首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head‐dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over‐ or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive‐use management tools.  相似文献   

2.
Seven villages in southeastern Kenya surround Mt. Kasigau and depend on the mountain's cloud forest for their water supply. Five of these villages have regularly experienced water shortages, and all village water supplies were contaminated with Escherichia coli bacteria. There is a need to economically find new sources of fresh ground water. Remote sensing offers a relatively quick and cost-effective way of identifying areas with high potential for ground water development. This study used spectral properties of features on Landsat remote sensing imagery to map linear features, soil types, surface moisture, and vegetation. Linear features represented geologic or geomorphologic features indicating either shallow ground water or areas of increased subsurface hydraulic conductivity. Regarding soil type, black soils were identified as potential indicators of shallow aquifers based on their relatively lower elevation and association with river valleys. A vegetation map was created using unsupervised classification, and three of the resulting vegetation classes were observed to be commonly associated with wet areas and/or ground water discharge. A wetness map, created using tasseled cap analysis, was used to identify all areas of high ground moisture, including those that corresponded to vegetated areas. The linear features, soil type, vegetation, and wetness maps were overlaid to produce a composite that highlighted areas with the highest potential for ground water development. Electrical resistivity surveys confirmed that areas highlighted by the composite image had relatively shallow depths to the water table. Some figures in this paper are available in color in the online version of the paper.  相似文献   

3.
The ubiquitous occurrence of branched glycerol dialkyl glycerol tetraethers(br GDGTs) in soils has allowed development of new proxies for reconstruction of past climate and environment. The methylation and cyclization degrees of br GDGTs, expressed as MBT and CBT, respectively, are reported to be mainly controlled by mean annual air temperature(MAAT) and soil p H. However, the br GDGT-derived temperatures and soil p H scatter widely when data from different environmental conditions are considered. In this study, we collected over 300 soil samples from China, which are representative of humid(Xishuangbanna, Guangzhou, and Shanghai), semi-arid(Dongying) and semi-arid/arid(Lanzhou, Tibetan Plateau) regions. Collectively we have the most extensive dataset that broadly characterizes the distribution of br GDGTs according to climate zones in China. The overall data demonstrate that the MBT/CBT derived temperatures better match the measured MAATs in humid and non-alkaline regions than those from regions of low MAP(400 mm/yr) and above neutral soil p H(7.0–7.5). Similarly, CBT describes soil p H much better in humid and non-alkaline soils than in semi-arid/arid and alkaline soils; the semi-arid/arid and alkaline soils tend to show a positive correlation between soil p H and CBT, which contradicts that in the humid and non-alkaline soils. While soil p H, MAAT and mean annual precipitation(MAP) are dominating factors controlling the br GDGT distribution across all climate zones, conductivity, total organic carbon and total nitrogen, as well as soil water content can also play an important role locally. Removing br GDGT-II resulted in a revised CBT index that provides more accurate estimation of p H, especially in semi-arid/arid and alkaline soils. The overall Chinese dataset demonstrates that continental air temperature derived from br GDGT-proxies can vastly deviate from real measurements and should be used with extreme caution in paleo-climate or-environment studies.  相似文献   

4.
In arid and semi-arid areas, evaporation fluxes are the largest component of the hydrological cycle, with runoff coefficient rarely exceeding 10%. These fluxes are a function of land use and land management and as such an essential component for integrated water resources management. Spatially distributed land use and land cover (LULC) maps distinguishing not only natural land cover but also management practices such as irrigation are therefore essential for comprehensive water management analysis in a river basin. Through remote sensing, LULC can be classified using its unique phenological variability observed over time. For this purpose, sixteen LULC types have been classified in the Upper Pangani River Basin (the headwaters of the Pangani River Basin in Tanzania) using MODIS vegetation satellite data. Ninety-four images based on 8 day temporal and 250 m spatial resolutions were analyzed for the hydrological years 2009 and 2010. Unsupervised and supervised clustering techniques were utilized to identify various LULC types with aid of ground information on crop calendar and the land features of the river basin. Ground truthing data were obtained during two rainfall seasons to assess the classification accuracy. The results showed an overall classification accuracy of 85%, with the producer’s accuracy of 83% and user’s accuracy of 86% for confidence level of 98% in the analysis. The overall Kappa coefficient of 0.85 also showed good agreement between the LULC and the ground data. The land suitability classification based on FAO-SYS framework for the various LULC types were also consistent with the derived classification results. The existing local database on total smallholder irrigation development and sugarcane cultivation (large scale irrigation) showed a 74% and 95% variation respectively to the LULC classification and showed fairly good geographical distribution. The LULC information provides an essential boundary condition for establishing the water use and management of green and blue water resources in the water stress Pangani River Basin.  相似文献   

