首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The southern coasts of Africa are influenced by two major oceanic currents, leading to biogeographic patterns in inshore and offshore species assemblages, and in the stable isotope signatures of suspended particulate matter and filter-feeding mussels. We used the stable isotope ratios of carbon (13C/12C) and nitrogen (15N/14N) from the blood and feathers of adult and chick Cape gannets (Morus capensis) to investigate whether the geographic differences observed at the lower levels in the marine communities are deep penetrating effects that reach top predators. Additionally, we evaluated whether trophic segregation occurs between adult and reared chick gannets, and whether a shift to wintering habitat occurs in adults. The study was conducted during the 2006 breeding season on Bird Island in the Agulhas system, and on Malgas and Ichaboe Islands, in the south and north Benguela respectively. Our results showed significant differences in the isotope ratios of members of different colonies, but no intra-colony differences between tissues or age groups. These results indicate that there is neither age-related nor temporal segregation in the diet of members of the same colony. Feather isotopic values suggest that adults remain all year round in the same habitats, and do not undertake long migration after reproduction. Since all gannets tend to target similar prey, we attributed among-colony differences in isotope signatures mostly to the oceanic conditions experienced by the main prey of birds rather than substantial differences in diet composition. Overall, isotopic signatures segregate the two current systems, with depleted carbon values in the Agulhas and enriched nitrogen values in the upwelled waters of the Benguela. Within the Benguela birds from Ichaboe in the north had higher δ15N values than those from Malgas in the south, which we attributed to differences in the functioning of the upwelling cells in the vicinity of the two colonies. Finally, slight variation in the proportion of main prey and discards from fisheries may contribute to the variation in the stable-isotope signatures between colonies in the Benguela.  相似文献   

2.
Stable isotopes analyses (SIAs) are an efficient tool to obtain a general insight into the diet of generalist consumers, such as the Yellow-legged Gull (Larus michahellis). Here we analysed δ13C, δ15N and δ34S values in feathers of chicks and adults, and used Bayesian triple-isotope mixing models to reconstruct the diet of a Yellow-legged Gull population breeding in the southeastern Bay of Biscay. Questions to test were (1) whether adults and chicks rely on different feeding resources during breeding period; (2) whether there is a seasonal foraging effect involving a higher proportion of refuse food in winter compared to summer, and (3) the magnitude of the annual variation in diet. Prey consumption differed between colonies, among years, and also varied slightly between seasons, and this was mainly due to a differential use of prey of marine origin. However, diet did not differ between age classes. These results suggest a relatively monotonous diet with only slight variations from year to year, seasonally and at a local geographic scale.  相似文献   

3.
Stable isotope analyses (δ13C and δ15N) were used to evaluate the spatial variations in carbon flow from primary producers to consumers at two sites in the temperate and permanently open Kariega Estuary on the southeastern coast of South Africa during October 2005 and February 2006. One site was located opposite a salt marsh while the second was upstream of the marsh. Except for significantly enriched δ13C values of Zostera capensis and surface sediments near the salt marsh, the δ13C and δ15N signatures of the producers were similar between sites. The invertebrates were clustered into groups roughly corresponding to the predominant feeding modes. The suspension feeders showed δ13C values closest to the seston, whereas the deposit feeders, detritivores and scavengers/predators had more enriched δ13C values reflecting primary carbon sources that were likely a combination of seston, Spartina maritima and Z. capensis at the upstream site, with an increased influence of benthic algae and Z. capensis at the salt marsh site. The δ15N signatures of the consumers showed a stepwise continuum rather than distinct levels of fractionation, indicating highly complex trophic linkages and significant dietary overlap among the species. Consumers exhibited significantly enriched δ13C values at the salt marsh site, an effect that was attributed to enriched Z. capensis detritus in this region in addition to increased phytoplankton biomass in their diets compared with invertebrates living upstream. The data reinforce the concept that between-site variations in the stable isotope ratios of consumers can result not only from dietary shifts, but also from alterations in the isotope ratios of primary producers.  相似文献   

