首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2010年4月14日青海省玉树藏族自治州发生MS7.1级地震.和传统的板内地震相比,玉树MS7.1级地震的余震具有数量少、震级大的特点.研究玉树地震主震与余震之间的关系,对于我们了解余震的发震机理具有十分重要的参考价值.本文利用弹性位错理论和分层岩石圈模型,计算玉树地震引起的同震及震后黏弹松弛应力场变化,讨论MS7.1级玉树地震对余震分布的影响以及与2011年囊谦MS5.2级地震之间的触发关系.结果显示,玉树地震导致了四处明显的库仑应力增强的扇区,2010年4月13日至6月17日的870次ML>1.0级余震主要分布于主震破裂面附近区域以及破裂面东北端的应力增强扇区.分析玉树地震对余震分布的影响时,有效摩擦系数以及计算深度的选取对计算结果的影响较小,是否考虑区域构造应力场的影响较大.考虑区域构造应力场时,占总数86.7%的余震位于库仑应力增强区,地震应力触发理论较好地解释了余震的分布.选取囊谦地震震源机制解的两个节面作为库仑应力计算中的接收断层参数,并且考虑不同黏滞系数下的玉树地震同震及震后黏弹松弛效应,模型计算结果均表明囊谦地震位于玉树地震所导致应力影区,仅依靠地震的静态、震后黏弹松弛应力触发理论,无法解释囊谦地震的发生,说明该次地震可能是一次独立的事件.  相似文献   

2.
2015年4月25日尼泊尔爆发MW7.9地震,继而引发5月12日MW7.3级余震,GPS、InSAR监测到震源区及周边大范围同震形变.本文以国内外的GPS和InSAR同震形变为约束,考虑喜马拉雅断裂带岩石圈垂向分层和横向差异的影响,反演主喜马拉雅逆冲断裂在这次主震和余震中破裂面形状和滑动分布.结果显示,主震从USGS确定的震中位置向东偏南延伸100km以上,破裂地面迹线与主前缘逆冲断裂迹线基本一致.破裂面倾角约7°~11°,大部分破裂集中在深度8~20km,同余震分布深度一致.主震最大滑动量约6.0~6.6m,位于14km深处.余震破裂集中在震中附近30km范围内,填补了主震东部破裂空区,最大滑动约3.6~4.6 m,位于13km深.深度20km以下基本没有破裂.地壳介质不均匀性对破裂滑动分布的影响较大,介质不均匀模型的观测值不符值比各向同性弹性半空间模型降低10%以上.本文地震破裂模型特征与地震反射剖面、以及根据震间期大地测量数据反演的喜马拉雅深部蠕滑剖面极其相似.跨喜马拉雅断裂剖面的震间形变量与地震破裂滑移量直接相关.以此推算,尼泊尔中部大震原地复发周期在300年以上.  相似文献   

3.
本文以龙门山及周边地区为研究对象,考虑区域地质构造差异、主要活动断裂带、地表附加重力影响,建立能反映地表起伏和岩石圈分层结构的龙门山地区三维粘弹性有限元模型。以地壳水平运动速率观测值为约束条件重建研究区现今构造背景应力场,在此基础上分别模拟了汶川地震和芦山地震的发生机理。通过分析同震库仑破裂应力变化与余震空间分布的关系,探讨了2次地震主震对余震的触发作用以及汶川地震对芦山地震的影响。研究表明,汶川地震和芦山地震的余震大部分由其主震触发,汶川地震对芦山地震的余震有约6.78%的触发作用。汶川地震的同震库仑破裂应力在芦山地震主震位置的增加值约为0.016MPa,如果龙门山断裂带南段库仑破裂应力年累积速率按照0.4×10-3-0.6×10-3MPa·a-1计算,汶川地震使芦山地震提前了约27-40年。计算还表明汶川地震和芦山地震的发生使鲜水河断裂带南段和虎牙断裂的库仑破裂应力增加,这些断裂带在未来发生地震的可能性增加。  相似文献   

