首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
位于南海北部陆缘的珠江口盆地裂后沉降特征不同于陆内典型断陷盆地。研究表明,盆地裂后期发生了阶段性有序差异沉降,可分为4个阶段: (1)渐新世早期(~33.9~27.2 Ma),以盆地整体缓慢沉降,大规模海侵为主要特征;(2)渐新世晚期(~27.2~23.0 Ma),以邻近西北次海盆的珠四坳陷强烈沉降为主要特征,差异沉降控制了陆架坡折带的发育和该时期陆架浅水和陆坡深水沉积环境的分布;(3)中新世早—中期(~23.0~10.0 Ma),陆缘强烈沉降区向北扩展至珠二坳陷,尤其是白云凹陷,导致陆架坡折带向北跃迁,并奠定了现今陆架浅水和陆坡深水的沉积格局;(4)中新世晚期—现今(~10.0~0 Ma),陆缘构造沉降逐渐减弱,陆坡由沉积区转变为沉积过路区,沉积物得以大量进入西北次海盆。渐新世2期快速沉降的初始时间,分别对应于南海扩张脊的跃迁,陆缘裂后沉降随扩张脊向南跃迁而向北扩展,并伴有岩浆作用的早强晚弱特点,而沉降量的大小则与裂陷期地壳的薄化程度正相关,反映了陆缘岩石圈经历了早期挠曲回弹的均衡调整和扩张脊跃迁导致地幔物质有序向南撤离而沉降的演化过程。珠江口盆地裂后有序差异沉降控制了陆架坡折带的发育,进而控制了浅水与深水两大沉积体系的展布。  相似文献   

2.
刘思青  张翠梅  孙珍  庞雄  申俊  邱宁 《地球科学》2016,41(3):475-486
荔湾凹陷是珠江口盆地最南部的一个超深水凹陷,其结构特点、沉积过程研究是认识被动陆缘演化的重要内容.运用地震地层学方法,基于高分辨率2D/3D地震资料的沉积追踪与对比,一个特征明显且全区可追踪的地质界面——SB21界面被识别出.该界面上下揭示出多种沉积现象:北部剥蚀区、中北部的沉积物过路区、中南部冲沟和沉积物波叠置区、南部的沉积物堆积区.推测这种沉积样式的多样性与发生在23.8 Ma前后的白云运动有密切关系,该构造运动造成荔湾凹陷的差异性沉降,主要表现为荔湾凹陷中南部的快速沉降,导致凹陷北部及中东部的相对抬升.该期构造运动使原有的沉积平衡发生改变,造成沉积物的再分配,沉积物从北部剥蚀区经过路区向中南部堆积区运移.自东向西发育的冲沟,推测与该时期差异沉降导致中东部近南北走向的相对隆起与西侧沉降区的差异沉降,以及有来自凹陷东北角的物源叠加作用有关.SB21界面的沉积反射特征研究,揭示了洋陆边界复杂多变的沉积过程及其驱动机制,对我们认识更大区域的构造沉积过程具有一定的帮助.   相似文献   

3.
珠江口盆地白云凹陷新生代构造演化动力学   总被引:42,自引:0,他引:42  
白云凹陷构造演化史的研究对在白云凹陷开展油气勘探和深水沉积研究具有重要的意义。通过对断裂与沉积结构平面和剖面特点的分析,结合岩浆活动特点,文中提出白云凹陷是一个复式地堑,推测这种结构特点与凹陷下地壳的强烈韧性减薄和颈缩变形有关,表现为热岩石圈的伸展。其发育机制推测与白云凹陷位于构造转换带上有关,特殊的构造位置使白云凹陷成为强烈构造变形区,岩石圈地壳强烈减薄,伴随伸展过程和地幔上涌,脆性地壳或上地幔中部分熔融物质的出现导致岩石圈强度的急剧降低,在区域伸展应力场下以韧性流变方式减薄。岩浆在构造转换带下聚集并发育主岩浆房,由于白云凹陷南北边缘没有发育正断裂系统,岩浆主要沿垂直伸展的方向运移,因此在珠琼运动一幕和二幕南南东向伸展应力作用下,岩浆向白云凹陷的东部和西部运移至北西向基底深大断裂处,那里由于北西向断裂表现为左行张剪性质而成为压力较低的地区,从而成为岩浆上涌和侵位的地方。在岩浆聚集的地区,活动岩浆体附近的脆性变形被分散的韧性变形所取代,因此在凹陷的东北和西南两个角上,发育了张性和张剪性小断裂群,由于热岩石圈弹性较差,白云凹陷长期持续沉降。白云凹陷的断裂活动和沉积演化史还受到南海海盆扩张活动的影响。  相似文献   