4.
Mangroves are highly productive ecosystems that exhibit a diverse range of habitats, including tidal creeks and flats, forest gaps and interior forest with varying understory light intensity, tidal dynamics, geomorphological settings, and overall biological production. Within mangrove ecosystems, invertebrates and fish feed on heterogeneous food sources, the occurrence of which is unevenly distributed across the system. This provides a basis for testing models of carbon transfer across mangrove ecosystems. We hypothesized that the carbon transfer and assimilation by fish and invertebrates will vary across the different mangrove habitats and that such variations can be predicted by their stable isotope compositions. We analysed δ13C and δ15N signatures of consumers and their potential organic carbon sources across a tropical mangrove ecosystem in Vietnam. The δ13C values of crabs and snails significantly decreased from the tidal flat to interior forest, indicating that variations in carbon transfer and assimilation occurred at small scales <30 m. Reduced variation in δ13C of suspension‐feeding bivalves suggested that tidal water was a vector for large‐scale transport of carbon across the mangrove ecosystem. An analysis of co‐variance using habitat as a fixed factor and feeding habit and movement capacity of consumers as co‐variates indicated that habitat and feeding types were major features that affected the δ13C values of invertebrates and fish. The findings demonstrate that carbon transfer and assimilation across mangrove ecosystems occur as a diverse combination of small (<30 m) and large (>30 m) scale processes.  相似文献   

5.
Ecosystem dynamics driven by top-down controls have been well documented in rocky intertidal communities, while the effects of bottom-up influences are comparatively poorly understood. We hypothesized that large-scale signatures of the physical environment may be identifiable along the South African coastline as it is subject to two very different current systems (Benguela and Agulhas Currents) that profoundly influence primary production and thus both food type and availability. Through stable isotope analysis, we examined biogeographic patterns in multiple trophic levels at four sites along a 1400-km stretch of South African coastline and investigated the dietary role of macroalgal-derived organic carbon in rocky intertidal communities. The general positioning of trophic groups was comparable across all sites, with animals from the same trophic levels grouping together and with a δ15N fractionation of 1–2‰ between levels. The species found at all sites demonstrated east–west δ15N enrichment, presumably reflecting a biogeographic shift in nitrogen sources linked to upwelling on the west coast. Filter-feeders gave particularly clear results. Using discriminant analysis, mussels could be categorized into four geographic groups based on carbon and nitrogen signatures: east coast, southeast coast, south-west coast and west coast. Barnacles and polychaetes showed similar geographic groupings to mussels, but with shifts in actual values (1‰ depletion in δ13C and 3‰ enrichment in δ15N relative to mussels). This suggests that fractionation varies between species within a trophic level.  相似文献   

6.
Mesoscale oceanographic features, such as upwellings, are known to play an important role in regulating the structure and productivity of nearshore marine communities. Stable isotope (δ13C and δ15N) and fatty acid analyses were employed to assess the influence of an upwelling cell along the south-eastern coastline of southern Africa on the diet of the mussel, Perna perna. Eight sites were sampled: two upstream, three in the vicinity and three downstream of the upwelling cell. Stable isotope and fatty acid signatures indicated that the mussels consumed a diet of detritus derived mainly from macroalgae, diatoms and dinoflagellates. One-way ANOVA on the δ13C and δ15N signatures and the principal component analysis of the fatty acid profiles of the mussels identified distinct groups corresponding to the above mentioned regions. The proportion of diatom biomarkers in the fatty acid profiles decreased downstream of the upwelling region while the proportion of dinoflagellate biomarkers increased. Upwelling regions are typically associated with elevated levels of productivity; however, these systems usually become silicon depleted and result in the replacement of diatoms with dinoflagellates. The highest proportions of the dinoflagellate markers were recorded in the two furthest sites downstream of the upwelling cell. The spatial variation in the diet of the mussels, therefore, appears to reflect the presence of the upwelling cell in the nearshore biology of the region.  相似文献   

7.
Abstract

Stable isotopes of carbon (C) and nitrogen (N) were studied in 11 stream communities in the Waikato region of New Zealand. From comparisons of mean δ13C and δ15N values, food webs in the shaded, forest streams were clearly based on allochthonous material (conditioned leaf litter and terrestrial invertebrates). Autotrophs in forest streams were not a significant C source for the food webs. However, the C source of food webs in the unshaded pasture streams appeared to be a mixture of allochthonous and autochthonous material. Conditioned leaf litter appeared to contribute to the pasture stream food webs, and the δ13C and δ15N of some samples of epilithic diatoms indicated their consumption by invertebrates in pasture streams. Fish ate a wide range of aquatic invertebrates; longfinned eels (Anguilla dieffenbachii) and banded kokopu (Galaxias fasciatus) also had a large proportion of terrestrial invertebrates in their diet. Filamentous green algae were found only at pasture sites, where they were sometimes abundant. The wide range of δ13C values of filamentous green algae (‐18.8 to ‐29.7‰) complicated understanding of their role in the stream food webs. The δ13C values of Cladophora were related to water velocity, with more 13C‐enriched values in pools than in runs (‐23.2‰ in pools, mean velocity 0.12 m s?1; ‐28.1‰ in runs, mean velocity 0.24 m s?1). Crayfish and the gastropod mollusc Potamopyrgus appeared to be the only invertebrates to eat filamentous green algae.  相似文献   

