首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The transition zone separating estuarine environments from the coastal ocean is characterized not only by distinctive morphological and sedimentary trends but by unique hydrodynamic forces as well. Lower Chesapeake Bay, a large coastal estuary within the Mid-Atlantic Bight of the U.S. East Coast, experiences complex wave and current-induced forces produced during winter storms. Wave and current measurements made near Thimble Shoal Light over five winter seasons show that most storms simultaneously produce both ocean and bay-generated wave trains that appear as distinct bimodal peaks in directional spectra. Analysis of selected storm wave records reveal that lower-frequency ocean waves, although nominally lower in amplitude than higher-frequency bay waves, are roughly equivalent to bay waves in terms of energy expended on beds of fine- to medium-grained sand at either end of the Thimble Shoal Channel. Grain-friction energy dissipation estimates calculated for waves and currents suggest that waves provide more net energy capable of transporting bottom sediment than currents, although strong barotropic flows briefly encountered during a major storm on 13–14 March 1993, exceeded wave energy expended at the bed by almost an order of magnitude. From analyses of wave orbital velocity spectra, it is shown that dual wave trains characterized by differences in peak frequency and direction may assist each other through interactions that increase their combined contribution to frictional energy dissipation and inferred sediment transport at the bed.  相似文献   

2.
Abstract

In a recent paper, Buchwald (1972a) has shown that besides the kinetic energy and gravitational potential energy usually associated with planetary waves in an ocean of uniform depth it is useful to define also a “spin energy”, associated with the rotation.

The present paper is basically an extension of Buchwald's result to a uniformly rotating β-plane ocean of variable depth. As in the previous work, energy conservation equations are derived and the separate energies shown to be independently conserved over the total volume of the ocean. The time-averaged energies are further shown to be propagated in the direction of the group velocity and to satisfy the equipartition rule.

Unlike Buchwald, however, we need not consider the boundary conditions in order to achieve these results. Furthermore, the use of a more realistic ocean configuration admits the possibility of a multiply connected region in the present of mean currents.

Finally, there is a physical explanation for the appearance of a spin energy in a rotating system.  相似文献   

3.
Abstract

In Naeser (1979), later denoted N, it was shown that a frequency shift of a wave spectrum had to be expected as a result of dissipation of energy and conservation of spin of the waves. While time-dependency was treated in N, mainly space-dependency is treated here. In order to do this, the velocity of the spin of the waves is calculated. It is shown that this can be made equal to the group velocity by a second order coordinate transformation. In the limits of deep and shallow water the transformation becomes the identity, and leaves the Stokes drift at its usual value if the moment point is located at the mean water level.

By supposing that the dissipation is proportional to the molecular dissipation, and that the entire wind-wave interaction takes place at extremely high frequencies and at a constant rate, it is shown that the energy density at the high frequency slope of a fetch-dependent spectrum is inversely proportional to the fifth power of the frequency, while a spectrum which is only a function of the time for which the wind has blown is inversely proportional to the fourth power. The theory is compared with observations which it fits within the accuracy of the method. It is also compared with existing theories and reasons for the discrepancies are pointed out.  相似文献   

4.

Knowledge of upper ocean currents is needed for trajectory forecasts and is essential for search and rescue operations and oil spill mitigation. This paper addresses effects of surface waves on ocean currents and drifter trajectories using in situ observations. The data set includes colocated measurements of directional wave spectra from a wave rider buoy, ocean currents measured by acoustic Doppler current profilers (ADCPs), as well as data from two types of tracking buoys that sample the currents at two different depths. The ADCP measures the Eulerian current at one point, as modelled by an ocean general circulation model, while the tracking buoys are advected by the Lagrangian current that includes the wave-induced Stokes drift. Based on our observations, we assess the importance of two different wave effects: (a) forcing of the ocean current by wave-induced surface fluxes and the Coriolis–Stokes force, and (b) advection of surface drifters by wave motion, that is the Stokes drift. Recent theoretical developments provide a framework for including these wave effects in ocean model systems. The order of magnitude of the Stokes drift is the same as the Eulerian current judging from the available data. The wave-induced momentum and turbulent kinetic energy fluxes are estimated and shown to be significant. Similarly, the wave-induced Coriolis–Stokes force is significant over time scales related to the inertial period. Surface drifter trajectories were analysed and could be reproduced using the observations of currents, waves and wind. Waves were found to have a significant contribution to the trajectories, and we conclude that adding wave effects in ocean model systems is likely to increase predictability of surface drifter trajectories. The relative importance of the Stokes drift was twice as large as the direct wind drag for the used surface drifter.

