首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of wet-snow avalanches is, in general, poorly understood. For 20 years (winters of 1975–1976 to 1994–1995), the avalanche activity has been observed in the Dischma valley near Davos (Eastern Swiss Alps). The study area comprises a large starting zone of north-easterly aspect (2,300 m a.s.l.) with several avalanche paths. We have analyzed the occurrence data in combination with meteorological and snowpack data collected at an elevation of 2,090 m a.s.l. During the 20-year observation period, almost 800 wet-snow avalanches were observed, about 4.5 times more loose snow avalanches than slab avalanches. Considering both types of avalanches jointly, snow depth, precipitation and air temperature showed the highest correlation with avalanche activity. Most loose snow avalanches occurred when air temperature was high and/or after a precipitation period. Slab avalanches occurrence was primarily related to warm air temperatures and snowpack properties such as the isothermal state and the existence of capillary barriers. Radiation did not show up as a significant variable. The results suggest that in a transitional snow climate wet-snow avalanches are, as dry snow avalanches, often related to precipitation events, and that wet slab instability strongly depends on snowpack properties in relation to warming of the snowpack and melt water production.  相似文献   

2.
Many parts of our planet are exposed to natural disasters such as snow avalanches, floods and earthquakes. Detailed knowledge on these natural disasters is crucial for human safety. On December 25–26, 1992, two avalanches occurred at Kayaarkası-Kastamonu in northern Turkey. The first avalanche took place at night of 25–26 December and caused no damage. The second avalanche took place at morning of 26 December, killed four people and did damage to properties. The purpose of the present study is to determine the effects of the snow avalanches on tree rings and to investigate the boundaries and velocities of the avalanches using a numerical simulation model and the tree-ring data. Increment cores from 71 trees in the avalanche-impacted area and the control site were sampled to obtain individual standard chronologies. In the analyses, trees were grouped as (1) heavily damaged by the avalanche, showing a decrease in tree-ring widths since the event, (2) trees heavily damaged by the avalanche, showing an increase in tree-ring widths a couple of years later the event and (3) trees that were not damaged by the avalanche. In this study, one of the most important results is the precise determination of the temporal and spatial patterns of the undocumented avalanche (the first avalanche) event. Avalanches were numerically simulated using dynamical avalanche simulation software ELBA+. Comparison of the simulation model with tree-ring analysis revealed valuable results about the boundaries of the zone of influence of the avalanches.  相似文献   

3.
Skier-triggered avalanches are the main cause of avalanche accidents in backcountry skiing. The risk of accidents during backcountry skiing was analysed statistically and related to factors such as elevation level, aspect, stability rating and the time of the year. The analysis is based on a database about terrain usage and avalanche accidents from a large heli-skiing operator in Canada, which makes it possible to study the conditional probability of accidents given the recorded pattern of terrain usage. This study shows that the historical risk of accidentally triggering an avalanche greater than size 1 depends highly on the stability rating, with the highest risk occurring during “poor” stability. The risk is greater at high elevations, and it is lower during the late season than earlier on. Skier risk does not depend as much on aspect as may be indicated from avalanche data alone. However, it is relatively high in the N–NE–E sector. These factors are not independent of each other and therefore analyses of combined factors were also performed. Questionnaires and interviews were used to gain knowledge about the terrain selection of professional mountain guides. These results indicate that when selecting terrain, guides first look at the overall shape and size of the terrain, but avalanche history of terrain and inclination are also important factors. Finally, remarks in avalanche reports were analysed, and common human factors identified.  相似文献   

4.
The search to improve protective techniques against natural phenomena such as snow avalanches continues to use classic methods to calculate flexible structures. This paper deals with a new method for designing avalanche protection nets; this method is based on a coupled analysis of both the net structure and the snow mantel using a coupled Lagrangian‐discrete approach. This has led to the development of computational software so that avalanche nets can be easily designed. This tool provides for the evolving forces acting on several parts of the net as a function of the snow situation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Yongping Shen 《GeoJournal》1991,25(2-3):249-254
On September 16th, 1986, an ice avalanche from a hanging glacier near the K2 peak at 7800 m asl, Karakorum, triggered a massive avalanche of ice and snow. Ice and snow, impacting on the path, formed a dust cloud at the advancing tip. Grounding on the firn basin surface, ice and snow broke into fine powder and covered the whole basin. Fine powder of the dust cloud rose up to 500–600 m and drifted 4–5 km away. On the basis of field observations and measurements, topography and weather, conditions of the avalanche formation are analyzed. Judging by the data obtained, the avalanche was extremely large, its vertical descend being 2500 m, the maximum motion speed 124 m/s, volume of the avalanche mass 2 × 105 m3 to 107 m3, and impact pressure, as the avalanche grounded, 2.3 × 106 Pa. It could have been one of the largest avalanches ever recorded, causing danger for mountaineering and expedition activities in this area.  相似文献   