4.
In this paper we compare four types of stratigraphic architectures around the continental margins in the South China Sea (SCS) based on a plentiful of seismic profiles. The results indicate that stratigraphic patterns are not only related closely to structure regimes of peripheral of the SCS, but also are restrained by crust structure from continental crust to oceanic crust. In the extensional setting, depositional centres during the syn‐spreading stage are located in the strong extensional area. A wedge‐decrease continental crust represented by the Pearl River Mouth type is characterized by high deposition and subsidence rate during the syn‐rifting and syn‐spreading stages in the distal zone. And in the Zhongjiannan type with a continental ribbon, high deposition and subsidence rate during the syn‐rifting and syn‐spreading stages are present in the proximal zone. However, in the southern and eastern margins with compressional setting, the Liyue and Zengmu microcontinent blocks are separated from the South China with the seafloor spreading of SCS, in which a confined or relative thin syn‐spreading deposits are presence. High deposition and subsidence rate is closely related to the collision or subduction condition during the post‐spreading stage in the Liyue bank type and the Zengmu type, a huge progradational clinoforms are present along the subduction and collision margin. Therefore, this study shows distinct stratigraphic architecture in different continental rifted margins, distinct depositional and subsidence characteristics formed during the process of lithospheric rupture can provide an effective method for the study on the continental marginal sea in the western Pacific.  相似文献   

5.
The Baiyun sag is a deep one developing on the slope of the Pearl River Mouth Basin. It occurs as a composite graben horizontally, and is composed of two sub-sags versus one low uplift. Vertically, the sedimentary architecture could be divided into three layers, i.e. the faulted layer on the bottom, the faulted-ductile stretching layer in the middle and the draping layer on the top. The main rifting stage of the sag is supposed to be characterized by ductile extension and thinning of the crust. The special deformation pattern is probably attributed to the fact that the Baiyun sag is located in the transfer zone of the pre-existing weak zone, which made the sag a strongly deformed area, characterized by the greatly thinned lithosphere and active magmatism. The highly rising mantle under the Baiyun sag should be an important mechanism responsible for the ductile deformation, which caused partial melting of the upper mantle. Upweiling to the upper crust and the sedimentary layers, the partial melting materials accommodated extensional strain and caused non-faulted vertical subsidence. Magma was collected under the transfer zone after the first stage of rifting, and transferred laterally in a direction perpendicular to the extension to the ENE and WSW parts of the sag and upwelled along the NW-trending basal faults, where WNW-trending shear faults developed in swarms. The faulting activity and sedimentation history of the Baiyun sag may have been affected by the ocean ridge jump around 24 Ma and the cessation of sea floor spreading around 16 Ma.  相似文献   

6.
壳幔拆离断裂活动与沉积体系响应为世界陆缘演变研究的热点,选取珠江口盆地白云凹陷壳幔拆离体系及其沉积响应开展系统性解剖.结合陆缘演变认识新进展、长电缆三维地震和钻井综合解释等揭示白云凹陷南部主控断裂带主要由4排NEE-NE向断至莫霍面的高角度铲式壳幔拆离断裂组成,裂陷期幕式活动使得白云凹陷经历了均一裂陷、拆离裂陷和断拗转换三阶段演化;均一裂陷期(下文昌组),控洼断裂未延伸至莫霍面,主要发育断裂转换带控制下的轴向陡坡辫状河三角洲/湖相沉积体系,缓坡物源体系不甚发育;拆离裂陷期(上文昌组),壳幔拆离断裂断至莫霍面,呈现强烈水平伸展和垂向落差,导致上盘远离断层一侧强烈旋转翘倾、抬升剥蚀成为最主要缓坡物源体系,靠近断层北侧沉降深陷成为深湖盆,上盘中段发育大型三角洲沉积;断拗转换期(恩平组),拆离作用减弱而沉降作用显著增强,控制了北部缓坡挠曲坡折和NW-SE向推进的大型三角洲/湖相沉积体系的发育.由此,主控断裂由均一伸展到壳幔拆离伸展的构造演变导致白云凹陷上文昌组至恩平组缓坡大型三角洲、下文昌组东西轴向转换带辫状河三角洲和洼陷周边陡坡带扇三角洲砂岩三类规模储集体与湖相泥岩满盆叠置的分布格局,使其成为深水勘探向中深层拓展的主要对象.   相似文献   