4.
2004年苏门答腊大地震后,不同作者根据地震波和/或GPS观测,提出了不同的断层错动模型.在利用同震位移观测资料反演断层滑动模型时,由于使用半无限空间均匀介质模型或半无限空间分层介质模型,一般只能利用近场位移GPS观测约束,无法利用远场资料,这些模型有时差别颇大,如何区别这些模型的优劣是一个仍尚未解决的问题.本文采用等效体力有限元方法,在考虑地球球形和分层的条件下,对四个不同作者提供的2004年苏门答腊地震的断层滑动模型计算全球同震位移.由于采用了球形模型,所以不仅可以把四个模型的近场位移计算结果与GPS数据进行对比,而且可以把远场位移计算结果与GPS数据进行对比.我们发现,垂直位移对断层滑动模型的依赖性小于水平位移.四个模型计算的近场位移与GPS位移符合程度均较好,但是四个模型计算的远场位移与GPS位移符合情况有很大不同,其中Chlieh等(2007)模型在近场与远场符合程度均很好,是四个模型中最好的.另外还探讨了断层反演数据资料、断层几何模型以及地球模型对计算结果的影响.对于特大地震,全球同震位移观测与计算值吻合程度的好坏是衡量断层滑动模型的合理性的一个重要依据.  相似文献   

5.
The devastating zmit and Düzce earthquakes were followed by theOrta intra-plate earthquake (MS = 6.1) occurred in the central Anatolianblock on June 6, 2000. The focal mechanism, aftershock distribution andthe field studies (Emre et al., 2000) suggest a movement on a 21-km longDodurga fault striking nearly N-S where the sense of motion is left-lateralstrike-slip with considerable amount of normal component. We applied theconstrained linear finite-fault inversion method of Hartzell and Heaton(1983) to the teleseismic P and SH waveforms to derive a coseismic slipdistribution model for the earthquake. Time windows approach is appliedallowing variable rise times and rupture velocities. The source-rise timefunction is discretized into consecutive time intervals that stand for slipcontribution of individual subfaults. Although no clear surface ruptureswere associated with the earthquake, the resulting slip model suggestscoseismic slip in the order of several tens of centimetres. Our coseismicslip distribution model identifies two slip patches with the followingmaximum slip values: (1) the larger one (42 cm) is located to the southof the hypocenter at depth range of 4–8 km and (2) the smaller one(31 cm) is located just above and north of the hypocenter. Theslip-model yield a seismic moment of 1.0 × 1018 Nm, most of whichis released from the rupture over the depth of 8 km.  相似文献   

6.
本文利用2015年尼泊尔MW7.9地震断层面滑动位移分布的运动学反演结果,通过傅里叶变换法得到了主断层面上的两分量应力状态,并研究了余震的空间分布和断层面上应力状态之间的关系.发现滑动位移分布与应力状态分布都相对较为集中,大约70%的余震分布在应力变化为正的区域,而其余发生在应力降区域的余震,又大多发生在应力变化梯度较大的地区.为了得到一个更符合实际的滑动模型来解释余震的触发机制,我们计算了波数域中滑动位移和应力状态的傅里叶谱,发现此次地震的滑动位移和应力状态近似满足k-3k-2衰减.我们利用简化的圆盘模型说明了非均匀应力变化下的衰减过程,计算了圆盘模型的有效半径re约等于0.7倍的圆盘半径.这就说明圆盘模型中应力增加的部分应该占整个圆盘破裂面积的51%.在本次尼泊尔MW7.9地震实例中,断层面上应力状态为负的区域比滑动位移为正的区域有了明显地缩小.事实表明,余震可以发生在有滑动位移的区域,非均匀应力降模型比均匀应力降模型更加接近真实的震源破裂过程.  相似文献   

7.
2017年8月8日我国四川九寨沟发生里氏7.0级地震.本研究利用基线校正方法获得距震中100km范围内9个强震台站同震位移,基于Sentinel-1卫星干涉SAR影像对获取了InSAR同震形变场.结合GPS形变数据,本研究进行了震源滑动模型联合反演,结果显示此次地震整体以走滑运动为主,释放地震矩约为7.60×1018 N·m(~MW6.52).通过对比模拟形变场和观测值显示,联合反演结果优于单独基于InSAR形变场的反演结果.静态应力变化计算结果显示断层平均静态应力降为1.07MPa.反演滑动模型沿走向和倾角方向拐角波数值分别为0.99×10-4和1.10×10-4.同震静态库仑应力变化计算结果显示共有83.6%的余震位于库仑应力增加的区域,被主震所触发的余震占总数的77.9%,主震对后续余震具有显著触发作用.强地面运动模拟结果显示模拟结果在烈度分布范围和等级方面与调查烈度符合度很高,模拟结果能够很好地反映断层破裂的方向性效应等特征.本研究计算结果显示九寨沟地震无论是平均静态应力降还是拐角波数均低于同类型地震的平均水平,这可能是造成本次地震强地震动水平相对不高的原因.  相似文献   