6.
Due to its geographical location, geology and topography, Turkey mainly undergoes three different types of natural disasters related to gravity flows. They are floods, landslides and snow avalanches.The heavy snow falls during winter pose the hazard of snow avalanches. According to statistics, 800 people were killed in snow avalanches during the period of 1960–1997. Within the program of the International Decade of Natural Disaster Reduction (1990–2000), an international cooperation has been initiated among SFISAR (Swiss Federal Institute for Snow and Avalanche Research), CEMAGREF (Centre National du Machinisme Agricole du Génie Rural des Eaux at des Forets) and AFET (Turkish Ministry of Public Works and Settlement, General Directorate of Disaster Affairs). This three-year project started in 1994 as a development project on avalanche forecasting, mapping, zoning and paravalanche construction technologies. For the pilot project area, the Soanli Mountains located in north-eastern Turkey were chosen, covering an area of approximately 40 by 30 km. After training the Turkish engineers, the basic technologies in avalanche forecasting and avalanche mapping were transferred from Switzerland and France to Turkey with the necessary infrastructure. The difficulties faced in meteorological data collection with the help of local observers and the limited data available caused some delay in avalanche forecasting. If automatic weather stations could take the place of manual work, the realization of a prognosis would be quicker. At present, avalanche-hit houses are rebuilt in new disaster-free zones by AFET. With this project, the idea of using paravalanche structures for protection is promoted. The physico-sociological impacts of avalanche disasters, avalanche mapping and zoning of disaster areas on local people are also studied.  相似文献   

7.
This paper describes recent exceptional slope failures in high-mountain, glacial environments: the 2002 Kolka–Karmadon rock–ice avalanche in the Caucasus, a series of ice–rock avalanches on Iliamna Volcano, Alaska, the 2005 Mt. Steller rock–ice avalanche in Alaska, and ice and rock avalanches at Monte Rosa, Italy in 2005 and 2007. Deposit volumes range from 106 to 108 m3 and include rock, ice and snow. Here we focus on thermal aspects of these failures reflecting the involvement of glacier ice and permafrost at all sites, suggesting that thermal perturbations likely contributed to the slope failures. We use surface and troposphere air temperatures, near-surface rock temperatures, satellite thermal data, and recent 2D and 3D thermal modeling studies to document thermal conditions at the landslide sites. We distinguish between thermal perturbations of volcanic-geothermal and climatic origin, and thermal perturbations related to glacier–permafrost interaction. The data and analysis support the view that recent, current and future climatic change increases the likelihood of large slope failures in steep glacierized and permafrost terrain. However, some important aspects of these settings such as the geology and tectonic environment remain poorly understood, making the identification of future sites of large slope instabilities difficult. In view of the potentially large natural disasters that can be caused by such slope failures, improved data and understanding are needed.  相似文献   

8.
P. Höller 《Natural Hazards》2014,71(3):1259-1288
Snow gliding is a downhill motion of snow on the ground; it is able to affect afforestation (uprooting of plants) and to cause soil erosion. Once the glide motion turns into an avalanche movement, the process is called a glide avalanche. Winters with continuing snow gliding and a high activity of glide avalanches might be called ‘glide winters’. The most recent ‘glide winter’ in the European Alps was 2011/2012. Glide avalanches have the ability to cause damage to buildings and infrastructure. This review describes the progress in research, from basic snow glide measurements via the design of sophisticated models through to comprehensive investigations concerning glide avalanche formation. However, despite the great progress made in this field of research, there are still some unsolved problems, such as the influence of soil conditions on snow gliding or the prediction of glide avalanches.  相似文献   

