首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Evaluating contaminants impacting wells in fractured crystalline rock requires knowledge of the individual fractures contributing water. This typically involves using a sequence of tools including downhole geophysics, flow meters, and straddle packers. In conjunction with each other these methods are expensive, time consuming, and can be logistically difficult to implement. This study demonstrates an unsteady state tracer method as a cost‐effective alternative for gathering fracture information in wells. The method entails introducing tracer dye throughout the well, inducing fracture flow into the well by conducting a slug test and then profiling the tracer concentration in the well to locate water contributing fractures where the dye has been diluted. By monitoring the development of the dilution zones within the wellbore with time, the transmissivity and the hydraulic head of the water contributing fractures can be determined. Ambient flow conditions and the contaminant concentration within the fractures can also be determined from the tracer dilution. This method was tested on a large physical model well and a bedrock well. The model well was used to test the theory underlying the method and to refine method logistics. The approach located the fracture and generated transmissivity values that were in excellent agreement with those calculated by slug testing. For the bedrock well tested, two major active fractures were located. Fracture location and ambient well conditions matched results from conventional methods. Estimates of transmissivity values by the tracer method were within an order of magnitude of those calculated using heat‐pulse flow meter data.  相似文献   

2.
During seismic monitoring of hydraulic fracturing treatment, it is very common to ignore the deviations of the monitoring or treatment wells from their assumed positions. For example, a well is assumed to be perfectly vertical, but in fact, it deviates from verticality. This can lead to significant errors in the observed azimuth and other parameters of the monitored fracture‐system geometry derived from microseismic event locations. For common hydraulic fracturing geometries, a 2° deviation uncertainty on the positions of the monitoring or treatment well survey can cause a more than 20° uncertainty of the inverted fracture azimuths. Furthermore, if the positions of both the injection point and the receiver array are not known accurately and the velocity model is adjusted to locate perforations on the assumed positions, several‐millisecond discrepancies between measured and modeled SH‐P traveltime differences may appear along the receiver array. These traveltime discrepancies may then be misinterpreted as an effect of anisotropy, and the use of such anisotropic model may lead to the mislocation of the detected fracture system. The uncertainty of the relative positions between the monitoring and treatment wells can have a cumulative, nonlinear effect on inverted fracture parameters. We show that incorporation of borehole deviation surveys allows reasonably accurate positioning of the microseismic events. In this study, we concentrate on the effects of horizontal uncertainties of receiver and perforation positions. Understanding them is sufficient for treatment of vertical wells, and also necessary for horizontal wells.  相似文献   

3.
A conceptual model of anisotropic and dynamic permeability is developed from hydrogeologic and hydromechanical characterization of a foliated, complexly fractured, crystalline rock aquifer at Gates Pond, Berlin, Massachusetts. Methods of investigation include aquifer‐pumping tests, long‐term hydrologic monitoring, fracture characterization, downhole heat‐pulse flow meter measurements, in situ extensometer testing, and earth tide analysis. A static conceptual model is developed from observations of depth‐dependent and anisotropic permeability that effectively compartmentalizes the aquifer as a function of foliation intensity. Superimposed on the static model is dynamic permeability as a function of hydraulic head in which transient bulk aquifer transmissivity is proportional to changes in hydraulic head due to hydromechanical coupling. The dynamic permeability concept is built on observations that fracture aperture changes as a function of hydraulic head, as measured during in situ extensometer testing of individual fractures, and observed changes in bulk aquifer transmissivity as determined from earth tides during seasonal changes in hydraulic head, with higher transmissivity during periods of high hydraulic head, and lower transmissivity during periods of relatively lower hydraulic head. A final conceptual model is presented that captures both the static and dynamic properties of the aquifer. The workflow presented here demonstrates development of a conceptual framework for building numerical models of complexly fractured, foliated, crystalline rock aquifers that includes both a static model to describe the spatial distribution of permeability as a function of fracture type and foliation intensity and a dynamic model that describes how hydromechanical coupling impacts permeability magnitude as a function of hydraulic head fluctuation. This model captures important geologic controls on permeability magnitude, anisotropy, and transience and therefor offers potentially more reliable history matching and forecasts of different water management strategies, such as resource evaluation, well placement, permeability prediction, and evaluating remediation strategies.  相似文献   