8.
以往的研究显示了2013年芦山MS7.0级地震发震断层的隐伏逆冲断层基本特征,但是破裂深部细节差异较大.本文以近场密集的同震形变数据约束芦山地震破裂面几何形状及滑动分布,结果显示芦山地震破裂面具有铲状结构,上部16km为43°~50°高角度断层,深部16~25km为小于27°的低角度断层,破裂深度与重定位的余震分布深度一致.破裂分布模型清楚显示上下两个断层上各有一个滑动幅度大于0.5m的峰值破裂区,最大滑动量1.5m位于13km深处.重定位的余震分布基本都落在最大滑动量等值线外部库仑应力增加的区域.芦山地震破裂面几何形状和滑动分布特征与2008年汶川MS8.0级地震映秀—北川破裂相似,支持龙门山冲断带发育大规模的近水平滑脱层,是青藏高原东缘地壳缩短增厚、龙门山挤压隆升的重要证据.  相似文献   

9.
The development of high-rate GNSS seismology and seismic observation methods has provided technical support for acquiring the near-field real-time displacement time series during earthquake. But in practice, the limited number of GNSS continuous stations hardly meets the requirement of near-field quasi-real-time coseismic displacement observation, while the macroseismographs could be an important complement. Compared with high-rate GNSS, macroseismograph has better sensitivity, higher resolution(100~200Hz)and larger dynamic range, and the most importantly, lower cost. However, baseline drift exists in strong-motion data, which limits its widespread use. This paper aims to prove the feasibility and reliability of strong motion data in acquiring seismic displacement sequences, as a supplement to high-rate GNSS. In this study, we have analyzed the strong-motion data of Wenchuan MS8.0 earthquake in Longmenshan fault zone, based on the automatic scheme for empirical baseline correction proposed by Wang et al., which fits the uncorrected displacement by polynomial to obtain the fitting parameters, and then the baseline correction is completed in the velocity sequence. Through correction processing and quadratic integration, the static coseismic displacement field and displacement time series are obtained. Comparison of the displacement time series from the strong motions with the result of high-rate GPS shows a good coincidence. We have worked out the coseismic displacement field in the large area of Wenchuan earthquake using GPS data and strong motion data. The coseismic displacement fields calculated from GPS and strong motions are consistent with each other in terms of magnitude, direction and distribution patterns. High-precision coseismic deformation can provide better data constraint for fault slip inversion. To verify the influence of strong-motion data on slip distribution in Wenchuan earthquake, we used strong motion, GPS and InSAR data to estimate the stress drop, moment magnitude and coseismic slip model, and our results agreed with those of the previous studies. In addition, the inversion results of different data are different and complementary to some extent. The use of strong-motion data supplements the slip of the fault in the 180km segment and the 270~300km segment, thus making the inversion results of fault slip more comprehensive. From this result, we can draw the following conclusions:1)Based on the robust baseline correction method, the use of strong motion data, as an important complement to high-rate GNSS, can obtain reliable surface displacement after the earthquake. 2)The strong motion data provide an effective method to study the coseismic displacement sequence, the surface rupture process and quick seismogenic parameters acquisition. 3)The combination of multiple data can significantly improve the data coverage and give play to the advantages of different data. Therefore, it is suggested to combine multiple data(GPS, strong motion, InSAR, etc.)for joint inversion to improve the stability of fault slip model.  相似文献   