7.
华北地块北缘中新元古界沉积构造演化   总被引:2,自引:0,他引:2  
根据文献资料及对研究区8 条实测剖面资料的综合分析结果表明,Columbia 超级大陆的裂解导致华北陆块北缘大陆裂 谷盆地的形成。随着大陆进一步伸展和洋壳的形成,华北地块北缘逐渐发展为被动大陆边缘。在1400 Ma 左右,即铁岭组 沉积后,华北地块北缘转变为活动大陆边缘。早期洋壳向华北地块低角度的俯冲造成弧后地区发生挤压(芹峪上升),导致 铁岭组抬升和剥蚀,而后期洋壳高角度的俯冲又造成弧后区域发生强烈的伸展和断陷,沉积了下马岭组,并伴随辉绿岩的 侵入。华北地块与相邻地体之间的碰撞导致下马岭组的抬升(或蔚县抬升)以及碰撞花岗岩的形成,挤压构造发生的时间 对应于Rodinia 超级大陆的形成期。新元古代沉积是Rodinia 超级大陆裂解的结果。龙山组石英砂岩和海绿石砂岩是Rodinia 超级大陆裂解后的最早期沉积,记录了海侵初期的超覆过程。  相似文献   

8.
断陷盆地的结构-构造主要受控于边界断层的构造作用,但是在盆地发育过程中有不同程度的岩浆作用发生时,断陷结构会受到显著的改造和影响.通过对位于南海北部陆缘超伸展区的珠江口盆地白云凹陷断陷结构差异演化特征的描述和分析,探讨陆缘伸展过程中岩浆作用的参与程度对洼陷结构样式和断陷构造-地层-沉积演化的影响.研究表明,白云凹陷主洼强烈伸展期间,岩浆作用不明显,上地壳发生脆性断裂,中下地壳则发生韧性伸展薄化,产生了壳幔拆离断层控制的宽深断陷,构造作用即地壳伸展拆离薄化作用是断陷发育的主要机制;然而,白云凹陷东部洼陷在经历了早期的脆性破裂之后,随即发生了显著的岩浆上涌作用,改变了上地壳的结构强度,脆-韧性转换面上移,产生了上地壳拆离断层控制的宽浅断陷,断陷结构受岩浆上涌作用的改造而表现出坡坪式拆离断层控制的半地堑系,沉积中心发生规律性迁移,构造-岩浆作用是断陷发育的机制.白云凹陷主洼与白云凹陷东部洼陷中岩浆作用参与程度的不同,不仅导致了洼陷结构样式及其演变过程的不同,而且断陷中的沉积充填体系也表现出显著的差异.构成白云凹陷主洼的宽深断陷中发育了巨厚的中晚始新世上文昌组-恩平组,在北部缓坡和南部深洼区,这套地层依次由大型三角洲体系和深湖相沉积体系构成;白云凹陷的东部洼陷则受岩浆上涌改造,发育多隆凹结构的宽浅断陷,形成多个小物源供源的小型三角洲-浅湖沉积体系,而且沉积物中富含火山碎屑.研究成果对于白云凹陷成盆机制的研究意义重大,同时对该凹陷的油气勘探亦具有重要的实际应用价值.   相似文献   

9.
阳江?一统暗沙断裂带是南海北部珠江口盆地极其重要的中?新生代构造带和转换带.基于钻井资料和大范围、高密度的二维、三维地震资料,本文初步揭示阳江?一统暗沙断裂带走向为NW-NWW向、宽约30 km,沿着断裂走向从陆架至洋陆边界断裂带可分为北?中?南三段,断裂在新生代选择性活化,具有多重走滑断裂叠合和基底岩浆底辟强烈等特点...  相似文献   