4.
The association between hydrocarbon‐rich reservoirs and organic‐rich source rocks means unconventional oil and gas plays usually occur in mature sedimentary basins—where large‐scale conventional development has already taken place. Abandoned wells in proximity to hydraulic fracturing could be affected by increased fluid pressures and corresponding newly generated fractures that directly connect (frac hit) to an abandoned well or to existing fractures intersecting an abandoned well. If contaminants migrate to a pathway hydraulically connected to an abandoned well, upward leakage may occur. Potential effects of hydraulic fracturing on upward flow through a particular type of leaky abandoned well—abandoned oil and gas wells converted into water wells were investigated using numerical modeling. Several factors that affect flow to leaky wells were considered including proximity of a leaky well to hydraulic fracturing, flowback, production, and leaky well abandonment methods. The numerical model used historical records and available industry data for the Eagle Ford Shale play in south Texas. Numerical simulations indicate that upward contaminant migration could occur through leaky converted wells if certain spatial and hydraulic conditions exist. Upward flow through leaky converted wells increased with proximity to hydraulic fracturing, but decreased when flowback and production occurred. Volumetric flow rates ranged between 0 and 0.086 m3/d for hydraulic‐fracturing scenarios. Potential groundwater impacts should be paired with plausible transport mechanisms, and upward flow through leaky abandoned wells could be unrelated to hydraulic fracturing. The results also underscore the need to evaluate historical activities.  相似文献   

5.
Natural hydraulic cracking: numerical model and sensitivity study   总被引:2,自引:0,他引:2  
Natural hydrofracturing caused by overpressure plays an important role in geopressure evolution and hydrocarbon migration in petroliferous basins. Its mechanism is quite well understood in the case of artificial hydraulic fracturing triggered by high-pressure fluid injection in a well. This is not so for natural hydraulic fracturing which is assumed to initiate as micro-cracks with large influence on the permeability of the medium. The mechanism of natural hydraulic cracking, triggered by increasing pore pressure during geological periods, is studied using a fracturing model coupled to the physical processes occurring during basin evolution. In this model, the hydraulic cracking threshold is assumed to lie between the classical failure limit and the beginning of dilatancy. Fluid pressure evolution is calculated iteratively in order to allow dynamic adjustment of permeability so that the fracturing limit is always preserved. The increase of permeability is interpreted on the basis of equivalent fractures. It is found that fracturing is very efficient to keep a stress level at the rock’s hydraulic cracking limit: a fracture permeability one order of magnitude larger than the intrinsic permeability of the rock would be enough. Observations reported from actual basins and model results strongly suggest that natural hydraulic cracking occurs continuously to keep the pressure at the fracturing limit under relaxed stress conditions.  相似文献   

6.
Hydraulic fracturing has become an important technique for enhancing the permeability of hydrocarbon source rocks and increasing aquifer transmissivity in many hard rock environments where natural fractures are limited, yet little is known about the nature or behaviour of these hydraulically induced fractures as conduits to flow and transport. We propose that these fractures tend to be smooth based on observed hydraulic and transport behaviour. In this investigation a multi‐faceted approach was used to quantify the properties and characteristics of an isolated hydraulically induced fracture in crystalline rocks. Packers were used to isolate the fracture that is penetrated by two separate observation wells located approximately 33 m apart. A series of aquifer tests and an induced gradient tracer test were performed to better understand the nature of this fracture. Aquifer test results indicate that full recovery is slow because of the overall low permeability of the crystalline rocks. Drawdown tests indicate that the fracture has a transmissivity of 1–2 m2/day and a specific storage on the order of 2–9 × 10?7/m. Analysis of a potassium–bromide tracer test break through curve shows classic Fickian behaviour with minimal tailing analogous to parallel plate flow. Virtually all of the tracer was recovered, and the breakthrough curve dilution indicates that the swept area is only about 11% of a radial flow field and the estimated aperture is ≤0.5 mm, which implies a narrow linear flow region. These outcomes suggest that transport within these hydraulically induced ‘smooth’ fractures in crystalline rocks is rapid with minimal mixing, small local velocity fluctuations and no apparent diffusion into the host rock or secondary fractures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This investigation was undertaken to develop an integrated method of downhole fracture characterization using a tracer. The method presented can be used to locate water-bearing fractures that intersect the well, to determine the ambient fracture flow rate and hydraulic head, and to calculate fracture transmissivity. The method was tested in two fractured crystalline bedrock wells located at the University of Connecticut in Storrs. The method entails injecting a tracer (uranine dye) into the well, while at the same time water is pumped out of the well. After steady-state conditions are reached, a borehole tracer concentration profile is developed. The dilution of the tracer is used to locate the inflowing fractures and to determine their flow rate. The fracture flow rate, plus the drawdown in the well, is then used to determine the fracture hydraulic head, transmissivity, and ambient flow rate.  相似文献   