  相似文献   

5.
A field experiment is used to evaluate a numerical model of the sheltering of gravity waves by islands offshore of the Southern California region. The sheltering model considered here includes only the effects of island blocking and wave refraction over the island bathymetry. Wave frequency and directional spectra measured in the deep ocean (unsheltered region west of the islands) were used as input to the sheltering model and compared with coastal observations. An airborne L-band synthetic aperture radar was used to image the directional properties of the waves in the deep ocean. In addition to the unsmoothed spectra, a unimodal directional spectrum model obtained from fits to the radar spectra was also employed to suppress the high noise level of this system. Coastal measurements were made in about 10 m depth at Torrey Pines Beach with a high resolution array of pressure sensors. The model predictions and data at Torrey Pines Beach agree well in a limited frequency range (0.082 to 0.114 Hz) where the unimodal deep ocean model is appropriate. The prediction that unimodal northern swell in the deep ocean results in a bimodal directional spectrum at Torrey Pines Beach is quantitatively verified. The northern peak of the bimodal spectra is due to waves coming through the window between San Clemente and San Miguel-Santa Rosa Islands. The southerly peak is due to wave refraction over Cortez and Tanner Banks. For lower frequency waves, the effects of strong refraction in the island vicinity are shown qualitatively. Refraction can theoretically supply up to approximately 10% of the deep ocean energy that is otherwise blocked at this site. The modifications of the island shadows due to wave refraction become theoretically negligible for wave frequencies 0.11Hz. Also, local wave generation effects, which are not included in this sheltering model, are shown to be occasionally important for waves with frequencies 0.12Hz.  相似文献   

6.
Abstract

The subject is reviewed from the viewpoints of theory, internal tide and wave structure and their implications.

A wider theoretical context suggests scope for further investigation of natural or nearly-trapped forms above the inertial frequency.

Although internal tides in many locations are observed to have first-mode vertical structure, higher modes are seen offshore from shallow shelf-break forcing and for particular Froude numbers, and may be expected locally near generation. Bottom intensification is often observed where the sea floor matches the characteristic slope. Solitons form from internal tides of large amplitude or at large changes of depth.

Internal tides and solitons are observed also at many sills and in straits, and to intensify in canyons.

Non-linear effects of the waves, especially solitons, include the conveyance of water, nutrients, ‘‘mixing potential'’ etc. away from their source to other locations, and the generation of mean currents. The waves transfer energy and possibly heat between the ocean and shelf, may be a source of medium frequency waves on the shelf (periods of minutes) and can contribute to interior mixing and overturning, bottom stirring and sediment movement.  相似文献   

7.
Knowledge of upper ocean currents is needed for trajectory forecasts and is essential for search and rescue operations and oil spill mitigation. This paper addresses effects of surface waves on ocean currents and drifter trajectories using in situ observations. The data set includes colocated measurements of directional wave spectra from a wave rider buoy, ocean currents measured by acoustic Doppler current profilers (ADCPs), as well as data from two types of tracking buoys that sample the currents at two different depths. The ADCP measures the Eulerian current at one point, as modelled by an ocean general circulation model, while the tracking buoys are advected by the Lagrangian current that includes the wave-induced Stokes drift. Based on our observations, we assess the importance of two different wave effects: (a) forcing of the ocean current by wave-induced surface fluxes and the Coriolis–Stokes force, and (b) advection of surface drifters by wave motion, that is the Stokes drift. Recent theoretical developments provide a framework for including these wave effects in ocean model systems. The order of magnitude of the Stokes drift is the same as the Eulerian current judging from the available data. The wave-induced momentum and turbulent kinetic energy fluxes are estimated and shown to be significant. Similarly, the wave-induced Coriolis–Stokes force is significant over time scales related to the inertial period. Surface drifter trajectories were analysed and could be reproduced using the observations of currents, waves and wind. Waves were found to have a significant contribution to the trajectories, and we conclude that adding wave effects in ocean model systems is likely to increase predictability of surface drifter trajectories. The relative importance of the Stokes drift was twice as large as the direct wind drag for the used surface drifter.  相似文献   