10.
珠江口盆地白云凹陷在继“白云运动”之后,在13.8 Ma发生了一次大规模的海退事件,海平面下降至陆架坡折带附近,三角洲向盆地方向推进最远,十分有利于深水扇的发育。通过深水陆坡区B6井及陆架边缘多口井的井震标定,结合钻井、测井分析,系统总结出具有厚度较大(20~40 m)、以泥质粉砂岩为主的斜坡扇储层,对应低频、短轴、强振幅的地震反射特征,在负极性显示的地震剖面上,表现为强波谷地震响应。层序地层格架分析认为工区处于SQ13.8“陆架边缘三角洲—沉积过路区—斜坡扇”的沉积环境,并在层序格架的约束下,通过合成地震记录建立井-震关系,对斜坡扇区第5套砂层组(SF-5)进行储层识别与追踪解释,确定SF-5砂层为主体分布在陆架坡折带外侧陆坡区的丘状体,平面形态似帚状或朵叶状,具有斜坡扇的特征,其优质储层主要分布在工区的中部-西部地区,呈NW-SE方向条带状展布。  相似文献   

11.
The continental margins of Atlantic Canada described in this paper show the effects of plate tectonic motions since Precambrian time and thus represent an ideal natural laboratory for geophysical studies and comparisons of ancient and modern margins. The Grenville Province shows vestiges of Helikian sedimentation on a pre-existing continental block beneath which there may have been southeastward late-Helikian subduction resulting in collision between the Grenville block and the continental block comprised of the older shield provinces to the north. The Grenville block was subsequently split in Hadrynian time along an irregular line so that the southeastern edge of the Grenville exhibited a series of promontories and re-entrants similar to those seen at the present Atlantic continental margin of North America. That margin, which had a passive margin history perhaps comparable with that of the present Atlantic margin, was separated by the lapetus ocean from the Avalon zone whose Precambrian volcanism has been attributed both to that associated with an island arc and with intra-cratonic rifting. However, the lapetus ocean appears to have been subducted in early Paleozoic time with a southeastward dip beneath the Avalon zone, leaving exposures of oceanic rocks in place as in Notre Dame Bay, or transported onto Grenville basement as at Bay of Islands.Plate motions proposed for Devonian and Carboniferous time are numerous, but resulted in the welding of the Meguma block to the Avalon zone of New Brunswick and northern Nova Scotia, extensive faulting within Atlantic Canada which can be correlated with contemporaneous European faulting and extensive terrestrial sedimentation within the fault zones. Graben formation, continental sedimentation and basaltic intrusion in the Triassic represent the tensional prelude to the Jurassic opening of the present Atlantic Ocean.This Jurassic opening produced a rifted margin adjacent to Nova Scotia and a transform margin along the southern Grand Banks. The width of the ocean-continent transition across the transform margin (approx. 50 km) is narrower than for the rifted margin (approx. 100 km). The eastern part of the transform margin is associated with a complex Cretaceous (?) volcanic province of seamounts and basement ridges showing evidence of subsidence. The western portion of the transform margin is non-volcanic, adjacent to which lies the 350 km wide Quiet Magnetic Zone floored by oceanic crust.Development of the margin east of Newfoundland was more complicated with continental fragments separated from the shelf by deep water basins underlain by foundered and atypically thin continental crust. Although thin, the crust appears unmodified, the similarities between the crustal sections of the narrow Flemish Pass and the wide Orphan Basin suggesting that the thinning is not simply due to stretching. The Newfoundland Basin shows evidence for two-stage rifting between the Grand Banks and Iberia with both lateral separation and rotation of Spain, leaving a wide zone of transitional crust in the south. The overall pattern of variations in crustal section for the margin east of Newfoundland is comparable with that of the British margin against which it is located on paleogeographical reconstructions.The major sedimentary unconformities on the shelves (such as the Early Cretaceous unconformity on the Grand Banks) reflect uplift accompanying rifting. Tracing of the sedimentary horizons across the shelf edge is complicated by paleocontinental slopes, which separate miogeocline and eugeocline depositional environments. The subsidence of the rifted margins is primarily due to cooling of the lithosphere and to sediment loading. The subsidence due to cooling has been shown to vary linearly with (time) , similar to the depth—age behaviour of oceanic crust. The consequent thermal history of the sediments is favourable for hydrocarbon generation where other factors do not preclude it.  相似文献   