10.
On July 3rd, 2015, a MW6.4 earthquake occurred on Pishan County, Xinjiang, located in the front of western Kunlun thrust belt, which is the largest earthquake(MW6.0~7.0)in the past 40 years in this region. In this study, we collected both the near-filed geodetic coseismic deformation observations including 4 GPS sites and one high-resolution ALOS-2 InSAR imagery, and far-field teleseismic P waveforms from 25 stations provided by IRIS/USGS, to invert the fault parameters(strike and dip)and coseismic rupture model of 2015 MW6.4 Pishan earthquake. Using the finite fault theory, a non-linear simulated annealing algorithm was employed to resolve our joint inversion problem. The strike (120°~130°) and dip angle(35°~40°)of optimal models are different from that of some previous studies, and the dip change is strongly constrained by combined data than that of strike. In fixing the geometric parameters of optimal fault model, we also considered data weight(5)(geodetic data/teleseismic P waveforms)and constrained weight from moment and smooth factor(2.5). Clearly, our results indicate that the slip distribution mainly concentrates in the depth range from 9 to 16km and a length range of 20km along the strike direction, which is similar to the spatial distribution of the relocated aftershocks. The maximum slip is~95cm. The seismic moment release is 5.45×1018N·m, corresponding to MW6.42. Compared with the single data set, geodetic data or teleseismic waveform, our joint inversion model could simultaneously constrain the seismic moment and slip distribution well, thus avoiding effectively a lower-resolution rupture distribution determined by teleseismic-only inversion and a bias released moment estimated by the geodetic-only inversion. Importantly, we should consider both the near-field geodetic data and far-field teleseismic data in retrieving the rupture model for accurately describing the seismogenic structure of active fault in western Kunlun region.  相似文献   

11.
2017年8月8日四川省九寨沟县发生M_s7.0地震.本文基于Sentinel-1 SAR影像,利用InSAR技术获取了此次地震的同震形变场,反演获得同震滑动分布,计算了同震位错对余震分布和周边断层的静态库仑应力变化,并对发震构造进行了分析讨论.结果表明:①InSAR同震形变场显示,九寨沟地震造成地表形变最大量级约为20 cm(雷达视线方向),同震形变存在非对称性分布特征.②同震位错以左旋走滑为主,主要发生在4~16 km深度,最大滑动量约为77 cm,位于9 km深处.反演得到的矩震级为Mw6.46.同震错动未破裂到地表.③大部分余震发生在库仑应力增加区.此次地震增加了震中周边地区一些断裂的库仑应力,如东昆仑断裂带东段、龙日坝断裂、虎牙断裂等.④东昆仑断裂东段的未来地震危险性值得关注.⑤九寨沟地震的发震断层为树正断裂,可能是虎牙断裂的北西延伸隐伏部分,此次地震是巴颜喀拉块体南东向运动受到华南块体的强烈阻挡过程中发生的一次典型构造事件.  相似文献   

12.
The 2016 MW7.8 Kaikoura (New Zealand) earthquake was the most complex event ever instrumentally recorded and geologically investigated, as it ruptured on more than 12 fault segments of various geometries. To study the mainshock rupture characteristics, geodetic methods like InSAR and GPS play an essential role in providing satisfactory spatial resolution. However, early strong aftershocks may cause extra ground deformation which bias the mainshock rupture inversion result. In this paper, we will focus on studying the MW 6.3 aftershock, which is the only M6+ thrust slip aftershock that occurred only 30 minutes after the Kaikoura mainshock. We will relocate the hypocenter of this event using the hypo2000 method, make the finite fault model (FFM) inversion for the detailed rupture processes and calculate the synthetic surface displacement to compare with the observed GPS data and figure out its influence on the mainshock study. Although we are not able to resolve the real ruptured fault of this event because of limited observation data, we infer that it is a west-ward dipping event of oblique slip mechanism, consistent with the subfault geometries of the Kaikoura mainshock. According to the inverted FFM, this event can generate 10–20 cm ground surface displacement and affect the ground displacement observation at nearby GPS stations.  相似文献   

13.
Introduction The displacement field produced by earthquake can be measured on the Earth surface. The displacement field variation with time can be used to study lots of geodynamics parameters such as the Earth′s viscosity structure (Nur and Mavko, 1974; Sun et al, 1994; Deng et al, 1998), after-slip distribution (Shen et al, 1994; Reilinger et al, 2000), etc. Furthermore, earthquake also pro-duces lots of aftershocks, which have nearly the same focal mechanism as the main shock (e.g. Hard…  相似文献   