8.
We investigated small–medium (1–300 km) scale variation in the foraging ecology of the African Black Oystercatcher during its breeding season, using traditional diet analysis coupled with carbon and nitrogen stable isotope analysis. Fieldwork was conducted between January and March 2006 and 2007, on rocky shores on the south–east coast of South Africa at East London, Kenton and Port Elizabeth. Middens of shelled prey left by adults feeding their chicks were collected from five territories and the abundances of the collected prey on the foraging areas were estimated using quadrats. Blood samples from 45 birds (16 females, 10 males and 19 chicks) and tissues from the predominant prey species on the territory of each breeding pair were collected for isotope analysis. The Manly–Chesson selectivity index revealed that adults feed their chicks preferentially with the limpet Scutellastra cochlear and the Mediterranean mussel Mytilus galloprovincialis, if available. A slight enrichment in the 15N stable-carbon isotope signature was observed towards the west in both prey and oystercatchers. Differences in isotope signatures between males and females from the same breeding pair indicate sex-related differences in the diet. Both had signatures indicating a mixed diet, but with males exhibiting a signature closer to that of limpets and females closer to that of mussels. In the single case where mussels were rare on the feeding territory, the two members of a pair showed carbon signatures which were identical and very similar to that of limpets. These results indicate dietary partitioning between genders in breeding pairs.  相似文献   

9.
Talitrid amphipods are the most abundant herbivores on exposed sandy beaches. Despite their important role as trophic intermediates between macrophytes and higher levels (i.e. insect and bird) of beach food webs, very little information is available on their feeding patterns. The main aim of this study was to investigate intraspecific differences in the feeding behaviour of Talitrus saltator. We tested the hypotheses that: (1) adult females and males showed different isotope signatures and therefore relied on different sources of food; and (2) patterns of variation of isotope signatures of juveniles differed from those of adult specimens, evidencing a diet shift during the development. We used stable isotope signatures and tested for differences upon the level on the shore, times of the year and beaches experiencing similar morpho-dynamic and environmental conditions. Finally, we investigated the trophic significance of macrophyte detritus in the diet of males, females and juveniles. Results showed that adult males had a more variable diet than females and juveniles (inferred from δ13C and δ15N values). Dual-isotope graphs suggested that Sargassum muticum and Cystoseira baccata wrack could be among the main food sources for both juvenile and adult stage.  相似文献   

10.
The role of parasites in trophic ecology is poorly understood in marine ecosystems. Stable isotope analyses (SIA) have been widely used in studies of trophic ecology, but have rarely been applied to study the role of parasites. Considering that some parasites are associated with altered host foraging patterns, SIA can help elucidate whether parasitism influences host trophic interactions. French grunt (Haemulon flavolineatum), an abundant Caribbean coral reef fish, contributes greatly to trophic connectivity. They typically depart the reef at dusk, feed overnight in seagrass beds, and return to the reef at dawn. The large parasitic isopod Anilocra haemuli commonly infects French grunt, and infected fish are less likely to complete their diel migration, and are in poorer condition than uninfected conspecifics. Brown chromis (Chromis multilineata) are diurnally feeding planktivores and infection by Anilocra chromis does not influence host condition. To determine if Anilocra infection influences host diet and foraging locality, we conducted stable carbon and nitrogen isotope analyses on scale, muscle, heart and gill tissues of infected and uninfected French grunt and brown chromis. We determined that all French grunt had δ13C values representative of seagrass habitats, but infected French grunt were significantly enriched in 13C and 15N compared to uninfected conspecifics. This suggests that compared to uninfected conspecifics, infected French grunt forage in seagrass, but on isotopically enriched prey, and/or are in poorer condition, which can elevate δ13C and δ15N values. For brown chromis, infection did not significantly influence any δ13C and δ15N values; hence they all foraged in the same environment and on similar prey. This is the first study to use SIA to examine differences in resource use by Caribbean coral reef fishes associated with parasitism and to evaluate how closely related parasites might have host‐dependent effects on host trophic ecology.  相似文献   

