首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Real‐time hybrid testing is a method that combines experimental substructure(s) representing component(s) of a structure with a numerical model of the remaining part of the structure. These substructures are combined with the integration algorithm for the test and the servo‐hydraulic actuator to form the real‐time hybrid testing system. The inherent dynamics of the servo‐hydraulic actuator used in real‐time hybrid testing will give rise to a time delay, which may result in a degradation of accuracy of the test, and possibly render the system to become unstable. To acquire a better understanding of the stability of a real‐time hybrid test with actuator delay, a stability analysis procedure for single‐degree‐of‐freedom structures is presented that includes both the actuator delay and an explicit integration algorithm. The actuator delay is modeled by a discrete transfer function and combined with a discrete transfer function representing the integration algorithm to form a closed‐loop transfer function for the real‐time hybrid testing system. The stability of the system is investigated by examining the poles of the closed‐loop transfer function. The effect of actuator delay on the stability of a real‐time hybrid test is shown to be dependent on the structural parameters as well as the form of the integration algorithm. The stability analysis results can have a significant difference compared with the solution from the delay differential equation, thereby illustrating the need to include the integration algorithm in the stability analysis of a real‐time hybrid testing system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
It is well known that real‐time hybrid simulation (RTHS) is an effective and viable dynamic testing method. Numerous studies have been conducted for RTHS during the last 2 decades; however, the application of RTHS toward practical civil infrastructure is fairly limited. One of the major technical barriers preventing RTHS from being widely accepted in the testing community is the difficulty of accurate displacement control for axially stiff members. For such structures, a servo‐hydraulic actuator can generate a large force error due to the stiff oil column in the actuator even if there is a small axial displacement error. This difficulty significantly restricts the implementation of RTHS for structures such as columns, walls, bridge piers, and base isolators. Recently, a flexible loading frame system was developed, enabling a large‐capacity real‐time axial force application to axially stiff members. With the aid of the flexible loading frame system, this paper demonstrates an RTHS for a bridge structure with an experimental reinforced concrete pier, which is subjected to both horizontal and vertical ground motions. This type of RTHS has been a challenging task due to the lack of knowledge for satisfying the time‐varying axial force boundary condition, but the newly developed technology for real‐time force control and its incorporation into RTHS enabled a successful implementation of the RTHS for the reinforced concrete pier of this study.  相似文献   

3.
Servo‐hydraulic actuators have been widely used for experimental studies in engineering. They can be controlled in either displacement or force control mode depending on the purpose of a test. It is necessary to control the actuators in real time when the rate‐dependency effect of a test specimen needs to be accounted for under dynamic loads. Real‐time hybrid simulation (RTHS) and effective force testing (EFT) method, which can consider the rate‐dependency effect, have been known as viable alternatives to the shake table testing method. Due to the lack of knowledge in real‐time force control, however, the structures that can be tested with RTHS and EFT are fairly limited. For instance, satisfying the force boundary condition for axially stiff members is a challenging task in RTHS, while EFT has a difficulty to be implemented for nonlinear structures. In order to resolve these issues, this paper introduces new real‐time force control methods utilizing the adaptive time series (ATS) compensator and compliance springs. Unlike existing methods, the proposed force control methods do not require the structural modeling of a test structure, making it easy to be implemented especially for nonlinear structures. The force tracking performance of the proposed methods is evaluated for a small‐scale steel mass block system with a magneto‐rheological damper subjected to various target forces. Accuracy, time delay, and resonance response of these methods are discussed along with their force control performance for an axially stiff member. Overall, a satisfactory force tracking performance was observed by using the proposed force control methods.  相似文献   

4.
