首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper investigates the tectono‐stratigraphic development of a major, segmented rift border fault (Thal Fault) during ca. 6 Myr of initial rifting in the Suez Rift, Egypt. The Thal Fault is interpreted to have evolved by the progressive linkage of at least four fault segments. We focus on two contrasting structural settings in its hangingwall: Gushea, towards the northern tip of the fault, and Musaba Salaama, ca. 20 km along‐strike to the south, towards the centre of the fault. The early syn‐rift stratigraphic succession passes upwards from continental facies, through a condensed marginal marine shell‐rich facies, into fully marine shoreface sandstone and offshore mudstone. Regionally correlatable stratal surfaces within this succession define time‐equivalent stratal units that exhibit considerable along‐strike variability in thickness and facies architecture. During the initial ca. 6 Myr of rifting, the thickest stratigraphy developed towards the centre of the array of fault segments that subsequently hard linked to form the Thal Fault. Thus, a displacement gradient existed between fault segments at the centre and tip of the fault array, suggesting that the fault segments interacted, and a fixed length was established for the fault array, at an early stage in rifting. Towards the centre of the Thal Fault the early syn‐rift succession shows pronounced thickening away from the fault and towards a series of intra‐block antithetic faults that were active for up to ca. 6 Myr. This indicates that a large proportion of fault‐controlled subsidence during the initial ca. 6 Myr of rifting occurred in the hangingwalls of antithetic intra‐block faults, and not the present‐day Thal Fault. The antithetic faults progressively switched off during rifting such that after ca. 6 Myr of rifting, fault‐activity had localised on the Thal Fault enabling it to accrue to the present‐day high level of displacement. Aspects of the development of the Thal Fault appear to be in contrast to many models of fault evolution that predict large‐displacement rift‐climax faults to have always had the greatest displacement during fault population evolution. This study has implications for tectono‐stratigraphic development during early rift basin evolution. In particular, we stress that caution must be taken when relating final rift‐climax fault structure to the early tectono‐stratigraphy, as these may differ considerably.  相似文献   

2.
Rift basin tectono‐stratigraphic models indicate that normal fault growth controls the sedimentology and stratigraphic architecture of syn‐rift deposits. However, such models have rarely been tested by observations from natural examples and thus remain largely conceptual. In this study we integrate 3D seismic reflection, and biostratigraphically constrained core and wireline log data from the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway to test rift basin tectono‐stratigraphic models. The geometry of the basin‐bounding fault and its hangingwall, and the syn‐rift stratal architecture, vary along strike. The fault is planar along a much of its length, bounding a half‐graben containing a faultward‐thickening syn‐rift wedge. Locally, however, the fault has a ramp‐flat‐ramp geometry, with the hangingwall defined by a fault‐parallel anticline‐syncline pair. Here, an unusual bipartite syn‐rift architecture is observed, comprising a lower faultward‐expanding and an upper faultward‐thinning wedge. Fine‐grained basinfloor deposits dominate the syn‐rift succession, although isolated coarse clastics occur. The spatial and temporal distribution of these coarse clastics is complex due to syn‐depositional movement on the Vingleia Fault Complex. High rates of accommodation generation in the fault hangingwall led to aggradational stacking of fan deltas that rapidly (<5 km) pinch out basinward into offshore mudstone. In the south of the basin, rapid strain localization meant that relay ramps were short‐lived and did not represent major, long‐lived sediment entry points. In contrast, in the north, strain localization occurred later in the rift event, thus progradational shorefaces developed and persisted for a relatively long time in relay ramps developed between unlinked fault segments. The footwall of the Vingleia Fault Complex was characterized by relatively low rates of accommodation generation, with relatively thin, progradational hangingwall shorelines developed downdip of the fault block apex, sometime after the onset of sediment supply to the hangingwall. We show that rift basin tectono‐stratigraphic models need modifying to take into account along‐strike variability in fault structure and basin physiography, and the timing and style of syn‐rift sediment dispersal and facies, in both hangingwall and footwall locations.  相似文献   