12.
Post-rift fault activities were often observed in deepwater basins, which have great contributions to oil and gas migration and accumulation. The main causes for post-rift fault activities include tectonic events, mud or salt diapirs, and gravitational collapse. In the South China Sea continental margin, post-rift fault activities are widely distributed, especially in Baiyun sag, one of the largest deepwater sag with its main body located beneath present continental slope. During the post-rift stage, large population of faults kept active for a long time from 32 Ma (T70) till 5.5 Ma (T10). Seismic interpretation, fault analysis and analogue modeling experiments indicate that the post-rift fault activities in Baiyun sag between 32 Ma (T70) and 13.8 Ma (T30) was mainly controlled by gravity pointing to the Main Baiyun sag, which caused the faults extensive on the side facing Main Baiyun sag and the back side compressive. Around 32 Ma (T70), the breakup of the continental margin and the spreading of the South China Sea shed a combined effect of weak compression toward Baiyun sag. The gravity during post-rift stage might be caused by discrepant subsidence and sedimentation between strongly thinned sag center and wing areas. This is supported by positive relationship between sedimentation rate and fault growth index. After 13.8 Ma (T30), fault activity shows negative relationship with sedimentation rate. Compressive uplift and erosion in seismic profiles as well as negative tectonic subsiding rates suggest that the fault activity from 13.8 Ma (T30) to 5.5 Ma (T10) might be controlled by the subductive compression from the Philippine plate in the east.  相似文献   

13.
南海北部陆坡古地貌特征与13.8Ma以来珠江深水扇   总被引:13,自引:1,他引:12  
综合利用层序地层学和地球物理方法对珠江口盆地白云凹陷13.8 M a以来沉积古地貌进行了分析。通过对南海珠江深水扇系统分布及其独特的沉积特征和层序充填演化规律的分析,得出在13.8 M a以来层序发育过程中,凹陷位于宽阔陆架向海盆变迁的陆坡区,北部发育两种类型的峡谷水道,向南海盆方向逐渐变得宽缓;盆地的古地貌背景、物源和气候变化为其主控因素的结论。同时,13.8 M a以来南海北部陆坡深水区的沉积具有明显的继承性特点,现今的海底峡谷发育特点基本反映了整体的沉积背景。结果表明,白云凹陷13.8 M a以来的深水沉积受海平面相对变化的影响相对较弱,主要受古地貌背景及其变迁的控制,沉积具有继承性,与现今的沉积面貌非常相似。  相似文献   

14.
The structural setting beneath the Ligurian Sea resuJts from several tectonic events reflected in the nature of the crust. The central-western sector, called the Ligurian basin, is part of the northwestern Mediterranean. It is a marginal basin that was generated in Oligocene-Miocene time by subduction of the Adriatic plate beneath the European plate and by the eastward drift of the Corsica-Sardinia block. The eastern sector belongs to the Tyrrhenian basin system and is characterized by extensional activity which since Tortonian time superimposed an earlier compressional regime. Our effort has been addressed in particular towards simplifying the complex nature of the crust of the Ligurian basin by modelling its genesis using uniform extension and sea-floor depth variation with age. In the rift stage of the basin's evolution, the initial subsidence reaches the isostatic equilibrium level of the asthenosphere by a thinning factor of 3.15. The additional passive process, corresponding to the cooling of the lithosphere since 21 Ma, leads to a total tectonic subsidence of 3.4 km, representing the boundary of the extended continental crust. For values up to 4.1 km a transitional-type crust is expected, whereas for higher tectonic subsidence values a typical oceanic crust should exist. After setting these constraints, the boundaries of the different crust types have been drawn based on total tectonic subsidence observations deduced from bathymetry and post-rift sediment thickness. Although there is a general agreement with the previous reconstructions deduced from other experimental data, the oceanic realm has wider extent and more complex shape. The northernmost part of this realm shows crust of sub-oceanic type altemating basement highs with lower subsidence values. The observed surface heat flux is consistent with the predicted geothermal held in the Alpine-Provençal continental margin and in the oceanic domain. However, a characteristic thermal asymmetry is clearly visible astride the basin, due to the enhanced heat flux of the Corsica margin. Even if the uniform extension model accounts well at a regional level for the present basement depth, a remarkable tectonic subsidence excess has been found in the Alpine-Provençal continental margin. This evidence agrees with the reprise in compression of the margin; the direction of the greatest principal stress is N120°E on average.  相似文献   