8.
Abstract

In a nonrotating system, the shear Reynolds stresses exerted by surface or internal gravity waves vanish on account of the exact quadrature between the horizontal and vertical orbital velocities. It is shown that a rotation of the system induces small in‐phase perturbations, resulting in a mean Reynolds stress which can generate low frequency currents. If both the wave field and the ocean are homogeneous with respect to the horizontal coordinates, the low‐frequency response is an undamped inertial oscillation. If either the wave field or the ocean are weakly inhomogeneous, the oscillation disperses in the vertical and horizontal directions due to phase‐mixing of modes with closely neighboring frequencies. Other effects which produce small frequency shifts also contribute to phase‐mixing, for example the horizontal component of the Coriolis vector and nonlinear interactions with geo‐strophic currents. The analysis is based on operator representations which avoid normal mode decomposition and yield simple integro‐differential operators for each phase‐mixing process. Numerical results are presented for a continuously stratified model typical for a shallow sea (Baltic). The orders of magnitude and qualitative features are in reasonable agreement with observations.  相似文献   

9.
Abstract

A general linearized wave equation for a stratified rotating fluid is derived and applied to obtain a dispersion relation for waves of short latitudinal extent in a thin shell of fluid. Long period wave solutions in three ocean models are compared: (1) for a stratified ocean with both components of the rotation vector; (2) for a stratified ocean without the horizontal component of rotation, and finally, (3) for a homogeneous ocean without horizontal rotation. The inclusion of the horizontal component of the Earth's rotation is found to have no noticeable effect on the dispersion relation of long period waves; its only influence is the introduction of a vertical phase shift in the motions. The origin of this phase shift is found in the tendency of the motions to satisfy the Taylor-Proudman theorem. The phase shift is of possible oceanographic relevance only for bottom-trapped buoyancy waves in a relatively weak stratification. The differences between the three ocean models are also discussed with the help of graphs of the numerically integrated dispersion relations. The relative influences of shell thinness and stratification in inhibiting the influence of the horizontal component of the earth's rotation are also briefly discussed.  相似文献   

10.
台风激发的第二类地脉动特征及激发模式分析   总被引:3,自引:1,他引:2       下载免费PDF全文
0.003~1 Hz频段的地脉动主要来源于海浪运动与固体地球的耦合作用,台风引起的强烈海浪运动往往可使地脉动能量显著增强.由于涉及大气-海洋-固体地球三个圈层之间的复杂动量传递与耦合过程,迄今为止,关于台风激发地脉动的具体源区位置及激发机制尚存在争议.本文选取日本、中国东南沿海及台湾地区的地震台站波形连续记录,研究了2008年台风"森拉克"和"黑格比"激发地脉动的时频特征,开展相应数值模拟,并与观测数据进行了对比分析研究.结果表明台风激发第二类地脉动存在两种主要模式:(1)近岸源区激发,即台风引起波浪入射至海岸反射并与后续来波相互作用形成驻波作用于海底而激发;(2)台风中心附近源区激发,即台风中心移动过程中不同时期激发的同频率波浪相向传播、相互作用产生驻波作用于海底而激发,源区位置主要集中于台风中心左后方.此外,结合波浪再分析数据、台风风场特征,我们进一步对第二类地脉动激发过程中的影响因素进行了分析,发现:第一种模式激发的地脉动与近岸源区波浪场强度、观测点至源区距离及台风中心至海岸线距离等因素相关;而第二种模式激发的地脉动则主要受台风中心附近波浪场的频率成分与传播方向影响.  相似文献   

11.
近岸海浪是影响近岸水域环境状态的重要环节.海洋近岸波的波动性质和变化规律的研究对于海岸防护、近岸航运、军事活动等具有重要意义.感应磁场波动可为探测海洋近岸波的非线性过程提供一种有效手段.本文首次对海洋近岸波引起的感应磁场进行了频谱指数分析,获得了能量注入和耗散过程对应的谱段.2016年5月15日—6月30日在昌黎海岸(东经119.3,北纬39.7°)利用KDM-2型磁通门磁力仪对海洋近岸波引起的磁场变化进行了测量,数据分辨率为0.01 nT/(HZ)~(1/2),时间采样率为1 Hz和128 Hz.观测数据显示,在距海岸线2 m远处,清晰地观测到了海洋近岸波引起的磁场波动,在0.001~10.0 Hz频段的波动最大振幅约为1 nT.波动的小波频谱呈现出多次谐波结构,符合海洋近岸波的谐波特征.傅里叶频谱显示不同频段谱的斜率不同,反映了海洋近岸波发展与耗散的非线性物理过程,进一步开展长期观测和统计分析有助于深入了解海洋中的电动力学过程.  相似文献   