8.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

9.
We developed a method to estimate aquifer transmissivity from the hydraulic-head data associated with the normal cyclic operation of a water supply well thus avoiding the need for interrupting the water supply associated with a traditional aquifer test. The method is based on an analytical solution that relates the aquifer's transmissivity to the standard deviation of the hydraulic-head fluctuations in one or more observation wells that are due to the periodic pumping of the production well. We analyzed the resulting analytical solution and demonstrated that when the observation wells are located near the pumping well, the solution has a simple, Dupuit like form. Numerical analysis demonstrates that the analytical solution can also be used for a quasi-periodic pumping of the supply well. Simulation of cyclic pumping in a statistically heterogeneous medium confirms that the method is suitable for analyzing the transmissivity of weakly or moderately heterogeneous aquifers. If only one observation well is available, and the shift in the phase of hydraulic-head oscillations between the pumping well and the observation well is not identifiable. Prior knowledge of aquifer's hydraulic diffusivity is required to obtain the value of the aquifer transmissivity.  相似文献   

10.
Geophysical well logging has been applied for fracture characterization in crystalline terrains by physical properties measurements and borehole wall imaging. Some of these methods can be applied to monitor pumping tests to identify fractures contributing to groundwater flow and, with this, determine hydraulic conductivity and transmissivity along the well. We present a procedure to identify fractures contributing to groundwater flow using spontaneous potential measurements generated by electrokinetic processes when the borehole water head is lowered and then monitored while recovering. The electrokinetic model for flow through a tabular gap is used to interpret the measured data and determine the water head difference that drives the flow through the fracture. We present preliminary results at a test site in crystalline rocks on the campus of the University of São Paulo.  相似文献   

11.
Pumping test data for surficial aquifers are commonly analyzed under the assumption that the base of the aquifer corresponds to the bottom of the test wells (i.e., the aquifer is truncated). This practice can lead to inaccurate hydraulic conductivity estimates, resulting from the use of low saturated thickness values with transmissivity estimates, and not accounting for the effects of partially penetrating wells. Theoretical time-drawdown data were generated at an observation well in a hypothetical unconfined aquifer for various values of saturated thickness and were analyzed by standard curve-matching techniques. The base of the aquifer was assumed to be the bottom of the pumping and observation wells. The overestimation of horizontal hydraulic conductivity was found to be directly proportional to the error in assumed saturated thickness, and to the (actual) ratio of vertical to horizontal hydraulic conductivity (Kv/Kh). Inaccurately high estimates of hydraulic conductivity obtained by aquifer truncation can lead to overestimates of ground water velocity and contaminant plume spreading, narrow capture zone configuration estimates, and overestimates of available ground water resources.  相似文献   