9.
D. M. McClung 《Natural Hazards》2011,59(3):1635-1645
In North America and Europe, most fatalities due to snow avalanches occur in the backcountry during recreational pursuits. Of these, more than 90% of the fatal avalanches are triggered by the victims themselves. This pattern suggests that the primary cause of avalanche fatalities for human-triggered avalanches is a failure in human perception. For the latter, people thought that the state of stability or instability of the snow cover was different than it actually was. In this paper, the strength and weight of evidence used to make decisions in backcountry travel are discussed from: (a) the perspective of the favored hypothesis to proceed for good recreational enjoyment based on stability evaluation and (b) the null hypothesis based on an assessment of instability. Based on the facts about snow slab avalanche release, it is argued that instability analysis is the best framework for avalanche forecasting, whereas human action is most closely related to the favored hypothesis (stability evaluation). Using scaling laws derived from: (a) fracture mechanics about the size of imperfections causing avalanches and (b) avalanche dimensions, it is suggested that a snow slab could show stability over more than 99% of the total area. From the concepts of Bayesian probability, it is shown that overconfidence about stability can arise when the weight of the likelihood is high and the weight of prior is low. Similarly, underconfidence (excessive conservatism) often results when the weight of the prior is high with little regard for the likelihood, which may be low. Overconfidence about stability is considered to be a prime source of accidents.  相似文献   

10.
Snow avalanche hazards in mountainous areas of developing countries have received scant attention in the scientific literature. The purpose of this paper is to describe this hazard and mitigative measures in Kaghan Valley, Pakistan Himalaya, and to review alternatives for future reduction of this hazard. Snow avalanches have long posed a hazard and risk to indigenous populations of the Himalaya and Trans-Himalaya mountains. Land use intensification due to population growth, new transportation routes, military activity and tourism is raising levels of risk. The history of land use in the study area is such that investigations of avalanche hazard must rely on different theoretical bases and data than in most industrialised countries. Despite the intensive use of valley-bottom land which is affected by avalanches, a number of simple measures are currently employed by the indigenous population to mitigate the hazard. Out-migration during the winter months is the most important one. During the intensive use period of summer avalanche-transported snow provides numerous resources for the population. In Kaghan the avalanche hazard is increasing primarily as a result of poorly located new buildings and other construction projects. The large scale of avalanche activity there rules out any significant improvement or protection of the currently difficult winter access. Instead, future mitigation of the hazard should focus on protecting the small number of winter inhabitants and minimising property damage.  相似文献   

11.
Automated detection of snow avalanches is an important tool for avalanche forecasting and for assessing the effectiveness of avalanche control measures at bad visibility. Avalanche detection systems are usually based on infrasound, seismic, or radar signals. Within this study, we compared three different types of avalanche detection systems: one avalanche radar, one infrasound array system consisting of four infrasound sensors, and a newly developed single sensor infrasound system. A special focus is given to the new single sensor system, which is a low cost, easy to install system, originally designed for the detection of debris flows and debris floods. Within this work, we analysed how this single sensor system could be adapted to detect also snow avalanches. All three systems were installed close to a road near Ischgl (Tyrol, Austria) at the avalanche-exposed Paznaun Valley. The valley is endangered by two avalanche paths which are controlled by several avalanche towers. The radar system detected avalanches accurately and reliably but was limited to the particular avalanche path towards which the radar beam was directed. The infrasound array could detect avalanches from all surrounding avalanche paths, however, with a higher effort for installation. The newly tested single infrasound sensor system was significantly cheaper and easier to install than the other two systems. It could also detect avalanches form all directions, although without information about the direction. In summary, each of the three different systems was able to successfully detect avalanches and had its particular strengths and weaknesses, which should be considered according to the specific requirements of a particular practical application.  相似文献   