Real‐time hybrid testing combines experimental testing and numerical simulation, and provides a viable alternative for the dynamic testing of structural systems. An integration algorithm is used in real‐time hybrid testing to compute the structural response based on feedback restoring forces from experimental and analytical substructures. Explicit integration algorithms are usually preferred over implicit algorithms as they do not require iteration and are therefore computationally efficient. The time step size for explicit integration algorithms, which are typically conditionally stable, can be extremely small in order to avoid numerical stability when the number of degree‐of‐freedom of the structure becomes large. This paper presents the implementation and application of a newly developed unconditionally stable explicit integration algorithm for real‐time hybrid testing. The development of the integration algorithm is briefly reviewed. An extrapolation procedure is introduced in the implementation of the algorithm for real‐time testing to ensure the continuous movement of the servo‐hydraulic actuator. The stability of the implemented integration algorithm is investigated using control theory. Real‐time hybrid test results of single‐degree‐of‐freedom and multi‐degree‐of‐freedom structures with a passive elastomeric damper subjected to earthquake ground motion are presented. The explicit integration algorithm is shown to enable the exceptional real‐time hybrid test results to be achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The time delay resulting from the servo hydraulic systems can potentially destabilize the real‐time dynamic hybrid testing (RTDHT) systems. In this paper, the discrete‐time root locus technique is adopted to investigate the delay‐dependent stability performance of MDOF RTDHT systems. Stability analysis of an idealized two‐story shear frame with two DOFs is first performed to illustrate the proposed method. The delay‐dependent stability condition is presented for various structural properties, time delay, and integration time steps. Effects of delay compensation methods on stability are also investigated. Then, the proposed method is applied to analyze the delay‐dependent stability of a single shaking table RTDHT system with an 18‐DOF finite element numerical substructure, and corresponding RTDHTs are carried out to verify the theoretical results. Furthermore, the stability behavior of a finite element RTDHT system with two physical substructures, loaded by twin shaking tables, is theoretically and experimentally investigated. All experimental results convincingly demonstrate that the delay‐dependent stability analysis on the basis of the discrete‐time root locus technique is feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This paper focuses on the development of a linear analytical model (even though servo‐hydraulic actuation systems are inherently non‐linear, especially for large amplitude simulations — near the performance capacity of the system — linearized models proved experimentally to be quite effective overall in capturing the salient features of shaking table dynamics) of a uni‐axial, servo‐hydraulic, stroke controlled shaking table system by using jointly structural dynamics and linear control theory. This model incorporates the proportional, integral, derivative, feed‐forward, and differential pressure gains of the control system. Furthermore, it accounts for the following physical characteristics of the system: time delay in the servovalve response, compressibility of the actuator fluid, oil leakage through the actuator seals and the dynamic properties of both the actuator reaction mass and test structure or payload. The proposed model, in the form of the total shaking table transfer function (i.e. between commanded and actual table motions), is developed to account for the specific characteristics of the Rice University shaking table. An in‐depth sensitivity study is then performed to determine the effects of the table control parameters, payload characteristics, and servovalve time delay upon the total shaking table transfer function. The sensitivity results reveal: (a) a potential strong dynamic interaction between the oil column in the actuator and the payload, and (b) the very important effect of the servovalve time delay upon the total shaking table transfer function. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an experimental implementation and verification of multi‐degrees‐of‐freedom effective force testing (MDOF‐EFT). An experimental setup that consists of a two‐degrees‐of‐freedom structural system and two hydraulic actuators at the Johns Hopkins University was utilized in this study. First, experimental system identification was performed to develop compatible analytical models for the multi‐input and multi‐output systems. Dynamics of the control plant, that is, the valve‐to‐force relations, were modeled with a rational polynomial transfer function matrix and delay components. By using the analytical model, a centralized decoupling loop‐shaping force feedback controller was designed such that the forces are uncoupled and the loop transfer functions have desirable dynamic characteristics in the frequency domain. Then, a series of harmonic force and earthquake simulation tests were performed to assess capabilities and limitations of MDOF‐EFT. Experimental results showed that the dynamic forces in the two actuators were accurately controlled to provide tracking while the system was stable and robust for the entire period of the experiment. Furthermore, earthquake simulation tests with increased levels of the reference forces demonstrated the feasibility of MDOF‐EFT with highly nonlinear test structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Hydraulic actuators are typically used in a real‐time hybrid simulation to impose displacements to a test structure (also known as the experimental substructure). It is imperative that good actuator control is achieved in the real‐time hybrid simulation to minimize actuator delay that leads to incorrect simulation results. The inherent nonlinearity of an actuator as well as any nonlinear response of the experimental substructure can result in an amplitude‐dependent behavior of the servo‐hydraulic system, making