11.
Seagrasses require a large amount of nutrient assimilation to support high levels of production, and thus nutrient limitation for growth often occurs in seagrass habitats. Seagrasses can take up nutrients from both the water column and sediments. However, since seagrasses inhabiting in the intertidal zones are exposed to the air during low tide, the intertidal species may exhibit significantly different carbon (C) and nitrogen (N) dynamics compared to the subtidal species. To examine C and N dynamics of the intertidal seagrass, Zostera japonica, C and N content and stable isotope ratios of above- and below-ground tissues were measured monthly at the three intertidal zones in Koje Bay on the southern coast of Korea. The C and N content and stable isotope (δ13C and δ15N) ratios of seagrass tissues exhibited significant seasonal variations. Both leaf and rhizome C content were not significantly correlated with productivity. Leaf δ13C values usually exhibited negative correlations with leaf productivity. These results of tissue C content and δ13C values suggest that photosynthesis of Z. japonica in the study site was not limited by inorganic C supply, and sufficient inorganic C was provided from the atmosphere. The tissue N content usually exhibited negative correlations with leaf productivity except at the upper intertidal zone, suggesting that Z. japonica growth was probably limited by N availability during high growing season. In the upper intertidal zone, no correlations between leaf productivity and tissue elemental content and stable isotope ratios were observed due to the severely suppressed growth caused by strong desiccation stress.  相似文献   

12.
Carbon and Nitrogen stable isotopes and stomach contents analyses were used to investigate an estuarine fish food web and identify the contribution of these two methods to the knowledge and understanding of the food web's structure and its functioning. The nine most abundant fish species during the warm period in the Gironde estuary (southwest France, Europe) are examined. Observation of the stomach contents reflects a variety of feeding modes between fish species that consume a diverse assortment of prey, with limited dietary overlap. Nevertheless, when regarding the whole fish community, few prey species dominate the stomach contents. Nitrogen isotope ratios indicate a high intraspecific variability inducing an interspecific covering of the signatures. However, a tendency to δ15N enrichment according to the trophic position of the species studied was observed. Fish assemblages show a trend towards enrichment of their carbon isotopic signatures from the upper estuary (−20.8 ± 1.8‰) towards the lower estuary (−18.3 ± 1.6‰). But whatever the capture zone considered, most of the individual δ13C values for each fish analysed are comprised between −22 and −16‰. Only few specimens, belonging to migratory amphihaline species, have significantly lighter values.  相似文献   

13.
Stable isotope analysis of fish tissue can aid studies of deep-sea food webs because sampling difficulties severely limit sample sizes of fish for traditional diet studies. The carbon stable isotope ratio (δ13C) is widely used in food web studies, but it must be corrected to remove variability associated with varying lipid content in the tissue. A lipid correction has not been determined for any deep-sea fish. These fishes are ideal for studying lipid correction because lipid content varies widely among species. Our objective was to evaluate an application of a mass balance δ13C correction to a taxonomically diverse group of deep-sea fishes by determining the effect of lipid extraction on the stable isotope ratios, examining the quality of the model parameters derived for the mass balance correction, and comparing the correction to published results. We measured the lipid extraction effect on the nitrogen stable isotope ratio (δ15N) and δ13C of muscle tissue from 30 North Atlantic species. Lipid extraction significantly increased tissue δ15N (+0.66‰) and δ13C values, but the treatment effect on δ13C was dependent on C:N, a proxy for lipid content. We compared the lipid-extracted δ13C to the δ13C predicted by the mass balance correction using model variables estimated from either all individuals (pooled) or species-by-species or using published values from other species. The correction using the species-by-species approach performed best; however, all three approaches produced corrected values that were generally within 0.5‰ of the measured lipid-free δ13C and that had a small over-all bias (<0.5‰). We conclude that a generalized mass balance correction works well for correcting δ13C in deep-sea fishes, is similar to that developed for other fishes, and recommend caution when applying a generalized correction to fish with high lipid content (C:N >8).  相似文献   