5.
Groundwater is the main source of water in arid regions. Thus, groundwater pollution becomes a major issue due to the increasing contamination, which poses serious and harmful risk to the environment. Groundwater vulnerability maps can be used as a tool to help decision makers to protect groundwater resources from contamination. The vulnerability of the Mio-Plio-Quaternary shallow aquifer (Southeast Tunisia) has been assessed using a DRASTIC model based on Geographic Information System (GIS). The different parameters of the model were collected from several sources and converted into thematic maps using ArcGis©. Each DRASTIC parameter was assigned a weight and rating based on a range of information within the parameter. Groundwater vulnerability map shows a large area (48%) with high risk of pollution. It indicates that the Southern part of the aquifer and the wadi beds are the most susceptible to contamination. The measured nitrate concentration is coherent with the DRASTIC model results.  相似文献   

6.
We analyzed long daily runoff series at six hydrological stations located along the mainstem Yellow River basin by using power spectra analysis and multifractal detrended fluctuation analysis (MF-DFA) technique with aim to deeply understand the scaling properties of the hydrological series in the Yellow River basin. Research results indicate that: (1) the runoff fluctuations of the Yellow River basin exhibit self-affine fractal behavior and different memory properties at different time scales. Different crossover frequency (1/f) indicates that lower crossover frequency usually corresponds to larger basin area, and vice versa, showing the influences of river size on higher frequency of runoff variations. This may be due to considerable regulations of river channel on the runoff variations in river basin of larger basin size; (2) the runoff fluctuations in the Yellow River basin exhibit short-term memory properties at smaller time scales. Crossover analysis by MF-DFA indicates unchanged annual cycle within the runoff variations, implying dominant influences of climatic changes on changes of runoff amount at longer time scales, e.g. 1 year. Human activities, such as human withdrawal of freshwater and construction of water reservoirs, in different reaches of the Yellow River basin may be responsible for different scaling properties of runoff variations in the Yellow River basin. The results of this study will be helpful for hydrological modeling in different time scales and also for water resource management in the arid and semi-arid regions of China.  相似文献   

7.
Spatial variability of the annual rainfall over drier regions of India is studied by examining the variations in the arid areas. A long period (1871–1984) arid area series has been prepared for the entire country, including the two broad subregions of North India and Peninsular India, using annual rainfall data from 306 well distributed stations. Following an objectively determined criterion based on rainfall amount alone, the yearly area under arid conditions is obtained by totalling areas which received annual rainfall totals less than 560 mm. The interannual variability of the arid area series is large and its distribution is highly right-skewed, demonstrating large spatial variations in the annual rainfall over India. Statistical tests do not suggest any significant long-term trend in the arid area series, but persistently low values of the arid area after 1941 are noteworthy. Implications for the study of risk analysis and assessment of drought and desertification processes are discussed.  相似文献   

8.
Extreme high-magnitude and low-frequency storm events in arid zones provide the necessary runoff to entrain sediments from source areas and therefore dictate the linkages between hillslopes and channels. Nevertheless, the erosive impact of large storms remains difficult to predict. Most of the uncertainty lies in the lack of topographic change maps associated with single hydro-meteorological events. Consequently, event-based erosion models are poorly constrained and their extrapolation over long time periods remains uncertain. In this study, a 15-month Sentinel-1A coherence time series, optical and field data are used to map the spatial patterns of erosion after the 5-day storm occurred on March 2015, in the Atacama Desert. The coherence change detection (CCD) analysis suggests that temporal loss of coherence is related to variations in soil moisture, while permanent loss of coherence is related to modification of soil texture by erosion and sedimentation. Importantly, permanent loss of coherence is more apparent on gentle rather than steeper slopes, likely reflecting differences in regolith cover and thickness. These findings can contradict the landscape models predicting higher erosion on steeper hillslopes. The CCD technique represents a promising tool for analysing and modelling sediment connectivity in arid areas, giving a clear picture of the relation between sediment sources and sink pathways. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
Novikov  M. A. 《Water Resources》2004,31(2):180-188
The principles and methods of comprehensive evaluative mapping of seawater areas are considered using the Barents Sea as an example. The areas are classified using a digital map database represented by a series of electronic thematic maps. The digital thematic maps are based on a raster version of a geographic information system (GIS).  相似文献   