15.
南海北部陆缘地壳结构特征及其构造过程   总被引:5,自引:0,他引:5  
阎全人  王宗起 《地质论评》2000,46(4):417-423
根据“北部湾大陆缘地壳结构PS转换波测深”等地球物理测量结果,本文研究了南海北部陆缘的地壳结构特征,讨论了其白垩纪以来的构造过程。地球物理测量表明,由陆向海,南海北部陆缘地壳由陆壳、过渡壳变为洋壳,厚度由34km减薄至8km左右。垂向上地壳为3层结构模式。陆壳、过渡壳和洋壳的下地壳P波速度普遍较高。地壳伸展系数的计算表明南海北部陆缘伸展主要发育于陆坡地区。结合区域地质研究,本文认为:南海北部陆缘及  相似文献   

16.
The large hydrocarbon basin of South Caspian is filled with sediments reaching a thickness of 20–25 km. The sediments overlie a 10–18 km thick high-velocity basement which is often interpreted as oceanic crust. This interpretation is, however, inconsistent with rapid major subsidence in Pliocene-Pleistocene time and deposition of 10 km of sediments because the subsidence of crust produced in spreading ridges normally occurs at decreasing rates. Furthermore, filling a basin upon a 10–18 km thick oceanic crust would require twice less sediments. Subsidence as in the South Caspian, of ≥20 km, can be provided by phase change of gabbro to dense eclogite in a 25–30 km thick lower crust. Eclogites which are denser than the mantle and have nearly mantle P velocities but a chemistry of continental crust may occur beneath the Moho in the South Caspian where consolidated crust totals a thickness of 40–50 km. The high subsidence rates in the Pliocene-Pleistocene may be attributed to the effect of active fluids infiltrated from the asthenosphere to catalyze the gabbro-eclogite transition. Subsidence of this kind is typical of large petroleum provinces. According to some interpretations, historic seismicity with 30–70 km focal depths in a 100 km wide zone (beneath the Apsheron-Balkhan sill and north of it) has been associated with the initiation of subduction under the Middle Caspian. The consolidated lithosphere of deep continental sedimentary basins being denser than the asthenosphere, can, in principle, subduct into the latter, while the overlying sediments can be delaminated and folded. Yet, subduction in the South Caspian basin is incompatible with the only 5–10 km shortening of sediments in the Apsheron-Balkhan sill and south of it and with the patterns of earthquake foci that show no alignment like in a Benioff zone and have mostly extension mechanisms.  相似文献   

17.
Two crust-forming events dominate the Precambrian history of the Western Gneiss Region (WGR) at about 1800–1600 Ma and 1550–1400 Ma. The influence of the Sveconorwegian orogeny (1200–900 Ma) is restricted to the region south of Moldefjord-Romsdalen. A series of anorthosites and related intrusives are present, possibly derived from the now-lost western margin of the Baltic craton that may have been emplaced in the WGR as an allochthonous unit before the Ordovician.The Caledonian development is split into two orogenic phases, the Finnmarkian (Cambrian — Early Ordovician) and the Scandian (Late Ordovician/Early Silurian — Devonian). The lower tectonic units west of the Trondheim Trough may be Finnmarkian nappes ; they were part of the lower plate during the Scandian continental collision. The Blåhö nappe is correlated with dismembered eclogite bodies along the coast. A regional change of nappe transport direction from 090 to 135 marks the initiation of an orogen-parallel sinistral shear component around 425 Ma. The change caused the development of a complex sinistral strike-slip system in the Trondheim region consisting of the Möre-Tröndelag Fault Zone and the Gränse contact. The latter cut the crust underneath the already emplaced Trondheim Nappe Complex, thus triggering the intrusion of the Fongen-Hyllingen igneous complex, and initiating subsidence of the Trondheim Trough, and was subsequently turned from a strike-slip zone into an extensional fault. Minor southward transport of the Trondheim Nappe Complex rejuvenated some thrusts between the Lower and the Middle Allochthon. A seismic reflector underneath the WGR is interpreted to be a blind thrust which subcrops into the Faltungsgraben. During Middle Devonian orogenic collapse, detachment faulting brought higher units, now eroded elsewhere, down to the present outcrop level, such as the Bergen and Dalsfjord nappe and the Old Red basins.  相似文献   