12.
Snow avalanches represent an undeniable reality in the Southern Carpathians both as a geomorphic process and as a type of hazard. Before the 1990s, few researchers focused on avalanches in Romania. However, after 1990, avalanches became an increasingly important topic of Romanian research including research on their management implications. This study focuses on the Făgăraş massif, a representative mountain unit in the Southern Carpathians that is dominant due to its glacial and periglacial relief, high altitudes and high occurrence of avalanche hazards. Three main research issues are considered. First, types of avalanches are delineated along with affected areas of the Balea glacial valley (on the northern slope) and the Capra glacial valley (on the southern slope) using data from a research centre for snow and avalanche monitoring that was created in the Balea glacial cirque in 2003. Second, the impact of avalanches on human activities is considered including transportation use of the Transfăgărăşan Highway that traverses the highest elevations in Romania and winter recreation activities such as skiing, snowboarding, climbing and hiking. The impacts on forests are also considered. Third, the needs and gaps of avalanche management are considered, specifically in the Făgăraş massif and also more generally in the mountains of Romania.  相似文献   

13.
Snow avalanches,which are widely and frequently developed at high elevations,seriously threatens the built traffic corridors in the Tibetan Plateau. Susceptibility evaluation of snow avalanche via machine learning model with a high forecast accuracy can be appled to quickly and effectively assess the regional avalanche risk. This paper took the central Shaluli Mountain region as the study area,in which the snow avalanche inventory was established through remote sensing interpretation and field investigation verification. We quantitatively extracted 17 evaluation factors via GIS-based analysis,and these factors were selected through the variance expansion factor(VIF). Four machine learning models containing SVM,DT,MLP and KNN were used to compile the susceptibility index map of snow avalanches,and kappa coefficient and ROC curve were used to verify the accuracy. The results suggested that the susceptibility indexes obtained from SVM,DT,MLP and KNN were in the range of[0,0. 964],[0,815],[0,0. 995]and[0,1],respectively. The accuracy test results show that these four models all have good prediction accuracy. Among them,the SVM model is the best. The results also indicated that the areas with the high snow avalanche susceptibility mainly distributed in Genie Mountain and Rigong Mountain,most of which were above the planation surface of the Tibetan Plateau. The average altitude of the extremely high snow-avalanche-prone areas is 4 939 m,while the average altitude of the high snow avalanche-prone areas is 4 859 m. The snow avalanche has low perniciousness on the Sichuan-Tibet Highway and the Sichuan-Tibet Railway in the study area. This study can provide theoretical basis and method reference for disaster prevention and mitigation of snow avalanche along Sichuan-Tibet Railway and other major projects across Shaluli Mountains region. © 2022 Science Press (China).  相似文献   

14.
The physical risk from snow avalanches poses a serious threat to mountain backcountry travelers. Avalanche risk is primarily managed by (1) assessing avalanche hazard through analysis of the local weather, snowpack, and recent avalanche activity and (2) selecting terrain that limits exposure to the identified hazard. Professional ski guides have a tremendous wealth of knowledge about using terrain to manage avalanche risk, but their expertise is tacit, which makes it difficult for them to explicitly articulate the underlying decision rules. To make this existing expertise more broadly accessible, this study examines whether it is possible to derive quantitative measures for avalanche terrain severity and condition-dependent terrain guidance directly from observed terrain selection of professional guides. We equipped lead guides at Mike Wiegele Helicopter Skiing with GPS tracking units during the 2014/2015 and 2015/2016 winters creating a dataset of 10,592 high-resolution tracked ski runs. We used four characteristics—incline, vegetation, down-slope curvature (convexities/concavities), and cross-slope curvature (gullies/ridges)—to describe the skied terrain and employed a mixed-effects ordered logistic regression model to examine the relationship between the character of most severe avalanche terrain skied on a day and the associated field-validated avalanche hazard ratings. Patterns in the regression parameter estimates reflected the existing understanding of how terrain is selected to manage avalanche risk well: the guides skied steeper, less dense vegetation, and more convoluted slopes during times of lower avalanche hazard. Avalanche terrain severity scores derived from the parameter estimates compared well to terrain previously zoned according to the Avalanche Terrain Exposure Scale. Using a GIS implementation of the regression analysis, we created avalanche condition-dependent maps that provide insights into what type of terrain guides deemed acceptable for skiing under different avalanche hazard conditions. These promising results highlight the potential of tracking guides’ terrain selection decisions as they manage avalanche hazard for the development of evidence-based avalanche terrain ratings and decision aids for professional and recreational backcountry travelers.  相似文献   