3.
The thickness and distribution of early syn‐rift deposits record the evolution of structures accommodating the earliest phases of continental extension. However, our understanding of the detailed tectono‐sedimentary evolution of these deposits is poor, because in the subsurface, they are often deeply buried and below seismic resolution and sparsely sampled by borehole data. Furthermore, early syn‐rift deposits are typically poorly exposed in the field, being buried beneath thick, late syn‐rift and post‐rift deposits. To improve our understanding of the tectono‐sedimentary development of early syn‐rift strata during the initial stages of rifting, we examined quasi‐3D exposures in the Abura Graben, Suez Rift, Egypt. During the earliest stage of extension, forced folding above blind normal fault segments, rather than half‐graben formation adjacent to surface‐breaking faults, controlled rift physiography, accommodation development and the stratigraphic architecture of non‐marine, early syn‐rift deposits. Fluvial systems incised into underlying pre‐rift deposits and were structurally focused in the axis of the embryonic depocentre, which, at this time, was characterized by a fold‐bound syncline rather than a fault‐bound half graben. During this earliest phase of extension, sediment was sourced from the rift shoulder some 3 km to the NE of the depocentre, rather than from the crests of the flanking, intra‐basin extensional forced folds. Fault‐driven subsidence, perhaps augmented by a eustatic sea‐level rise, resulted in basin deepening and the deposition of a series of fluvial‐dominated mouth bars, which, like the preceding fluvial systems, were structurally pinned within the axis of the growing depocentre, which was still bound by extensional forced folds rather than faults. The extensional forced folds were eventually locally breached by surface‐breaking faults, resulting in the establishment of a half graben, basin deepening and the deposition of shallow marine sandstone and fan‐delta conglomerates. Because growth folding and faulting were coeval along‐strike, syn‐rift stratal units deposited at this time show a highly variable along‐strike stratigraphic architecture, locally thinning towards the growth fold but, only a few kilometres along‐strike, thickening towards the surface‐breaking fault. Despite displaying the classic early syn‐rift stratigraphic motif recording net upward‐deepening, extensional forced folding rather than surface faulting played a key role in controlling basin physiography, accommodation development, and syn‐rift stratal architecture and facies development during the early stages of extension. This structural and stratigraphic observations required to make this interpretation are relatively subtle and may go unrecognized in low‐resolution subsurface data sets.  相似文献   

4.
Exceptional 3‐D exposures of fault blocks forming a 5 km × 10 km clastic sediment‐starved, marine basin (Carboneras subbasin, southeast Spain) allow a test of the response of carbonate sequence stratigraphic architectures to climatic and tectonic forcing. Temperate and tropical climatic periods recorded in biofacies serve as a chronostratigraphic framework to reconstruct the status of the basin within three time‐slices (late Tortonian–early Messinian, late Messinian, Pliocene). Structural maps and isopach maps trace out the distribution of fault blocks, faults, and over time, their relative motions, propagational patterns and life times, which demonstrate a changing layout of the basin because of a rotation of the regional transtensional stress field. Progradation of early Messinian reefal systems was perpendicular to the master faults of the blocks, which were draped by condensed fore‐slope sediments. The hangingwall basins coincided with the toe‐of‐slope of the reef systems. The main phase of block faulting during the late Tortonian and earliest Messinian influenced the palaeogeography until the late Pliocene (cumulative throw < 150–240 m), whereas displacements along block bounding faults, which moved into the hangingwall, died out over time. An associated shift of the depocentres of calciturbidites, slump masses and fault scarp degradation breccias reflects 500–700 m of fault propagation into the hangingwall. The shallow‐water systems of the footwall areas were repeatedly subject to emergence and deep peripheral erosion, which imply slow net relative uplift of the footwall. In the dip‐slope settings, erosional truncations of tilted proximal deposits prevail, which indicate rotational relative uplift. Block movements were on the order of magnitude of third order sea‐level fluctuations during the late Tortonian and earliest Messinian. We suggest that this might be the reason for the common presence of offlapping geometries in early Messinian reef systems of the Betic Cordilleras. During the late Pliocene, uplift rates fell below third order rates of sea‐level variations. However, at this stage, the basin was uplifted too far to be inundated by the sea again. The evolution of the basin may serve as a model for many other extensional basins around the world.  相似文献   