14.
The benthic macroinvertebrates of the Nakdong River estuary were sampled at three different habitats: two salt marsh (Scirpus triqueter and Phragmites australis) beds and a bare intertidal flat. Fishes were sampled in the main channel. The trophic importance of marsh vascular plants, microphytobenthos, and riverine and channel particulate organic matter to macroinvertebrate and fish production was studied using stable carbon and nitrogen isotope tracers. There was a dramatic change in coverage of macrophytes (salt marshes and seagrass) after the construction of an estuarine barrage in 1987 in the Nakdong River estuary, with the S. triqueter bed increasing, the P. australis bed decreasing, and Zostera marina habitats being nearly lost. Although the invertebrate δ13C were within a narrower range than those of the primary producers, the values varied considerably among consumers in these habitats. However, the isotope signatures of consumers showed similarities among different habitats. Cluster analysis based on their isotopic similarity suggested that the isotope variability among species was related more to functional feeding groups than to habitats or taxonomic groups. While δ13C values of suspension feeders were close to that of the channel POM (mainly phytoplankton), other benthic feeders and predators had δ13C similar to that of microphytobenthos. Isotopic mixing model estimates suggest that algal sources, including microphytobenthos and phytoplankton, play an important role in supporting the benthic food web. Despite the huge productivity of emergent salt marshes, the contribution of the marsh-derived organic matter to the estuarine food webs appears to be limited to some nutrition for some invertebrates just within marsh habitats, with little on the bare intertidal flats or in the channel fish communities. Isotope signatures of the channel fishes also confirm that algal sources are important in supporting fish nutrition. Our findings suggest that benthic and pelagic microalgae made a large contribution to consumer diets, while marsh plants may not have a large role in supporting food webs in this estuarine system.  相似文献   

15.
Kelp holdfasts are highly reticulated structures which host a large diversity of small fauna. These microhabitats have been reported to play a crucial role in the biodiversity associated to kelp forest ecosystems. This study aimed at identifying trophic links and the main food sources sustaining food webs within communities associated with kelp holdfasts, through a stable isotope (δ13C and δ15N) approach. Sampling of the main invertebrates inhabiting Laminaria digitata holdfasts, and of their potential food sources, took place in February and May 2007. Stable isotope results reveal that most of the primary consumers, including filter-feeders and deposit-feeders, rely on the particulate organic matter sedimented within kelp holdfasts. Only three grazers departed from this general pattern. The correspondence between the stable isotope ratios of predators and sediment consumers indicated that this source is at the base of the main pathway through which energy and matter transit in the food web. δ15N ranges found for consumers revealed that the food web associated with kelp holdfasts is composed of 3.5 levels. In spite of the low diversity of food sources at the base of the food web, these microhabitats can therefore be considered micro-scale ecosystems, from a functional perspective.  相似文献   

16.
The distributions and stable isotope ratios of biogenic nitrogen and carbon were investigated in detail along a small watershed in order to establish a biogeochemical framework for assessing the fate of organic matter. Forest ecosystems supply soluble and particulate materials to river systems which are depleted in 15N and 13C. The number of suspended particles and the concentrations of δ15N and δ13C in the river sediments increased along the watershed, indicating a change from river to marine ecosystems. Dramatic variation of δ15N and δ13C were observed in the intertidal sediments, where the progress of denitrification, discharge of domestic sewage, and the accumulation and the decomposition of macroalgae and seagrasses took place.The contribution of land-derived organic matter to estuarine sediments has been estimated from δ13C and from δ15N data. The contribution the landderived organo-silty-clay mineral was 70–100% in the inner bay sediments and 34–42% at the open bay. Possible factors that influence the variation of stable isotope ratios along the watershed are discussed. The relationship between the sizes of particles and isotope ratios clearly demonstrated that organo-silty-clay minerals with diameter smaller than 64 μm were the major source of land-derived refractory organics.  相似文献   

17.
We investigated the molecular composition (methane, ethane, and propane) and stable isotope composition (methane and ethane) of hydrate-bound gas in sediments of Lake Baikal. Hydrate-bearing sediment cores were retrieved from eight gas seep sites, located in the southern and central Baikal basins. Empirical classification of the methane stable isotopes (δ13C and δD) for all the seep sites indicated the dominant microbial origin of methane via methyl-type fermentation; however, a mixture of thermogenic and microbial gases resulted in relatively high methane δ13C signatures at two sites where ethane δ13C indicated a typical thermogenic origin. At one of the sites in the southern Baikal basin, we found gas hydrates of enclathrated microbial ethane in which 13C and deuterium were both highly depleted (mean δ13C and δD of –61.6‰ V-PDB and –285.4‰ V-SMOW, respectively). To the best of our knowledge, this is the first report of C2 δ13C–δD classification for hydrate-bound gas in either freshwater or marine environments.  相似文献   