12.
Reverse water‐level fluctuations have been widely observed in aquitards or aquifers separated from a pumped confined aquifer (Noordbergum effect) immediately after the initiation of pumping. This same reverse fluctuation has been observed in a fractured crystalline‐rock aquifer at the Coles Hill uranium site in Virginia in which the reverse water‐level response occurs within a pumped fracture and results from an instantaneous strain response to pumping that precedes the pore‐pressure response in observation wells of sufficient distance from the pumped well. This response is referred to as the Mandel‐Cryer effect. The unique aspect of this water level rise during a controlled 24 h pumping test was that the reverse water levels lasted for approximately 100 min and reached a magnitude of nearly 1 cm prior to a typical drawdown response. The duration and magnitude of the response reflects the poromechanical properties of the fractured host rock and hydraulic properties of the pumped fracture. An axisymmetric flow and deformation model were developed using Biot2 in an effort to simulate the observed water‐level response along an assumed 0.5 to 1.0 cm aperture horizontal fracture 176 m from the pumping well and to identify the importance of the poroelastic effect. Results indicate that traditional aquifer‐testing methods that ignore the poromechanical response are not significantly different than results that include the response. However, the poroelastic effect allows for more accurate and efficient parameter calibration.  相似文献   

13.
Analysis of borehole flow logs is a valuable technique for identifying the presence of fractures in the subsurface and estimating properties such as fracture connectivity, transmissivity and storativity. However, such estimation requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. In this paper, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. In comparison with existing models, our approach presents major improvements in terms of computational expense and potential adaptation to a variety of fracture and experimental configurations. After derivation of the formulation, we demonstrate its application in the context of sensitivity analysis for a relatively simple two-fracture synthetic problem, as well as for field-data analysis to investigate fracture connectivity and estimate fracture hydraulic properties. These applications provide important insights regarding (i) the strong sensitivity of fracture property estimates to the overall connectivity of the system; and (ii) the non-uniqueness of the corresponding inverse problem for realistic fracture configurations.  相似文献   

14.
沁水盆地南部煤层气储层压裂过程数值模拟研究   总被引:4,自引:1,他引:3       下载免费PDF全文
储层改造是煤层气井提高产能的重要措施,水力压裂是煤层气储层改造的重要方法.为研究煤层气储层压裂过程及其天然裂缝对煤储层压裂时破裂压力的影响,本文以山西沁水盆地南部高煤级煤矿区为研究区,运用有限元数值模拟方法,计算不同地应力条件下、裂缝处于不同位置时煤储层的破裂压力.结果表明:(1)不同类型地应力场对破裂压力的影响不同.对于均匀应力场,破裂压力随着围压的增大而增大,其增幅约为围压的两倍;对于非均匀应力场,当一个水平主应力不变时,破裂压力会随着水平主应力差的增加而减少;(2)如果地应力条件不变,煤储层破裂压力随着天然裂缝与最大水平主应力方向夹角的增加而增加,水平主应力差越大煤储层破裂压力增幅也越大;(3)在有天然裂隙的地层中进行压裂,当天然裂缝的方位不同时压裂裂缝既可能是沿着天然裂缝扩展的裂缝,也可能是压裂过程中产生的新裂缝,因此天然裂缝的方位对破裂压力具有一定的影响.  相似文献   

15.
The world experience shows that hydraulic fracturing (fracking) is an efficient tool for increasing oil and gas production of low-permeable reservoirs in hydrocarbon fields. The fracking-induced fractures in the rock, which are hydrodynamically connected with the wells, significantly enhance the volumes of extracted hydrocarbons. Controlling the processes of fracture formation and propagation is a vital question in the oil and gas reservoir management. A key means to implement this control is provided by microseismic monitoring of fracking, which makes it possible to promptly reconstruct the geometry of the fractures from the data on seismic waves from the microearthquakes induced by the formation and propagation of fractures.  相似文献   

16.
Bayer P  Finkel M 《Ground water》2006,44(2):234-243
We investigate the performance of vertical hydraulic barriers in combination with extraction wells for the partial hydraulic isolation of contaminated aquifer areas. The potential advantage of such combinations compared to a conventional pump-and-treat system has already been demonstrated in a previous study. Here we extend the scope of the performance analysis to the impact of uncertainty in the regional flow direction as well as to highly heterogeneous aquifer transmissivity distributions. In addition, two new well-barrier scenarios are proposed and analyzed. The hydraulic efficiency of the scenarios is rated based on the expected (mean) reduction of the pumping rate that is required to achieve downgradient contaminant capture. The uncertain spatial distribution of aquifer transmissivity is considered by means of unconditioned Monte Carlo simulations. The significance of uncertain background flow conditions is incorporated by computing minimized pumping rates for deviations of the regional flow direction up to 30 degrees from a normative base case. The results give an answer on how pumping rates have to be changed for each barrier-well combination in order to achieve robust systems. It is exposed that in comparison to installing exclusively wells, the barrier-supported approach generally yields savings in the (average) pumping rate. The particular efficiency is shown to be highly dependent on the interaction of variance and integral scale of transmissivity distribution, well and barrier position, as well as direction of background flow.  相似文献   