5.
Studies of normal fault systems in modern extensional regimes (e.g. Basin and Range), and in exhumed, ancient rift basins (e.g. Gulf of Suez Rift) have shown a link between the evolution of fault‐related footwall topography and associated erosional drainage systems. In this study, we use 3D seismic reflection data to image the footwall crest of a gravity‐driven fault system developed during late Middle Jurassic to Early Cretaceous rifting on the Halten Terrace, offshore Mid‐Norway. This 22‐km‐long fault system lacks significant footwall uplift, with hangingwall subsidence accommodating throw accumulation on the fault system. Significant erosion has occurred along the length of the footwall crest and is defined by 96 catchments characterized by erosional channels. These erosional channels consist of small, linear systems up to 750 m long located along the front of the fault footwall. Larger, dendritic channel systems extend further back (up to 3 km normal to fault strike) into the footwall. These channels are up to 7 km long, up to 50 m deep and up to 1 km wide. Fault throw varies along strike, with greatest throw in the centre of the fault decreasing towards the fault tips; localized throw minima are interpreted to represent segment linkage points, which were breached as the fault grew. Comparison of the catchment location to the throw distribution shows that the largest catchments are in the centre of the fault and decrease in size to the fault tips. There is no link between the location of the breached segment linkage points and the location and size of the footwall catchments, suggesting that the first‐order control on footwall erosion patterns is the overall fault‐throw distribution.  相似文献   

6.
Quantification of allogenic controls in rift basin‐fills requires analysis of multiple depositional systems because of marked along‐strike changes in depositional architecture. Here, we compare two coeval Early‐Middle Pleistocene syn‐rift fan deltas that sit 6 km apart in the hangingwall of the Pirgaki‐Mamoussia Fault, along the southern margin of the Gulf of Corinth, Greece. The Selinous fan delta is located near the fault tip and the Kerinitis fan delta towards the fault centre. Selinous and Kerinitis have comparable overall aggradational stacking patterns. Selinous comprises 15 cyclic stratal units (ca. 25 m thick), whereas at Kerinitis 11 (ca. 60 m thick) are present. Eight facies associations are identified. Fluvial and shallow water facies dominate the major stratal units in the topset region, with shelfal fine‐grained facies constituting ca. 2 m thick intervals between major topset units and thick conglomeratic foresets building down‐dip. It is possible to quantify delta build times (Selinous: 615 kyr; Kerinitis: >450 kyr) and average subsidence and equivalent sedimentation rates (Selinous: 0.65 m/kyr; Kerinitis: >1.77 m/kyr). The presence of sequence boundaries at Selinous, but their absence at Kerinitis, enables sensitivity analysis of the most uncertain variables using a numerical model, ‘Syn‐Strat’, supported by an independent unit thickness extrapolation method. Our study has three broad outcomes: (a) the first estimate of lake level change amplitude in Lake Corinth for the Early‐Middle Pleistocene (10–15 m), which can aid regional palaeoclimate studies and inform broader climate‐system models; (b) demonstration of two complementary methods to quantify faulting and base level signals in the stratigraphic record—forward modelling with Syn‐Strat and a unit thickness extrapolation—which can be applied to other rift basin‐fills; and (c) a quantitative approach to the analysis of stacking patterns and key surfaces that could be applied to stratigraphic pinch‐out assessment and cross‐hole correlations in reservoir analysis.  相似文献   

7.
The Sagaing Fault zone is the largest active fault in SE Asia, whose current displacement rate of around 1.8 cm year?1 is well‐established from GPS data. Yet determining the timing of initiation and total displacement on the fault zone has proven controversial. The timing problem can potentially be resolved through a newly identified syn‐kinematic sedimentary section directly related to displacement on the Sagaing Fault in the northern Minwun Ranges. The northern part of the western strand of the Sagaing Fault has a releasing splay geometry that sets up a syn‐kinematic oblique‐extensional basin in its hangingwall, here called the North Minwun Basin. A series of thick ridges probably composed of alluvial fan and fluvial sandstones dipping between 20 and 70° to the north, and younging northwards comprise the basin fill over a distance of 40 km. Total stratigraphic thickness (not vertical thickness) is estimated at 25 km. The basin in terms of depositional geometries, large displacements, and large stratigraphic thickness and appearance on satellite images has parallels with the extensional Hornelen basin, Norway and the strike‐slip Ridge Basin, California. Minimum likely displacement on the fault strand is 40 km, and may possibly be in excess of 100 km. The remote and inaccessible basin has yet to be properly dated, likely ages range between Eocene and Miocene. When dated the basin will provide an important constraint on the timing of deformation. The potential for this basin to constrain the timing and displacement along the northern part of the Sagaing Fault has not been previously recognised.  相似文献   