10.
呼伦湖水位、盐度变化(1961-2002年)   总被引:14,自引:5,他引:9  
为重建水文资料缺乏的呼伦湖流域的水文、水质序列,本研究基于长期的气象观测记录,采用彭曼公式估计了湖泊的水面蒸发,并建立一个两参数月水量平衡模型模拟湖周的入流,通过水量平衡计算.建立了42年(1961-2002)的呼伦湖区水量变化序列,并模拟了湖泊月水量、水位、含盐度的变化.模拟的水位、含盐度变化趋势与实际比较接近,模拟精度较好,其误差在可以接受范围内.所重建的42年呼伦湖区水文、含盐度序列,可为该区域的水资源评价管理、开发利用提供科学依据.  相似文献   

11.
We propose a new method for groundwater recharge rate estimation in regions with stream-aquifer interactions, at a linear scale on the order of 10 km and more. The method is based on visual identification and quantification of classically recognized water table contour patterns. Simple quantitative analysis of these patterns can be done manually from measurements on a map, or from more complex GIS data extraction and curve fitting. Recharge rate is then estimated from the groundwater table contour parameters, streambed gradients, and aquifer transmissivity using an analytical model for groundwater flow between parallel perennial streams. Recharge estimates were obtained in three regions (areas of 1500, 2200, and 3300 km2) using available water table maps produced by different methods at different times in the area of High Plains Aquifer in Nebraska. One region is located in the largely undeveloped Nebraska Sand Hills area, while the other two regions are located at a transition zone from Sand Hills to loess-covered area and include areas where groundwater is used for irrigation. Obtained recharge rates are consistent with other independent estimates. The approach is useful and robust diagnostic tool for preliminary estimates of recharge rates, evaluation of the quality of groundwater table maps, identification of priority areas for further aquifer characterization and expansion of groundwater monitoring networks prior to using more detailed methods.  相似文献   

12.
The temporal evolution of vegetation activity on various land cover classes in the Spanish Pyrenees was analyzed. Two time series of the normalized difference vegetation index (NDVI) were used, corresponding to March (early spring) and August (the end of summer). The series were generated from Landsat TM and Landsat ETM+ images for the period 1984–2007. An increase in the NDVI in March was found for vegetated areas, and the opposite trend was found in both March and August for degraded areas (badlands and erosion risk areas). The rise in minimum temperature and the time variation of the cloud cover during the study period appears to be the most important factors explaining increased NDVI in the vegetated areas. In degraded areas, no climatic or topographic variable was associated with the negative NDVI trend, which may be related to erosion processes taking place in these regions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Morphological features of braided rivers (bars, channels and pools) experience major changes in area, shape and spatial distribution as a response to (i) the pulsation of discharge during a flood and (ii) the bed evolution induced by floods. In this work, at‐a‐station relationships between water level and planform configuration were investigated on the Tagliamento River, a large gravel‐bed braided river in northeast Italy, over a 2‐year study period comprising three bankfull events and several small‐to‐medium floods. The analysis was performed on two 1‐km‐long reaches, characterized by different riparian vegetation cover. Ground‐based images with an hourly temporal resolution were acquired using software‐controlled, digital cameras. Bars, channels, pools and vegetated patches were manually digitized on more than 100 rectified images. Sequences of constant‐level images spanning the study period were used to quantify the impact of floods on the stability of at‐a‐station relationships and on the turnover rate of water bodies. The analysis shows that wetted area increased almost linearly with water level in both reaches. The average number of branches per cross‐section peaked at intermediate flow levels, increasing from 2 at low flow up to 6–7. The number of branches displayed the largest fluctuations over time, with significant changes produced also by moderate floods. Turnover rates were high in both reaches, with more than 30% of wetted areas at low flow converting into bare gravel in less than 2 months. Vegetation colonization was found to limit the mobility of the low flow channels over time by concentrating the flow in fewer, deeper anabranches. The number of channels per cross‐section was 30–40% less in the vegetated reach and the proportion of low flow water bodies in the same position after 12 months increased from 3% to 14%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