17.
We present results of processed microseismic events induced by hydraulic fracturing and detected using dual downhole monitoring arrays. The results provide valuable insight into hydraulic fracturing. For our study, we detected and located microseismic events and determined their magnitudes, source mechanisms and inverted stress field orientation. Event locations formed a distinct linear trend above the stimulated intervals. Source mechanisms were only computed for high‐quality events detected on a sufficient number of receivers. All the detected source mechanisms were dip‐slip mechanisms with steep and nearly horizontal nodal planes. The source mechanisms represented shear events and the non‐double‐couple components were very small. Such small, non‐double‐couple components are consistent with a noise level in the data and velocity model uncertainties. Strikes of inverted mechanisms corresponding to the nearly vertical fault plane are (within the error of measurements) identical with the strike of the location trend. Ambient principal stress directions were inverted from the source mechanisms. The least principal stress, σ3, was determined perpendicular to the strike of the trend of the locations, indicating that the hydraulic fracture propagated in the direction of maximum horizontal stress. Our analysis indicated that the source mechanisms observed using downhole instruments are consistent with the source mechanisms observed in microseismic monitoring arrays in other locations. Furthermore, the orientation of the inverted principal components of the ambient stress field is in agreement with the orientation of the known regional stress, implying that microseismic events induced by hydraulic fracturing are controlled by the regional stress field.  相似文献   

18.
In confined aquifers, the influence of neighboring active wells is often neglected when interpreting a pumping test. This can, however, lead to an erroneous interpretation of the pumping test data. This paper presents simple methods to evaluate the transmissivity (T) and storativity (S) of a confined aquifer under Theis conditions, when an interfering well starts pumping in the neighborhood of the tested well before the beginning of the test. These new methods yield better estimates of the T and especially S values than when the interfering well influence is neglected. They also permit to distinguish between interfering wells and other deviations from the Cooper‐Jacob straight line, such as impermeable boundaries. The new methods were then applied on data obtained from a numerical model. The new methods require knowing the pumping rate of the interfering well and the time elapsed since the pumping started in each well, but contrary to previous methods, they do not require the aquifer natural level at the beginning of the test, which is often unknown if the interfering well has started pumping before the tested well.  相似文献   

19.
《水文科学杂志》2013,58(6):1125-1138
Abstract

Type curves are derived analytically for radial flow in rough horizontal fractures toward a well. The basic assumptions are that there is no turbulent flow near the borehole and the well storage is ignored. The basis of the methodology is to write explicit expressions for the continuity and cubic law flow equations, which are combined using a Boltzmann transformation leading to a simple ordinary differential equation for groundwater movement. Solutions are presented as a set of type curves for different fracture apertures. It is observed that the solutions provide a method of uniquely identifying fracture hydraulic parameters when the fracture is smooth, but pose ambiguity for rough fracture parameter estimations. However, large time portions of these type curves appear as straight lines on semi-logarithmic paper, which provides a unique way for rough fracture parameter determination. Identification of the fracture parameters, namely, the aperture and relative roughness, is possible in a unique manner with the use of these lines and the dimensionless time drawdown concept. The cubic law is the asymptotic behaviour, either for large times or large fracture apertures. Prior to this asymptotic part, there is a non-cubic portion which gives rise to systematic deviations from the cubic law. The technique presented is useful, especially for evaluating pumping tests from a single major fracture isolated by packers.  相似文献   

20.
Site characterization in densely fractured dolomite: comparison of methods   总被引:2,自引:0,他引:2  
One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of approximately 10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号