18.
兴蒙造山带南缘早古生代增生造山带内是否存在陆壳一直缺少直接证据,制约了对增生带结构及演化的认识.在达茂旗东北部兴蒙造山带南缘增生带内识别出一套原地的变质地层,野外观察及锆石U-Pb年代学、Hf同位素地球化学研究表明,该套地层形成时代为中元古代晚期,可能代表了增生造山带内的古老地壳.地层的碎屑锆石峰值年龄集中于~1.8 Ga,并具有~3.0 Ga、~2.8 Ga、~2.5 Ga、~1.6 Ga等次级峰值,与华北北缘白云鄂博、化德、狼山群等地层碎屑锆石年龄组成一致;表明其应为华北陆块的一部分,物源则主要来自于华北克拉通内部不同时代地质体的剥蚀.该套地层的识别及其与华北陆块的亲缘性表明,早古生代兴蒙造山带南缘增生带内存在陆壳,构造环境上应为古亚洲洋向华北克拉通俯冲形成的活动陆缘;同时,其与车根达来构造带的关系显示后者并非蛇绿岩,更可能为弧后伸展引起的超基性岩对陆壳的侵入形成.   相似文献   

19.
The rocks of Turkey, Greece and Syria preserve evidence for the destruction of Tethys, the construction of much of the continental crust of the region and the formation of the Tauride orogenic belt. These events occurred between the Late Cretaceous and Miocene, but the detailed evolution of the southern Eurasian margin during this period of progressive continental accretion is largely unknown. Marmara Island is a basement high lying at a key location in the Cenozoic Turkish tectonic collage, with a Palaeogene suture zone to the south and a deep Eocene sedimentary basin to the north. North-dipping metamorphic thrust sheets make up the island and are interlayered with a major metagranitoid intrusion. We have dated the intrusion by Laser Ablation ICP-MS analysis of U and Pb isotopes on zircon separates to 47.6?±?2 Ma. We also performed major- and trace-elemental geochemical analysis of 16 samples of the intrusion that revealed that the intrusion is a calc-alkaline, metaluminous granitoid, marked by Nb depletion relative to LREE and LIL-element enrichment when compared to ocean ridge granite (ORG). We interpret the metagranitoid sill as a member of a mid-Eocene magmatic arc, forming a 30 km wide and more than 200 km long arcuate belt in NW Turkey that post-dates suturing along the ?zmir-Ankara-Erzincan Suture zone. The arc magmatism was emplaced at the early stages of mountain building, related to collision of Eurasia with the Menderes-Taurus Platform in early Eocene times. Orogenesis and magmatism loaded the crust to the north creating coeval upward-deepening marine basins partially filled by volcanoclastic sediments.  相似文献   

20.
位于南海北缘的珠江口盆地深水区作为我国海洋油气勘探的重点区域,具有良好的油气勘探前景。本文利用钻井地热测量数据分析了珠江口盆地深水区现今地温场及岩石圈热结构特征,通过古温标反演和拉张盆地模型正演相结合的方法定量揭示了白云凹陷新生代以来的热史,总结了不同地热地质条件对油气生成的影响。研究结果表明:珠江口盆地大地热流分布特征具有北低南高的特点,同时具有“热幔冷壳”的特征。珠江口盆地深水区始新世以来经历了两期拉张过程,第一期(47.8~33.9 Ma)拉张自始新世发生,拉张强度较大,凹陷中心基底热流快速上升至~82 mW/m2;第二期(23~13.8 Ma)拉张发生于中新世,此次拉张在白云凹陷南部更强烈,白云凹陷主体在 13.8 Ma达到最高古基底热流,此后进入热沉降阶段,基底热流值一直缓慢下降。磷灰石裂变径迹、磷灰石(U-Th)/He及锆石(U-Th)/He联合反演给出了最高古地温在13.8 Ma附近达到,后期温度基本稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号