it challenging to accurately control the actuator. To achieve improved control of a servo‐hydraulic system with nonlinearities, an adaptive actuator compensation scheme called the adaptive time series (ATS) compensator is developed. The ATS compensator continuously updates the coefficients of the system transfer function during a real‐time hybrid simulation using online real‐time linear regression analysis. Unlike most existing adaptive methods, the system identification procedure of the ATS compensator does not involve user‐defined adaptive gains. Through the online updating of the coefficients of the system transfer function, the ATS compensator can effectively account for the nonlinearity of the combined system, resulting in improved accuracy in actuator control. A comparison of the performance of the ATS compensator with existing linearized compensation methods shows superior results for the ATS compensator for cases involving actuator motions with predefined actuator displacement histories as well as real‐time hybrid simulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Real‐time hybrid testing is a promising technique for experimental structural dynamics, in which the structure under consideration is split into a physical test of key components and a numerical model of the remainder. The physical test and numerical analysis proceed in parallel, in real time, enabling testing of critical elements at large scale and at the correct loading rate. To date most real‐time hybrid tests have been restricted to simple configurations and have used approximate delay compensation schemes. This paper describes a real‐time hybrid testing approach in which non‐linearity is permitted in both the physical and numerical models, and in which multiple interfaces between physical and numerical substructures can be accommodated, even when this results in very stiff coupling between actuators. This is achieved using a Newmark explicit numerical solver, an advanced adaptive controller known as MCSmd and a multi‐tasking strategy. The approach is evaluated through a series of experiments on discrete mass–spring systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Real‐time hybrid simulation provides a viable method to experimentally evaluate the performance of structural systems subjected to earthquakes. The structural system is divided into substructures, where part of the system is modeled by experimental substructures, whereas the remaining part is modeled analytically. The displacements in a real‐time hybrid simulation are imposed by servo‐hydraulic actuators to the experimental substructures. Actuator delay compensation has been shown by numerous researchers to vitally achieve reliable real‐time hybrid simulation results. Several studies have been performed on servo‐hydraulic actuator delay compensation involving single experimental substructure with single actuator. Research on real‐time hybrid simulation involving multiple experimental substructures, however, is limited. The effect of actuator delay during a real‐time hybrid simulation with multiple experimental substructures presents challenges. The restoring forces from experimental substructures may be coupled to two or more degrees of freedom (DOF) of the structural system, and the delay in each actuator must be adequately compensated. This paper first presents a stability analysis of actuator delay for real‐time hybrid simulation of a multiple‐DOF linear elastic structure to illustrate the effect of coupled DOFs on the stability of the simulation. An adaptive compensation method then proposed for the stable and accurate control of multiple actuators for a real‐time hybrid simulation. Real‐time hybrid simulation of a two‐story four‐bay steel moment‐resisting frame with large‐scale magneto‐rheological dampers in passive‐on mode subjected to the design basis earthquake is used to experimentally demonstrate the effectiveness of the compensation method in minimizing actuator delay in multiple experimental substructures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Results from real‐time dynamic substructuring (RTDS) tests are compared with results from shake table tests performed on a two‐storey steel building structure model. At each storey, the structural system consists of a cantilevered steel column resisting lateral loads in bending. In two tests, a slender diagonal tension‐only steel bracing member was added at the first floor to obtain an unsymmetrical system with highly variable stiffness. Only the first‐storey structural components were included in the RTDS test program and a Rosenbrock‐W linearly implicit integration scheme was adopted for the numerical solution. The tests were performed under seismic ground motions exhibiting various amplitude levels and frequency contents to develop first and second mode‐dominated responses as well as elastic and inelastic responses. A chirp signal was also used. Coherent results were obtained between the shake table and the RTDS testing techniques, indicating that RTDS testing methods can be used to successfully reproduce both the linear and nonlinear seismic responses of ductile structural steel seismic force resisting systems. The time delay introduced by actuator‐control systems was also studied and a novel adaptive compensation scheme is proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Real‐time pseudodynamic (PSD) and hybrid PSD test methods are experimental techniques to obtain the response of structures, where restoring force feedback is used by an integration algorithm to generate command displacements. Time delays in the restoring force feedback from the physical test structure and/or the analytical substructure cause inaccuracies and can potentially destabilize the system. In this paper a method for investigating the stability of structural systems involved in real‐time PSD and hybrid PSD tests with multiple sources of delay is presented. The method involves the use of the pseudodelay technique to perform an exact mapping of fixed delay terms to determine the stability boundary. The approach described here is intended to be a practical one that enables the requirements for a real‐time testing system to be established in terms of system parameters when multiple sources of delay exist. Several real‐time testing scenarios with delay that include single degree of freedom (SDOF) and multi‐degree of freedom (MDOF) real‐time PSD/hybrid PSD tests are analyzed to illustrate the method. From the stability analysis of the real‐time hybrid testing of an SDOF test structure, delay‐independent stability with respect to either experimental or analytical substructure delay is shown to exist. The conditions that the structural properties must satisfy in order for delay‐independent stability to exist are derived. Real‐time hybrid PSD testing of an MDOF structure equipped with a passive damper is also investigated, where observations from six different cases related to the stability plane behavior are summarized. Throughout this study, root locus plots are used to provide insight and explanation of the behavior of the stability boundaries. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Real‐time hybrid testing is a very effective technique for evaluating the dynamic responses of rate‐dependent structural systems subjected to earthquake excitation. A smart base isolation system has been proposed by others using conventional low‐damping isolators and controllable damping devices such as magnetorheological (MR) dampers to achieve specified control target performance. In this paper, real‐time hybrid tests of a smart base isolation system are conducted. The simulation is for a base‐isolated two‐degrees‐of‐freedom building model where the superstructure and the low‐damping base isolator are numerically simulated, and the MR damper is physically tested. The target displacement obtained from the step‐by‐step integration of the numerical substructure is imposed on the MR damper, which is driven by three different control algorithms in real‐time. To compensate the actuator delay and improve the accuracy of the test, an adaptive phase‐lead compensator is implemented. The accuracy of each test is investigated by using the root mean square error and the tracking indicator. Experimental results demonstrate that the hybrid testing procedure using the proposed actuator compensation techniques is effective for investigating the control performance of the MR damper in a smart base isolation system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, Rosenbrock‐based algorithms originally developed for real‐time testing of linear systems with dynamic substructuring are extended for use on nonlinear systems. With this objective in mind and for minimal overhead, both two‐ and three‐stages linearly implicit real‐time compatible algorithms were endowed with the Jacobian matrices requiring only one evaluation at the beginning of each time step. Moreover, these algorithms were improved with subcycling strategies. In detail, the paper briefly introduces Rosenbrock‐based L‐Stable Real‐Time (LSRT) algorithms together with linearly implicit and explicit structural integrators, which are now commonly used to perform real‐time tests. Then, the LSRT algorithms are analysed in terms of linearized stability with reference to an emulated spring pendulum, which was chosen as a nonlinear test problem, because it is able to exhibit a large and relatively slow nonlinear circular motion coupled to an axial motion that can be set to be stiff. The accuracy analysis on this system was performed for all the algorithms described. Following this, a coupled spring‐pendulum example typical of real‐time testing is analysed with respect to both stability and accuracy issues. Finally, the results of representative numerical simulations and real‐time substructure tests, considering nonlinearities both in the numerical and the physical substructure, are explored. These tests were used to demonstrate how the LSRT algorithms can be used for substructuring tests with strongly nonlinear components. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This paper deals with an explicit numerical integration method for real‐time pseudo dynamic tests. The proposed method, termed the MPC‐SSP method, is suited to use in real‐time pseudo dynamic tests as no iteration steps are involved in each step of computation. A procedure for implementing the proposed method in real‐time pseudo dynamic tests is described in the paper. A state‐space approach is employed in this study to formulate the equations of motion of the system, which is advantageous in real‐time pseudo dynamic testing of structures with active control devices since most structural control problems are formulated in state space. A stability and accuracy analysis of the proposed method was performed based on linear elastic systems. Owing to an extrapolation scheme employed to predict the system's future response, the MPC‐SSP method is conditionally stable. To demonstrate the effectiveness of the MPC‐SSP method, a series of numerical simulations were performed and the performance of the MPC‐SSP method was compared with other pseudo dynamic testing methods including Explicit Newmark, Central Difference, Operator Splitting, and OS‐SSP methods based on both linear and non‐linear single‐degree‐of‐freedom systems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Real‐time hybrid testing is an experimental technique for evaluating the dynamic responses of structural systems under seismic loading. Servo‐hydraulic actuators, by nature, induce inevitable time delay between the command and the achieved displacements. This delay would lead to incorrect test results and even cause instability of the system; therefore, delay compensation is critical for stability and accuracy of hybrid simulations of structural dynamic response. In this paper, a dual delay compensation strategy is proposed by a combination of a phase lead compensator and a restoring force compensator. An outer‐loop feed‐forward phase lead compensator is derived by introducing the inverse model in the z domain. The adaptive law based on the gradient algorithm is used to estimate the system delay in the format of parametric model during the test. It is shown mathematically that the parameter in the delay estimator is guaranteed to converge. The restoring force compensator is adopted to improve the accuracy of experimental results especially when the structure is subjected to high frequency excitations. Finally, analytical simulations of an inelastic SDOF structure are conducted to investigate