The assessment of groundwater vulnerability to pollution has proved to be an effective tool for water resource management, especially in arid and semi-arid regions like Mahdia and Ksour Essaf. The main objective of this study is to assess the aquifer vulnerability by applying the DRASTIC method as well as using sensitivity analysis to evaluate the effect of each DRASTIC parameter on the final vulnerability map. An additional objective is to demonstrate the role of the GIS techniques in the vulnerability assessment. The DRASTIC method assigns a high vulnerability to the coast of the Mahdia-Ksour Essaf. The lowest values are observed in the southern part of the study area. A sensitivity analysis applied in this study suggests that net recharge, aquifer media and depth of groundwater are the key factors determining vulnerability. The model is validated with groundwater quality data and the results have shown strong relationships between modified DRASTIC Vulnerability Index and nitrate and chloride concentrations.

Citation Saidi, S., Bouri, S. & Ben Dhia, H. (2011) Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahdia-Ksour Essaf aquifer, Tunisia: a validation study. Hydrol. Sci. J. 56(2), 288–304.  相似文献   

15.
Qanat is an ancient underground structure to abstract groundwater without the need for external energy. A recognized world heritage, Qanat has enabled civilization in arid and semi-arid regions that lack perennial surface water resources. These important structures, however, have faced significant challenges in recent decades due to increasing anthropogenic pressures. This study uses remote sensing to investigate land-use changes and the loss of 15,983 Qanat shafts in the Mashhad plain, northeast of Iran, during the past six decades. This entails obtaining a rare aerial imagery from 1961, as well as recent satellite imagery, over a region with the highest density of Qanats in Iran, the birthplace of Qanat. Results showed that only 5.59% of the Qanat shafts in 1961 remained intact in 2021. The most prominent Qanat-impacting land-use changes were agriculture and urban areas, that accounted for 42.93 and 31.81% Qanat shaft destruction in the study area, respectively. This study also showed that groundwater table decline, demographic changes, and reduction in the appeal of working in the Qanat maintenance and construction industry among the new generation are existential threats to Qanats, and may result in the demise of these ancient structures in the future. Findings of this study can be used for urban planning in arid and semi-arid areas with the aim of protecting these historic water structures.  相似文献   

16.
Soil salinity and sodicity impose severe constrains to agriculture, especially in arid and semi-arid regions, where good-quality water for irrigation is scarce. While detailed models have been proposed in the past to describe the dynamics of salt and sodium in the soil, they typically require cumbersome calculations and are not amenable to theoretical analysis. Here we present an analytical model for the dynamics of salinity and sodicity in the root zone. We determine the dependence of steady-state salinity and sodicity levels on irrigation water quality and derive the trajectories in the phase space. The only stationary solution the equations admit is a stable node. Through numerical integration and analysis of the eigenvalues of the derived two-dimensional system of equations, the slower time scale associated with sodification is quantified with respect to the faster time scale associated to salinization. The role of different cation exchange equations (Gapon and Vanselow conventions) are shown to be practically the same with regard to the phase-space dynamics and the time scales. The results can be applied in controlling for low levels of salinity and sodicity, and in planning remediation strategies that are timely and economical.  相似文献   