18.
Macroalgae contribute to intertidal food webs primarily as detritus, with unclear implications for food web studies using stable isotope analysis. We examined differences in the thallus parts of two South African rhodophytes (Gelidium pristoides and Hypnea spicifera) and changes in overall δ13C, δ15N signatures and C:N ratios during degradation in both the field and laboratory. We hypothesized that both degrading macroalgal tissue and macroalgal-derived suspended particulate material (SPM) would show negligible changes in δ13C, but enriched δ15N signatures and lower C:N ratios relative to healthy plants. Only C:N laboratory ratios conformed to predictions, with both species of macroalgae showing decomposition related changes in δ13C and significant depletions in δ15N in both the field and laboratory. In the laboratory, algal tissue and SPM from each species behaved similarly (though some effects were non-significant) but with differing strengths. Gelidium pristoides δ13C increased and C:N ratios decreased over time in tissue and SPM; δ15N became depleted only in SPM. Hypnea spicifera, δ13C, δ15N and C:N ratios all decreased during degradation in both SPM and algae.  相似文献   

19.
Mesopelagic fishes represent an important component of the marine food web due to their global distributions, high abundances and ability to transport organic material throughout a large part of the water column. This study combined stable isotope (SIAs) and gut content analyses (GCAs) to characterize the trophic structure of mesopelagic fishes in the North‐Central Gulf of Mexico. Additionally, this study examined whether mesopelagic fishes utilized chemosynthetic energy from cold seeps. Specimens were collected (9–25 August 2007) over three deep (>1,000 m) cold seeps at discrete depths (surface to 1,503 m) over the diurnal cycle. GCA classified 31 species (five families) of mesopelagic fishes into five feeding guilds: piscivores, large crustacean consumers, copepod consumers, generalists and mixed zooplanktivores. However, these guilds were less clearly defined based on stable isotope mixing model (MixSIAR) results, suggesting diets may be more mixed over longer time periods (weeks–months) and across co‐occurring species. Copepods were likely important for the majority of mesopelagic fishes, consistent with GCA (this study) and previous literature. MixSIAR results also identified non‐crustacean prey items, including salps and pteropods, as potentially important prey items for mesopelagic fishes, including those fishes not analysed in GCA (Sternoptyx spp. and Melamphaidae). Salps and other soft‐bodied species are often missed in GCAs. Mesopelagic fishes had δ13C results consistent with particulate organic matter serving as the baseline organic carbon source, fueling up to three trophic levels. Fishes that undergo diel vertical migration were depleted in 15N relative to weak migrators, consistent with depth‐specific isotope trends in sources and consumers, and assimilation of 15N‐depleted organic matter in surface waters. Linear correlations between fish size and δ15N values suggested ontogenetic changes in fish diets for several species. While there was no direct measure of mesopelagic fishes assimilating chemosynthetic material, detection of infrequent consumption of this food resource may be hindered by the assimilation of isotopically enriched photosynthetic organic matter. By utilizing multiple dietary metrics (e.g. GCA, δ13C, δ15N, MixSIAR), this study better defined the trophic structure of mesopelagic fishes and allowed for insights on feeding, ultimately providing useful baseline information from which to track mesopelagic trophodynamics over time and space.  相似文献   

20.
Marine benthic trophic relationships and food web structures may be influenced by benthic–pelagic coupling processes, which could also be intensified by the physical dynamics of marine fronts. In this work, we employed stable isotope (δ13C and δ15N) analysis to investigate the influence of the Southwest (SW) Atlantic shelf-break front (SBF; 38–39°S, 55–56°W; Argentina) on an epibenthic trophic web. Epibenthic organisms were sampled, at depths of ~ 100 m, with a non-selective dredge from a sandy bottom community located in frontal (F) and marginal (M) areas. The SBF position and the chlorophyll-a (chl-a) concentrations were inferred using satellite data of the sea surface temperature (SST) and satellite chl-a concentration, respectively. The most noticeable shifts in stable isotopes between the sampled areas were those of the Patagonian scallop, Zygochlamys patagonica13C), and those of the sea urchin, Sterechinus agassizi15N). Diet analyses inferred from stable isotopes and mixing models demonstrated that the dominant component of this community, Z. patagonica, had variable contributions to higher trophic levels between areas. More importantly, the epibenthic assemblage in F areas showed δ13C-enriched and δ15N-depleted isotopic signatures with respect to the M areas. Collectively, this evidence suggests that frontal dynamics promotes the accumulation of δ13C-enriched phytoplankton in the seabed in F areas, while in M areas the more degraded organic matter becomes more important in the trophic web, decreasing the δ15N isotopic signature of the assemblage. Therefore, the trophic web was sustained by fresher food in F areas than in M areas, demonstrating the role of frontal dynamics in the shaping of these communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号