14.
The 2004 Mid Niigata Prefecture earthquake (MJMA 6.8) and its aftershock sequences generated complicated, i.e., several conjugate fault planes in their source region. In order to understand the generating process of these earthquakes, we estimated a 3-D distribution of relative scattering coefficients in the source region. The large slip area during the main shock rupture seems to be bounded by strong heterogeneous zones with larger scattering coefficients. Hypocenters of the main shock and major large aftershocks with M 5-6 classes tend to be located close to stronger scattering areas. We found that one of these strong heterogeneities already existed before the occurrence of the M 5.9 aftershock on November 8. We suppose that heterogeneous structures in the source region of this earthquake sequence affected the initiation and growth of ruptures of the main shock and major large aftershocks.  相似文献   

15.
2011年3月11日日本发生9.0级地震,本文以此次地震的震间、同震和震后形变观测为约束,依据不同时段断层运动空间分布特征分析日本海沟地区强震与断层运动间关系.震间日本海沟地区,断层运动闭锁线深度约为60km,闭锁线以上从深到浅依次为断层运动强闭锁段、无震滑移段和弱闭锁段.由同震位错反演结果,2011年日本9.0级地震同震存在深浅两个滑移极值区,同震较浅的滑移极值区(同震位错量10~50m,深度小于30km)震间为断层弱闭锁段;同震较深的滑移极值区(同震位错量10~20m,深度在40km左右)震间为断层强闭锁段;而在两者之间的过渡带同震位错相对较小,震间断层运动表现为无震滑移.震后初期断层运动主要分布在在闭锁线以上的同震较深滑移极值区,而同震较浅的滑移极值区能量释放比较彻底,断层震后余滑量相对较小.依据本文同震和震间断层运动反演结果,震间强闭锁段积累10m同震位错需要100多年时间,与该区域历史上7级地震活动复发周期相当;震间弱闭锁段积累30~50m同震位错约需要300~600年时间,与相关研究给出的日本海沟9级左右地震复发周期比较一致.在实际孕震能力判定的工作中,由于不同性质的断层段在同震过程中会表现更多的组合形式,断层发震能力判定结果存在更多的不确定性,但利用区域形变观测等资料给出震间断层运动特征的研究工作对于断层强震发震能力的判定具有非常重要的实际意义.  相似文献   

16.
The 03 February 2002 Çay Earthquake (Mw ~6.7) occurred on the fault segment between Eber and Ak?ehir Lakes followed by a large aftershock (Mw ~5.6) near the western end of the fault and two sequential aftershocks. We computed the coseismic surface displacements from static GPS measurements to determine the fault geometry parameters and uniform slip components. The coseismic displacements were obtained through combining the regional pre-earthquake and post-earthquake GPS data. Fault geometry and slips were acquired through the inversion of GPS data modeling the events as elastic dislocations in a half-space and assuming all four events took place on the same fault plane. Results suggest that one-segment fault of ~33 km length and dipping ~43° northward suffices to model the dislocation, assuming uniform slip distribution with 0.51 m dip slip, 0.26 m left-lateral slip extending to a depth down to ~11.5 km which is consistent with seismological evidence. The results also verify the normal faulting in the eastern flank of Isparta Angle which has long been assumed as a thrusting structure. While the available data cannot identify the four individual events on the same day, an attempted distributed slip model differentiates dip slip and left-lateral slips near the hypocenter with maximum values of ~1 and 0.6 m, respectively.  相似文献   

17.
汶川8.0级地震序列及震型判定   总被引:5,自引:0,他引:5  
程万正  阮祥  张致伟 《地震》2009,29(1):15-25
研究了2008年5月12日四川省汶川8.0级地震余震序列, 其特点是: 余震序列丰富, 持续时间长。 余震沿NE向龙门山构造带的中央断裂条形展布, 深度横剖面为锲形, 呈现地块间强烈汇聚、 挤压活动的特点。 跨不同断裂段, 余震震源机制解有逆冲、 斜滑或走滑型, 反映的局部构造应力场复杂。 汶川8.0级地震序列为主震-余震型, 文中给出了其判定的主要依据及分析预测结果。  相似文献   