12.
One of the main challenges of the Copernicus Marine Service is the implementation of coupled ocean/waves systems that accurately estimate the momentum and energy fluxes provided by the atmosphere to the ocean. This study aims to investigate the impact of forcing the Nucleus for European Modelling of the Ocean (NEMO) ocean model with forecasts from the wave model of Météo-France (MFWAM) to improve classical air-sea flux parametrizations, these latter being mostly driven by the 10-m wind. Three wave-related processes, namely, wave-state-dependent stress, Stokes drift-related effects (Stokes-Coriolis force, Stokes drift advection on tracers and on mass), and wave-state-dependent surface turbulence, are examined at a global scale with a horizontal resolution of 0.25°. Three years of sensitivity simulations (2014–2016) show positive feedback on sea surface temperature (SST) and currents when the wave model is used. A significant reduction in SST bias is observed in the tropical Atlantic Ocean. This is mainly due to the more realistic momentum flux provided by the wave model. In mid-latitudes, the most interesting impact occurs during the summer stratification, when the wind is low and the wave model produces a reduction in the turbulence linked with wave breaking. Magnitudes of the large-scale currents in the equatorial region are also improved by 10% compared to observations. In general, it is shown that using the wave model reduces on average the momentum and energy fluxes to the ocean in tropical regions, but increases them in mid-latitudes. These differences are in the order of 10 to 20% compared with the classical parametrizations found in stand-alone ocean models.  相似文献   

13.
-- Landslide-induced tsunamis are receiving increased attention since there is evidence that recent large devastating events have been caused by underwater mass failures. Normally, numerical models are used to simulate tsunami excitation, most of which are based on shallow water, known also as long wave, approximation to the full equations of hydrodynamics. Analytical studies may handle only simplified problems, but help understand the basic features of physical processes. This paper is an analytical investigation of long-water waves excited by rigid bodies sliding on the sea bottom, based on the shallow-water approximation, which is here derived by properly scaling Euler equations for an inviscid, incompressible and irrotational ocean. In one-dimensional (1-D) cases (where motion depends only on one horizontal coordinate), under the further assumptions of small-height slide, which permits the recourse to linear theory, and of flat ocean floor, a solution for arbitrary body shape and velocity is deduced by applying the Duhamel theorem. It is also shown that this theorem can be advantageously used to obtain a general solution in case of a non-flat ocean floor, when the sea bottom follows a special power law, that can be adapted to study reasonable bottom profiles. The characteristics of the excited tsunamis are then evaluated by computing solutions in numerous examples, with special focus on wave pattern and wave evolution. The energy of the wave system is shown to depend on time: it grows expectedly in the initial phase of tsunami generation, when the moving body transfers energy to the water, but it may also diminish later, implying that a certain amount of energy may pass back from water waves to the slide.  相似文献   

14.
Wind-speed inversion from HF radar first-order backscatter signal   总被引:2,自引:1,他引:1  
Land-based high-frequency (HF) radars have the unique capability of continuously monitoring ocean surface environments at ranges up to 200 km off the coast. They provide reliable data on ocean surface currents and under slightly stricter conditions can also give information on ocean waves. Although extraction of wind direction is possible, estimation of wind speed poses a challenge. Existing methods estimate wind speed indirectly from the radar derived ocean wave spectrum, which is estimated from the second-order sidebands of the radar Doppler spectrum. The latter is extracted at shorter ranges compared with the first-order signal, thus limiting the method to short distances. Given this limitation, we explore the possibility of deriving wind speed from radar first-order backscatter signal. Two new methods are developed and presented that explore the relationship between wind speed and wave generation at the Bragg frequency matching that of the radar. One of the methods utilizes the absolute energy level of the radar first-order peaks while the second method uses the directional spreading of the wind generated waves at the Bragg frequency. For both methods, artificial neural network analysis is performed to derive the interdependence of the relevant parameters with wind speed. The first method is suitable for application only at single locations where in situ data are available and the network has been trained for while the second method can also be used outside of the training location on any point within the radar coverage area. Both methods require two or more radar sites and information on the radio beam direction. The methods are verified with data collected in Fedje, Norway, and the Ligurian Sea, Italy using beam forming HF WEllen RAdar (WERA) systems operated at 27.68 and 12.5 MHz, respectively. The results show that application of either method requires wind speeds above a minimum value (lower limit). This limit is radar frequency dependent and is 2.5 and 4.0 m/s for 27.68 and 12.5 MHz, respectively. In addition, an upper limit is identified which is caused by wave energy saturation at the Bragg wave frequency. Estimation of this limit took place through an evaluation of a year long database of ocean spectra generated by a numerical model (third generation WAM). It was found to be at 9.0 and 11.0 m/s for 27.68 and 12.5 MHz, respectively. Above this saturation limit, conventional second-order methods have to be applied, which at this range of wind speed no longer suffer from low signal-to-noise ratios. For use in operational systems, a hybrid of first- and second-order methods is recommended.  相似文献   