15.
The Qinghai–Tibet Highway and Railway (the Corridor) across the Qinghai–Tibet Plateau traverses 670 km of permafrost and seasonally frozen-ground in the interior of the Plateau, which is sensitive to climatic and anthropogenic environmental changes. The frozen-ground conditions for engineering geology along the Corridor is complicated by the variability in the near-surface lithology, and the mosaic presence of warm permafrost and talik in a periglacial environment. Differential settlement is the major frost-effect problem encountered over permafrost areas. The traditional classification of frozen ground based on the areal distribution of permafrost is too generalized for engineering purposes and a more refined classification is necessary for engineering design and construction. A proposed classification of 51 zones, sub-zones, and sections of frozen ground has been widely adopted for the design and construction of foundations in the portion of the Corridor studied. The mean annual ground temperature (MAGT), near-surface soil types and moisture content, and active faults and topography are most commonly the primary controlling factors in this classification. However, other factors, such as local microreliefs, drainage conditions, and snow and vegetation covers also exert important influences on the features of frozen ground. About 60% of the total length of the Corridor studied possesses reasonably good frozen-ground conditions, which do not need special mitigative measures for frost hazards. However, other sections, such as warm and ice-rich or -saturated permafrost, particularly in the sections in wetlands, ground improvement measures such as elevated land bridges and passive or proactive cooling techniques need to be applied to ensure the long-term stability of thermally unstable, thick permafrost subsoils, and/or refill with non-frost-susceptible soils. Due to the long-history of the construction and management of the Corridor by various government departments, adverse impacts of construction and operation on the permafrost environment have been resulted. It is recommended that an integrated, executable plan for the routing of major construction projects within this transportation corridor be established and long-term monitoring networks installed for evaluating and mitigating the impact from anthropogenic and climatic changes in frozen-ground conditions.  相似文献   

16.
Avalanche hazard mapping over large undocumented areas   总被引:3,自引:1,他引:2  
An innovative methodology to perform avalanche hazard mapping over large undocumented areas is herewith presented and discussed. The method combines GIS tools, computational routines, and statistical analysis in order to provide a “semi-automatic” definition of areas potentially affected by avalanche release and motion. The method includes two main modules. The first module is used to define zones of potential avalanche release, based on the consolidated relations on slope, morphology, and vegetation. For each of the identified zones of potential release, a second module, named Avalanche Flow and Run-out Algorithm (AFRA), provides an automatic definition of the areas potentially affected by avalanche motion and run-out. The definition is generated by a specifically implemented “flow-routing algorithm” which allows for the determination of flow behaviour in the track and in the run-out zone. In order to estimate the avalanche outline in the run-out zone, AFRA uses a “run-out cone”, which is a 3D projection of the angle of reach α. The α-value is evaluated by statistical analysis of historical data regarding extreme avalanches. Pre- and post-processing of the AFRA input/output data is done in an open source GIS environment (GRASS GIS). The method requires only a digital terrain model and an indication of the areas covered by forest as input parameters. The procedure, which allows rapid mapping of large areas, does not in principle require any site-specific historical information. Furthermore, it has proven to be effective in all cases where a preliminary cost-efficient analysis of the territories potentially affected by snow avalanche was needed.  相似文献   

17.
多年冻土区输电线路塔基基础附近活动层厚度和地下冰变化与基础稳定性密切相关,塔基施工的热扰动和混凝土基础的热效应使得基础周围冻土易发生退化,不利于基础的稳定。高密度电法是冻土工程环境研究中常用的地球物理方法,其探测结果的可靠性和分辨能力受数据采集方式、目标体地电结构影响。为减小对输电线路塔基附近冻土特征识别的不确定性,通过建立基础周围多年冻土地电模型的正反演模拟,发现活动层处于融化状态时各种装置方式数据采集均能较好地反映活动层厚度的起伏,但由于冻融锋面附近显著的电阻率差异,难以识别多年冻土层内的地下冰空间分布特征。而活动层处于冻结状态时进行探测能显著提高对多年冻土层内的地下冰空间分布特征识别精度,其中偶极-偶极装置可较好地识别高、低含冰量区域的发育位置和形态特征。在青藏直流输电线路塔基基础附近冻土探测中证实了方法的有效性,探测结果揭示了施工过程和基础热效应导致的塔基基础附近的地下冰退化。以上研究表明,通过正反演模拟,根据具体探测目标选择合适的探测时机和数据采集方式,能显著提高高密度电法探测结果的有效性和精度。  相似文献   

