances are inconsistent with the indicated groups. This demonstrates the inadequacy of the classification scheme based on African eclogites for application to Siberian samples. Because of the coarse grain size of the Udachnaya nodules, meaningful modal abundances could not be obtained. However, reconstructed REE compositions using various garnet: clinopyroxene ratios demonstrate relative insensitivity to changes in mode for common eclogitic assemblages. Many of these reconstructed REE compositions show LREE depletions. Some depletions are consistent with an origin (either directly or through partial melting) as normal or Type-I ocean floor basalt. Others, however, require material of eclogitic or pyroxenitic affinities to undergo partial melting; this facilitates the depletion of LREE while leaving the HREE at nearly original levels. Many of the eclogites of South Africa are consistent with a protolith of anomalous or Type II ocean floor basalt. This fundamental difference between the two regions is the likely cause of the inconsistencies with the chemicallybased classification.  相似文献   

17.
Na2O contents were determined by electron microprobe analysis in 124 garnets from diamonds, xenoliths of peridotites, eclogites from kimberlitic pipes and metamorphic complexes. Na2O content ranges between 0.01 and 0.22% with the limit of detection at about 0.01%. In the garnets of diamond-bearing eclogites and orange garnets from diamonds a regular increase in the Na2O content has been established, varying from 0.09 to 0.22, as compared to garnets from eclogites of metamorphic complexes (range 0.01 to 0.06). It is assumed that the increased Na2O content in the garnets of eclogites is mainly connected with higher pressure, whereas isomorphism of sodium is connected with the initial stages of the transition from Si4 to Si6 in the garnet structure: CaAlNaSi.The study of the sodium content of garnets has shown that all the orange-coloured garnets from diamonds so far studied are related to eclogite assemblage. Determination of the Na2O content of individual inclusions of chrome pyropes from diamonds permits a conclusion on the type of assemblage (with or without clinopyroxene). Proceeding from these data, the importance of garnet-olivine paragenesis within the stability field of diamond has been revealed.Some clear distinctions in the sodium content of the garnets from xenoliths of the kyanite eclogites from the Zagadochnaya pipe in Yakutia and the Roberts Victor mine in South Africa confirm the relation of these eclogites to different subfacies.A conclusion is drawn as to the possibility of utilizing the Na/Na+Ca distribution in the garnets and pyroxenes of eclogites of especially deep-seated origin as a pressure indicator and to the necessity for experimental testing of the dependence of the distribution of these elements in garnets and pyroxenes on pressure, presumably in the range of 30–100 kbars.  相似文献   

18.
We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths(garnet peridotite,eclogite and clinopyroxene-phlogopite rocks)and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle(SCLM)and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation(Phil)occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation(Phl2)occurs as rims and outer zones that surround the Phil grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phil,within the garnet peridotite and clinopyroxene-phlogopite xenoliths,is characterised by low Ti and Cr contents(TiO_21 wt.%,Cr_2 O_31 wt.% and Mg# = 100 × Mg/(Mg+ Fe)92)typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H_2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr_2O_3 despite a wider range of TiO_2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations(TiO_22 wt.%,Cr_2O_31 wt.% and Mg# = 100× Mg/(Mg + Fe)92)and compositionally overlaps with phlogopite from polymict brecc:ia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phil grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe.  相似文献   

19.
Type I and Type II eclogite xenoliths from the Roberts Victor kimberlite (South Africa) show marked differences in terms of microstructures, mineralogy, major- and trace-element compositions and oxygen-isotope compositions. The unequilibrated microstructures of Type I eclogites, their typical accessory assemblages (phologopite, diamond, sulphides, fluid inclusions) and the ubiquitous presence of “melt pockets” in garnets provide strong evidence of metasomatism. Type II eclogites systematically lack such features and are microstructurally more equilibrated. Type I eclogites are more magnesium-rich than most Type II (mean Mg# = 0.56 vs. 0.46), while Type II eclogites are generally more Ca-rich (mean CaO = 9 vs. 12 wt%) and Fe-rich (mean FeO = 10 vs. 12 wt%). Type I eclogites are systematically enriched in LREE, Sr, Ba, alkali elements, HFSE, Th and U compared to the more depleted Type II eclogites. Calculated trace-element patterns of fluids in equilibrium with Type I eclogites are closely similar to those of volatile-rich small-volume mantle melts in the carbonatite-kimberlite spectrum commonly inferred to be responsible for mantle metasomatism. Although oxygen isotopes are often used to argue for a subduction origin of mantle eclogites, correlations between δ18O of garnet and typical metasomatic tracers suggest that the metasomatic process also has shifted the oxygen-isotope compositions of the Type I eclogites toward heavier values. Roberts Victor Type I eclogites thus carry the imprint of a metasomatic process that strongly modified their major-element, trace-element and isotopic compositions, while the more pristine Type II eclogites escaped this modification. Therefore, attempts to constrain the origin of Roberts Victor eclogites should not be based on the much more abundant Type I eclogites, which retain little geochemical memory of their protoliths. The most suitable materials for such investigations may be the less metasomatised, but more rare, Type II eclogites.  相似文献   

20.
With an age of ca. 2.7 Ga, greenschist facies volcaniclastic rocks and lamprophyre dikes in the Wawa area (Superior Craton) host the only diamonds emplaced in the Archean available for study today. Nitrogen aggregation in Wawa diamonds ranges from Type IaA to IaB, suggesting mantle residence times of tens to hundreds of millions of years. The carbon isotopic composition (δ13C) of cube diamonds is similar to the accepted mantle value (− 5.0‰). Octahedral diamonds show a slight shift (by + 1.5‰) to isotopically less negative values suggesting a subduction-derived, isotopically heavy component in the diamond-forming fluids. Syngenetic inclusions in Wawa diamonds are exclusively peridotitic and, similar to many diamond occurrences worldwide, are dominated by the harzburgitic paragenesis. Compositionally they provide a perfect match to inclusions from diamonds with isotopically dated Paleo- to Mesoarchean crystallization ages. Several high-Cr harzburgitic garnet inclusions contain a small majorite component suggesting crystallization at depth of up to 300 km. Combining diamond and inclusion data indicates that Wawa diamonds formed and resided in a very thick package of chemically depleted lithospheric mantle that predates stabilization of the Superior Craton. If late granite blooms are interpreted as final stages of cratonization then a similar disconnect between Paleo- to Mesoarchean diamondiferous mantle lithosphere and Neoarchean cratonization is also apparent in other areas (e.g., the Lac de Gras area of the Slave Craton) and may suggest that early continental nuclei formed and retained their own diamondiferous roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号