15.
Leif N. Thomas 《Ocean Dynamics》2017,67(10):1335-1350
In the ocean, wind-generated kinetic energy (KE) manifests itself primarily in balanced currents and near-inertial waves. The dynamics of these flows is strongly constrained by the Earth’s rotation, causing the KE in balanced currents to follow an inverse cascade but also preventing wave-wave interactions from fluxing energy in the near-inertial band to lower frequencies and higher vertical wavenumbers. How wind-generated KE is transferred to small-scale turbulence and dissipated is thus a non-trivial problem. This article presents a review of recent theoretical calculations and numerical simulations that demonstrate how some surprising modifications to internal wave physics by the lateral density gradients present at ocean fronts allow for strong interactions between balanced currents and near-inertial waves that ultimately result in energy loss for both types of motion.  相似文献   

16.
A method of wave mode determination, which was announced in Balikhin and Gedalin, is applied to AMPTE UKS and AMPTE IRM magnetic field measurements downstream of supercritical quasiperpendicular shock. The method is based on the fact that the relation between phase difference of the waves measured by two satellites, Doppler shift equation, the direction of the wave propagation are enough to obtain the dispersion equation of the observed waves. It is shown that the low frequency turbulence mainly consists of waves observed below 1 Hz with a linear dependence between the absolute value of wave vector |k| and the plasma frame wave frequency. The phase velocity of these waves is close to the phase velocity of intermediate waves Vint = Vacos().  相似文献   

17.
Abstract

Edge waves are known to give rise to beach cusps. This paper investigates the topographic feed-back upon the waves. For edge waves generated by subharmonic resonance with incident waves, the topography acts to decrease the edge wave response. As well as causing frequency detuning (Guza and Bowen, 1981) the topography can cause the scattering of edge wave energy. For synchronous waves the topographic irregularities have the opposite effect, and there can be a feed of energy into the edge waves by scattering from the incident waves.  相似文献   

18.

A ray theory is applied to the problem of three‐dimensional propagation of inertial‐internal waves in the presence of a mean baroclinic current which does not vary in the downstream coordinate. As time increases, the Doppler‐shifted wave frequency, or intrinsic frequency, tends to a limiting value determined by the horizontal and vertical variations of the mean current and density fields. The limiting value of the intrinsic frequency determines critical surfaces where energy is transferred to the mean motion. Also, the group velocity tends to the mean current velocity, and the phase velocity tends to be oriented towards or away from the core of the mean current, depending upon whether the wave is either initially propagating with a wave number component antiparallel or parallel to the mean current.  相似文献   

19.
Abstract

The problem of oblique incidence of internal ocean waves on a thin submerged ocean barrier is considered when the ocean has exponential density stratification. A Wiener-Hopf approach is used combined with numerical evaluation of series. Results for the reflected energy are obtained and reveal a complex dependence on incidence and barrier height. Application of this model to waves incident on the Mid-Atlantic ridge suggests that the ridge almosts isolates first mode energy on one side of the ocean from the other side. In certain circumstances there, is a surprising appearance of “barrier” waves. These waves are closely confined to the barrier and propagate along it.  相似文献   

20.
Abstract

New light is shed on the derivation of the energy flux of the linear MHD waves. It is shown that, according to a suggestion of Lighthill, the usual perturbation procedure, which starts from the general expression for the energy flux, need not be supplemented by an averaging procedure. As a result, it is shown that to second order in the wave amplitude, a quantity identifiable as the wave energy flux is conserved. Some of the subtleties inherent in the derivation of the pertubation energy equation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号