17.
Flood modelling of urban areas is still at an early stage, partly because until recently topographic data of sufficiently high resolution and accuracy have been lacking in urban areas. However, digital surface models (DSMs) generated from airborne scanning laser altimetry (LiDAR) having sub‐metre spatial resolution have now become available, and these are able to represent the complexities of urban topography. This paper describes the development of a LiDAR post‐processor for urban flood modelling based on the fusion of LiDAR and digital map data. The map data are used in conjunction with LiDAR data to identify different object types in urban areas, though pattern recognition techniques are also employed. Post‐processing produces a digital terrain model (DTM) for use as model bathymetry, and also a friction parameter map for use in estimating spatially distributed friction coefficients. In vegetated areas, friction is estimated from LiDAR‐derived vegetation height, and (unlike most vegetation removal software) the method copes with short vegetation less than ~1 m high, which may occupy a substantial fraction of even an urban floodplain. The DTM and friction parameter map may also be used to help to generate an unstructured mesh of a vegetated urban floodplain for use by a two‐dimensional finite element model. The mesh is decomposed to reflect floodplain features having different frictional properties to their surroundings, including urban features (such as buildings and roads) and taller vegetation features (such as trees and hedges). This allows a more accurate estimation of local friction. The method produces a substantial node density due to the small dimensions of many urban features. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
王芳  青松  刘楠  郝艳玲  包玉海 《湖泊科学》2022,34(4):1150-1163
湖泊富营养化已经成为水资源领域的研究焦点,是水环境领域面临的长期严峻挑战.为探明干旱半干旱区域湖泊营养状态,以典型岱海水体为例,利用2019—2020年6次野外实测数据为基础,针对Sentinel_2A和Landsat_8 OLI遥感数据,基于营养状态指数TSISDD与色度角之间的相关关系,建立了岱海水体营养状态评估模型,并利用1986—2020年遥感影像数据,得到了长时间序列的水体营养状态.结果表明:(1)本文建立的营养状态评估模型,根据精度检验结果显示模型精度较好,决定系数(R2)为0.74,均方根误差(RMSE)为3.66,平均绝对百分比误差(MAPE)为4.84%.(2)将算法应用到时间序列MSI、TM、ETM+和OLI数据,得到了岱海水体1986—2020年的营养状态动态特征.结果表明,岱海水体面积逐年减少,且多数时间处在轻度富营养化状态.水体富营养化现象大体上从边缘逐渐向湖中心趋于缓和,离岸边越近富营养化现象越严重,通常趋向湖中心以中营养为主,整体上贫营养化现象极少.(3)岱海营养状态时空变化与气温、风速和降水量等气候因子的相关性并不显著,对其解释率为13%.气候因子对营养状态的月变化影响显著,对其解释率为93%.  相似文献   

19.
The dynamics of vegetation‐driven spatial heterogeneity (VDSH) and its function in structuring runoff and sediment fluxes have received increased attention from both geomorphological and ecological perspectives, particularly in arid regions with sparse vegetation cover. This paper reviews the recent findings in this area obtained from field evidence and numerical simulation experiments, and outlines their implications for soil erosion assessment. VDSH is often observed at two scales, individual plant clumps and stands of clumps. At the patch scale, the local outcomes of vegetated patches on soil erodibility and hydraulic soil properties are well established. They involve greater water storage capacity as well as increased organic carbon and nutrient inputs. These effects operate together with an enhanced capacity for the interception of water and windborne resources, and an increased biological activity that accelerates breakdown of plant litter and nutrient turnover rates. This suite of relationships, which often involve positive feedback mechanisms, creates vegetated patches that are increasingly different from nearby bare ground areas. By this way a mosaic builds up with bare ground and vegetated patches coupled together, respectively, as sources and sinks of water, sediments and nutrients. At the stand scale within‐storm temporal variability of rainfall intensity controls reinfiltration of overland flow and its decay with slope length. At moderate rainfall intensity, this factor interacts with the spatial structure of VDSH and the mechanism of overland flow generation. Reinfiltration is greater in small‐grained VDSH and topsoil saturation excess overland flow. Available information shows that VDSH structures of sources and sinks of water and sediments evolve dynamically with hillslope fluxes and tune their spatial configurations to them. Rainfall simulation experiments in large plots show that coarsening VDSH leads to significantly greater erosion rates even under heavy rainfall intensity because of the flow concentration and its velocity increase. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Sustainable management of coastal and coral reef environments requires regular collection of accurate information on recognized ecosystem health indicators. Satellite image data and derived maps of water column and substrate biophysical properties provide an opportunity to develop baseline mapping and monitoring programs for coastal and coral reef ecosystem health indicators. A significant challenge for satellite image data in coastal and coral reef water bodies is the mixture of both clear and turbid waters. A new approach is presented in this paper to enable production of water quality and substrate cover type maps, linked to a field based coastal ecosystem health indicator monitoring program, for use in turbid to clear coastal and coral reef waters. An optimized optical domain method was applied to map selected water quality (Secchi depth, Kd PAR, tripton, CDOM) and substrate cover type (seagrass, algae, sand) parameters. The approach is demonstrated using commercially available Landsat 7 Enhanced Thematic Mapper image data over a coastal embayment exhibiting the range of substrate cover types and water quality conditions commonly found in sub-tropical and tropical coastal environments. Spatially extensive and quantitative maps of selected water quality and substrate cover parameters were produced for the study site. These map products were refined by interactions with management agencies to suit the information requirements of their monitoring and management programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号