18.
利用改进的自动经验基线校正方法SMBLOC,对2016年8月24日意大利佩鲁贾MW 6.2级地震震中周围约60 km内的近场强震记录进行基线校正并尝试给出同震位移场,与GPS观测结果进行对比分析,分别独立和联合两种资料反演震源滑动模型,并根据震源模型进一步给出全空间预测位移场分布.研究结果表明:(1)两种不同的资料给出的水平位移场幅值均为cm级,且均表明断层的错动以正断为主.(2)两种同震位移场分别独立和联合反演所得的震源静态滑动范围基本一致,最大滑动均发生在震中东北侧,强震模型表现出明显的双事件特征,较大滑动分布在震中东北侧和东南侧,GPS模型在震中东南侧的滑动相对较小,其双事件特征不明显.两种模型的最大滑动量分别为0.96 m和0.86 m,较为一致,反演的矩震级均在MW 6.3左右.(3)根据震源滑动模型计算所得的佩鲁贾地震全空间预测的水平同震位移场中最大位移分布区域与震后报告中受灾严重的地区基本一致.表明在一定的条件下,利用SMBLOC方法解算震级较小的MW 6.0左右地震强震记录的同震位移场,并反演震源滑动模型具有一定的可行性,且其同震位移场和滑动模型可为震后灾害快速评估、救援力量分配、余震趋势判定等快速应急响应工作提供参考依据.  相似文献   

19.
InSAR约束下的2008年汶川地震同震和震后形变分析   总被引:7,自引:3,他引:4       下载免费PDF全文
2008年5月12日,青藏高原东缘的龙门山断裂带上发生了Mw7.9级汶川地震.本文通过分析覆盖汶川地震震中区域的ALOS/PALSAR像对的方位向偏移量来选择无明显电离层扰动影响的像对进行干涉处理,获取了高精度、连续的InSAR地表形变场.在此基础上,结合高精度GPS同震形变数据,采用同震、黏弹性松弛震后形变联合反演模型同时确定了汶川地震的同震滑动分布和龙门山地区的流变结构参数.研究结果表明,汶川地震是一个断层破裂非常复杂的地震事件,其中,北川段、岳家山段、虹口段和汉旺段的滑动以逆冲为主,而青川段以右旋走滑为主.滑动主要发生在10 km深度以上的区域,最大滑动量位于虹口段的东北端,达10.7 m.地震释放的总能量为9.28×1020 N·m(Mw7.91),与地震学的结果一致.联合反演模型确定的龙门山地区中下地壳的黏性系数为2×1018 Pa·s,为青藏高原东部地区的黏性系数提供了一个可靠的下限值.如果有更长时间的震后形变观测时间序列,将为该区域提供更为可靠的流变结构.  相似文献   

20.
We investigate mainshock slip distribution and aftershock activity of the 8 January 2013 M w?=?5.7 Lemnos earthquake, north Aegean Sea. We analyse the seismic waveforms to better understand the spatio-temporal characteristics of earthquake rupture within the seismogenic layer of the crust. Peak slip values range from 50 to 64 cm and mean slip values range from 10 to 12 cm. The slip patches of the event extend over an area of dimensions 16?×?16 km2. We also relocate aftershock catalog locations to image seismic fault dimensions and test earthquake transfer models. The relocated events allowed us to identify the active faults in this area of the north Aegean Sea by locating two, NE–SW linear patterns of aftershocks. The aftershock distribution of the mainshock event clearly reveals a NE–SW striking fault about 40 km offshore Lemnos Island that extends from 2 km up to a depth of 14 km. After the mainshock most of the seismic activity migrated to the east and to the north of the hypocenter due to (a) rupture directivity towards the NE and (b) Coulomb stress transfer. A stress inversion analysis based on 14 focal mechanisms of aftershocks showed that the maximum horizontal stress is compressional at N84°E. The static stress transfer analysis for all post-1943 major events in the North Aegean shows no evidence for triggering of the 2013 event. We suggest that the 2013 event occurred due to tectonic loading of the North Aegean crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号