8.
Well‐calibrated seismic interpretation in the Halten Terrace of Mid‐Norway demonstrates the important role that structural feedback between normal fault growth and evaporite mobility has for depocentre development during syn‐rift deposition of the Jurassic–Early Cretaceous Viking and Fangst Groups. While the main rift phase reactivated pre‐existing structural trends, and initiated new extensional structures, a Triassic evaporite interval decouples the supra‐salt cover strata from the underlying basement, causing the development of two separate fault populations, one in the cover and the other confined to the pre‐salt basement. Detailed displacement–length analyses of both cover and basement fault arrays, combined with mapping of the component parts of the syn‐rift interval, have been used to reveal the spatial and temporal evolution of normal fault segments and sediment depocentres within the Halten Terrace area. Significantly, the results highlight important differences with traditional models of normal fault‐controlled subsidence, including those from parts of the North Sea where salt is absent. It can now be shown that evaporite mobility is intimately linked to the along‐strike displacement variations of these cover and basement faults. The evaporites passively move beneath the cover in response to the extension, such that the evaporite thickness becomes greatest adjacent to regions of high fault displacement. The consequent evaporite swells can become large enough to have pronounced palaeobathymetric relief in hangingwall locations, associated with fault displacement maxima– the exact opposite situation to that predicted by traditional models of normal fault growth. Evaporite movement from previous extension also affects the displacement–length relationships of subsequently nucleated or reactivated faults. Evaporite withdrawal, on the other hand, tends to be a later‐stage feature associated with the high stress regions around the propagating tips of normal faults or their coeval hangingwall release faults. The results indicate the important effect of, and structural feedback caused by, syn‐rift evaporite mobility in heavily modifying subsidence patterns produced by normal fault array evolution. Despite their departure from published models, the results provide a new, generic framework within which to interpret extensional fault and depocentre development and evolution in areas in which mobile evaporites exist.  相似文献   

9.
《Basin Research》2018,30(3):448-479
The onshore central Corinth rift contains a syn‐rift succession >3 km thick deposited in 5–15 km‐wide tilt blocks, all now inactive, uplifted and deeply incised. This part of the rift records upward deepening from fluviatile to lake‐margin conditions and finally to sub‐lacustrine turbidite channel and lobe complexes, and deep‐water lacustrine conditions (Lake Corinth) were established over most of the rift by 3.6 Ma. This succession represents the first of two phases of rift development – Rift 1 from 5.0–3.6 to 2.2–1.8 Ma and Rift 2 from 2.2–1.8 Ma to present. Rift 1 developed as a 30 km‐wide zone of distributed normal faulting. The lake was fed by four major N‐ to NE‐flowing antecedent drainages along the southern rift flank. These sourced an axial fluvial system, Gilbert fan deltas and deep lacustrine turbidite channel and lobe complexes. The onset of Rift 2 and abandonment of Rift 1 involved a 30 km northward shift in the locus of rifting. In the west, giant Gilbert deltas built into a deepening lake depocentre in the hanging wall of the newly developing southern border fault system. Footwall and regional uplift progressively destroyed Lake Corinth in the central and eastern parts of the rift, producing a staircase of deltaic and, following drainage reversal, shallow marine terraces descending from >1000 m to present‐day sea level. The growth, linkage and death of normal faults during the two phases of rifting are interpreted to reflect self‐organization and strain localization along co‐linear border faults. In the west, interaction with the Patras rift occurred along the major Patras dextral strike‐slip fault. This led to enhanced migration of fault activity, uplift and incision of some early Rift 2 fan deltas, and opening of the Rion Straits at ca. 400–600 ka. The landscape and stratigraphic evolution of the rift was strongly influenced by regional palaeotopographic variations and local antecedent drainage, both inherited from the Hellenide fold and thrust belt.  相似文献   

10.
Our current understanding on sedimentary deep-water environments is mainly built of information obtained from tectonic settings such as passive margins and foreland basins. More observations from extensional settings are particularly needed in order to better constrain the role of active tectonics in controlling sediment pathways, depositional style and stratigraphic stacking patterns. This study focuses on the evolution of a Plio-Pleistocene deep-water sedimentary system (Rethi-Dendro Formation) and its relation to structural activity in the Amphithea fault block in the Corinth Rift, Greece. The Corinth Rift is an active extensional basin in the early stages of rift evolution, providing perfect opportunities for the study of early deep-water syn-rift deposits that are usually eroded from the rift shoulders due to erosion in mature basins like the Red Sea, North Sea and the Atlantic rifted margin. The depocentre is located at the exit of a structurally controlled sediment fairway, approximately 15 km from its main sediment source and 12 km basinwards from the basin margin coastline. Fieldwork, augmented by digital outcrop techniques (LiDAR and photogrammetry) and clast-count compositional analysis allowed identification of 16 stratigraphic units that are grouped into six types of depositional elements: A—mudstone-dominated sheets, B—conglomerate-dominated lobes, C—conglomerate channel belts and sandstone sheets, D—sandstone channel belts, E—sandstone-dominated broad shallow lobes, F—sandstone-dominated sheets with broad shallow channels. The formation represents an axial system sourced by a hinterland-fed Mavro delta, with minor contributions from a transverse system of conglomerate-dominated lobes sourced from intrabasinal highs. The results of clast compositional analysis enable precise attribution for the different sediment sources to the deep-water system and their link to other stratigraphic units in the area. Structures in the Amphithea fault block played a major role in controlling the location and orientation of sedimentary systems by modifying basin-floor gradients due to a combination of hangingwall tilt, displacement of faults internal to the depocentre and folding on top of blind growing faults. Fault activity also promoted large-scale subaqueous landslides and eventual uplift of the whole fault block.  相似文献   