18.
奎屯河新龙口右岸山体崩塌原因及再次失稳可能性分析   总被引:1,自引:0,他引:1  
奎屯河新龙口段山体历史上多次发生山体塌滑破坏,最近一次山体崩塌较为反常地发生在1月寒冷季节,而不是通 常的7、8月雨季,针对该段山体频繁发生破坏而且还出现反季节崩塌这种特殊情况,从区域地质背景、地震作用、地形地貌、气 候及降水等几个方面分别详细论述了产生崩塌的原因,同时指出这次反季节崩塌产生的触发原因在于气候反常造成雪水入 渗、短时间内发生多次冻融,裂隙中液态水结冰产生膨胀力诱发了此次山体崩塌。采用赤平投影分析论证了潜在崩塌的可能 性问题,指出发生此次崩塌后的右岸山体仍然未达到稳定状态,还可能再次发生破坏,同时应用实体比例投影法圈定了最有 可能破坏的山体位置并对崩塌方量进行了计算,从而对山体潜在崩塌可能性及规模有了一定把握,对该段山体崩塌的防治具 有实际的工程意义。  相似文献   

19.
梅里雪山雪崩多发,但缺乏系统监测和研究。1991年1月3日梅里雪山发生了造成中日联合登山队17名队员遇难的巨大雪崩事件。2019年安装在明永冰川末端附近的物候相机拍摄到临近梅里雪山明永冰川的一次雪崩事件。两次事件类型不同,这对我们进行雪崩预测预警有良好的指示作用。本研究以RAMMS(Rapid Mass Movement System)模型为手段,利用经验值和经验公式确定影响模拟结果的主要模型参数和积雪可能断裂深度,在优化分析的基础上,对两次雪崩事件进行重建,定量分析雪崩堆积量、堆积范围等。结果显示:1991年雪崩共持续了192s,雪崩体从海拔5730m处断裂,沿坡面崩塌而下最终堆积在海拔约5000m的冰川粒雪盆地区,形成面积为0.6km^(2),体积约67×10^(4)m^(3)的堆积体。2019年雪崩共持续了158s,雪崩流最大高度35.91m,最大速度79.34m·s,堆积量76.2×10^(4)m^(3),雪崩堆积范围与野外观测到的一致。两次雪崩事件发生地位于雪崩极高危险区和高危险区,在一定程度上验证了风险评估的准确性。研究结果可为梅里雪山地区未来潜在雪崩灾害的风险评估提供依据,为雪崩预测预警提供良好的参考。  相似文献   

20.
During the last 50 years, an average of 30 persons per year was killed by avalanches in Austria. About one-third of all avalanche fatalities occurred as a result of so-called ‘catastrophic avalanches’. ‘Catastrophic avalanches’ are spontaneously released avalanches that affect villages and cause damage to property (buildings, roads and other infrastructure). The biggest avalanche events in Austria were in 1950/1951 (135 fatalities), in 1953/1954 (143 fatalities) and in February 1999, when 38 persons were killed in Galtür and Valzur. This article deals with an analysis of nine major avalanche cycles in the last 55 years. An avalanche cycle in this article is defined as 50 recorded avalanches of at least size 3 in two days and/or 5 persons killed in villages within two days. The basis of this study are the well-documented records from Fliri (1998), who analysed natural disasters in the western part of Austria and the Trentino, including floods, mudflows, earthquakes and avalanches. The meteorological data were taken from two relevant observation sites in the northern part of the Austrian Alps, from two sites in an intermediate and continental region, respectively and from one site in the southern part of the Austrian Alps. Atmospheric patterns were analysed by using weather charts for the relevant periods. Both the meteorological data and the weather charts were provided by the Central Institute for Meteorology and Geodynamics (ZAMG). It was found that there was a major cycle every 6 years (on average). Two-thirds of all investigated cycles were characterised by a continuous increase of snow depth over a period of at least three days. In only three periods (1975, 1986, 1988), daily extreme values could be observed. More than 40% of all the cycles occurred in January. In two-thirds, a north-westerly oriented frontal zone was responsible for the formation of a major cycle. The remaining cycles were released by low-pressure areas over Central Europe and the Mediterranean Sea, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号