the feasibility of the proposed strategy. The accuracy of the dual compensation strategy is demonstrated through several shaking table tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Real‐time hybrid simulation combines experimental testing of physical substructure(s) and numerical simulation of analytical substructure(s), and thus enables the complete structural system to be considered during an experiment. Servo‐hydraulic actuators are typically used to apply the command displacements to the physical substructure(s). Inaccuracy and instability can occur during a real‐time hybrid simulation if the actuator delay due to servo‐hydraulic dynamics is not properly compensated. Inverse compensation is a means to negate actuator delay due to inherent servo‐hydraulic actuator dynamics during a real‐time hybrid simulation. The success of inverse compensation requires the use of a known accurate value for the actuator delay. The actual actuator delay however may not be known before the simulation. An estimation based on previous experience has to be used, possibly leading to inaccurate experimental results. This paper presents a dual compensation scheme to improve the performance of the inverse compensation method when an inaccurately estimated actuator delay is used in the method. The dual compensation scheme modifies the predicted displacement from the inverse compensation procedure using the actuator tracking error. Frequency response analysis shows that the dual compensation scheme enables the inverse compensation method to compensate for actuator delay over a range of frequencies when an inaccurately estimated actuator delay is utilized. Real‐time hybrid simulations of a single‐degree‐of‐freedom system with an elastomeric damper are conducted to experimentally demonstrate the effectiveness of the dual compensation scheme. Exceptional experimental results are shown to be achieved using the dual compensation scheme without the knowledge of the actual actuator delay a priori. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A variant of the Rosenbrock‐W integration method is proposed for real‐time dynamic substructuring and pseudo‐dynamic testing. In this variant, an approximation of the Jacobian matrix that accounts for the properties of both the physical and numerical substructures is used throughout the analysis process. Only an initial estimate of the stiffness and damping properties of the physical components is required. It is demonstrated that the method is unconditionally stable provided that specific conditions are fulfilled and that the order accuracy can be maintained in the nonlinear regime without involving any matrix inversion while testing. The method also features controllable numerical energy dissipation characteristics and explicit expression of the target displacement and velocity vectors. The stability and accuracy of the proposed integration scheme are examined in the paper. The method has also been verified through hybrid testing performed of SDOF and MDOF structures with linear and highly nonlinear physical substructures. The results are compared with those obtained from the operator splitting method. An approach based on the modal decomposition principle is presented to predict the potential effect of experimental errors on the overall response during testing. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A new approach to dynamic force control of mechanical systems, applicable in particular to frame structures, over frequency ranges spanning their resonant frequencies is presented. This approach is implemented using added compliance and displacement compensation. Hydraulic actuators are inherently velocity sources, that is, an electrical signal regulates their velocity response. Such systems are therefore by nature high‐impedance (mechanically stiff) systems. In contrast, for force control, a force source is required. Such a system logically would have to be a low‐impedance (mechanically compliant) system. This is achieved by intentionally introducing a flexible mechanism between the actuator and the structure to be excited. In addition, in order to obtain force control over frequencies spanning the structure's resonant frequency, a displacement compensation feedback loop is needed. The actuator itself operates in closed‐loop displacement control. The theoretical motivation, as well as the laboratory implementation of the above approach is discussed along with experimental results. Having achieved a means of dynamic force control, it can be applied to various experimental seismic simulation techniques such as the effective force method and the real‐time dynamic hybrid testing method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Large‐scale testing and qualification of structural systems and their components is crucial for the development of earthquake engineering knowledge and practice. However, laboratory capacity is often limited when attempting larger experiments due to the sheer size of the structures involved. To overcome traditional laboratory capacity limitations, we present a new earthquake engineering testing method: real‐time distributed hybrid testing. Extending current approaches, the technique enables geographically distributed scientific equipment including controllers, dynamic actuators and sensors to be coupled across the Internet in real‐time. As a result, hybrid structural emulations consisting of physical and numerical substructures need no longer be limited to a single laboratory. Larger experiments may distribute substructures across laboratories located in different cities whilst maintaining correct dynamic coupling, required to accurately capture physical rate effects. The various aspects of the distributed testing environment have been considered. In particular, to ensure accurate control across an environment not designed for real‐time testing, new higher level control protocols are introduced acting over an optimised communication system. New large time‐step prediction algorithms are used, capable of overcoming both local actuation and distributed system delays. An overview of the architecture and algorithms developed is presented together with results demonstrating a number of current capabilities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号