11.
Through the investigation of crustal heterogeneities, sedimentary basin architecture and seismic stratigraphy, we demonstrate how a crust‐scale anisotropy controls the initiation of rifting and the subsequent structural and sedimentological evolution of the Mesozoic Gamtoos Basin, southern South Africa. The results demonstrate that the >90‐km‐long Gamtoos Fault established its length very early in its syn‐rift phase (within ~5 Ma of rift initiation) before accruing over 6 s (two‐way‐travel time (TWT)), or >12 km, of displacement without any significant subsequent increase in length. In addition, there is no evidence at the resolution of the data of fault segmentation, isolated depocentres nor of intra‐basin faults progressively coalescing during the syn‐rift interval. The early establishment of length resulted in a rapid transition from a terrestrial depositional environment to anoxic, deep marine conditions. The Gamtoos Fault has a 90° bend in the fault trace that we propose is inherited from the underlying structure. Immediately adjacent to the bend the basin‐fill is significantly deformed and a high‐amplitude (>1.7s TWT) monoclinal fold is observed. Previous workers proposed that the fold was a consequence of a complex interplay between compression and extension. Through a restoration of the basin‐fill deformation we produce a model that suggests that the fold is a consequence of the accommodation of extension by the unusual plan‐view trace of the fault. The evolution of the basin does not conform to current fault growth models and it is proposed that its unusual and complex development can be attributed to the underlying crustal‐scale anisotropy, a fact that is likely to be important in other areas in which crustal stretching is superimposed on heterogeneous continental crust.  相似文献   

12.
We describe the tectono‐sedimentary evolution of a Middle Jurassic, rift‐related supra‐detachment basin of the ancient Alpine Tethys margin exposed in the Central Alps (SE Switzerland). Based on pre‐Alpine restoration, we demonstrate that the rift basin developed over a detachment system that is traced over more than 40 km from thinned continental crust to exhumed mantle. The detachment faults are overlain by extensional allochthons consisting of upper crustal rocks and pre‐rift sediments up to several kilometres long and several hundreds of metres thick, compartmentalizing the distal margin into sub‐basins. We mapped and restored one of these sub‐basins, the Samedan Basin. It consists of a V‐shape geometry in map view, which is confined by extensional allochthons and floored by a detachment fault. It can be restored over a minimum distance of 11 km along and about 4 km perpendicular to the basin axis. Its sedimentary infill can be subdivided into basal (initial), intermediate (widening) and top (post‐tectonic) facies tracts. These tracts document (1) formation of the basin initially bounded by high‐angle faults and developing into low‐angle detachment faults, (2) widening of the basin and (3) migration of deformation further outboard. The basal facies tract is made of locally derived, poorly sorted gravity flow deposits that show a progressive change from hangingwall to footwall‐derived lithologies. Upsection the sediments develop into turbidity current deposits that show retrogradation (intermediate facies tract) and starvation of the sedimentary system (post‐tectonic facies tract). On the scale of the distal margin, the syn‐tectonic record documents a thinning‐ and fining‐upward sequence related to the back stepping of the tectonically derived sediment source, progressive starvation of the sedimentary system and migration of deformation resulting in exhumation and progressive delamination of the thinned crust during final rifting. This study provides valuable insights into the tectono‐sedimentary evolution and stratigraphic architecture of a supra‐detachment basin formed over hyper‐extended crust.  相似文献   

13.
ABSTRACT This paper investigates syn‐rift stratigraphic architecture and facies relationships along a 7 km long strike section towards the tip of a major, basin‐bounding normal fault segment (Thal Fault) in the Suez Rift, Egypt. In this location, the fault is composed of two precursor fault strands, Gushea and Abu Ideimat, linked by a jog or transfer fault. We document a Miocene syn‐rift succession, deposited more than c. 5.5 Myr after rift initiation, that is composed of a range of carbonate‐clastic facies associated with coarse‐grained deltaic, shoreface and offshore depositional systems. Key regionally correlatable stratal surfaces within this succession define time equivalent stratal units that exhibit variability in thickness and architecture, related to the interplay of both regional and local controls, in particular, the evolution of two, small‐scale (<6 km long) precursor fault strands (Gushea and Abu Ideimat). Integration of structural and stratigraphic data indicates that the boundary (relay ramp) between these two fault strands was a relative high during much of the rift event, with hard‐linkage and considerable displacement accumulation not occurring until at least c. 7.5 Myr after rift initiation. This is because: (i) the preserved stratigraphy is thinner in the hanging wall of the strand boundary; (ii) a eustatic sea‐level fall with an amplitude of 100 m generated more than 25 m of incision at the strand boundary, a region that has a final fault displacement of c. 600 m; and (iii) the fault strand boundary persisted as a footwall low and transport pathway for coarse‐grained deltas entering the basin. This study indicates that variability in stratal thickness and stratigraphic architecture towards the tip of the Thal Fault was related to the linkage history of two small‐scale (c. 6 km long) precursor fault segments. We suggest that similar, small‐scale stratal variability may occur repeatedly along the entire length of major basin‐bounding fault segments due to the process of fault growth by the linkage of smaller scale precursor strands.  相似文献   

14.
《Basin Research》2018,30(Z1):382-400
High‐resolution acoustic and seismic data acquired 100 km offshore Cape São Vicente, image with unprecedented detail one of the largest active reverse faults of the SW Iberian Margin, the Horseshoe Fault (HF). The HF region is an area seismogenically active, source of the largest magnitude instrumental and historical earthquake (Mw > 6) occurred in the SW Iberian Margin. The HF corresponds to a N40 trending, 110 km long, and NW‐verging active thrust that affects the whole sedimentary sequence and reaches up to the seafloor, generating a relief of more than 1 km. The along‐strike structural variability as well as fault trend suggests that the HF is composed by three main sub‐segments: North (N25), Central (N50) and South (N45). Swath‐bathymetry, TOBI sidescan sonar backscatter and parametric echosounder TOPAS profiles reveal the surface morphology of the HF block, characterized by several, steep (20°) small scarps located on the hangingwall, and a succession of mass transport deposits (i.e. turbidites) on its footwall, located in the Horseshoe Abyssal Plain. A succession of pre‐stack depth‐migrated multichannel seismic reflection profiles across the HF and neighbouring areas allowed us to constrain their seismo‐stratigraphy, structural geometry, tectono‐sedimentary evolution from Upper Jurassic to present‐day, and to calculate their fault parameters. Finally, on the basis of segment length, surface fault area and seismogenic depth we evaluated the seismic potential of the HF, which in the worst‐case scenario may generate an earthquake of magnitude Mw 7.8 ± 0.1. Thus, considering the tectonic behaviour and near‐shore location, the HF should be recognized in seismic and tsunami hazard assessment models of Western Europe and North Africa.  相似文献   

15.
Sediment supply rate and accommodation regime represent primary controls on the depositional architecture of basin margin successions, but their interaction is commonly inferred from 2D dip profiles and/or with limited constraints on sedimentary facies. In this study, three parallel (>40 km long) 2D depositional oblique‐dip profiles from outcrops of the lower Waterford Formation (Karoo Basin, South Africa) have been correlated. This data set provides a rare opportunity to assess the lateral variability in the sedimentary process record of the shelf‐to‐slope transition for eight successive clinothems over a 900 km2 area. The three profiles show similar shelf‐edge rollover trajectories, but this belies significant along‐margin variability in sedimentary processes and down‐dip sediment supply. The depositional architecture of three successive clinothems (WfC 3, 4 and 5) also show along‐shelf physiographic differences. The reconstructed shelf‐edge rollover position is not straight, and a westward curve to the north coincides with an area of greater sand supply to the slope beyond a shelf dominated by wave and storm processes. All the clinothems thicken northwards, indicating an along‐margin long‐term increase in accommodation that was maintained through multiple shoreline transits across the shelf. The origin of the differential subsidence cannot be discriminated confidently between tectonic or compaction processes. The interplay of basin margin physiography, differential subsidence rate and process regime resulted in significant across‐strike variability in the style and timing of sediment dispersal patterns beyond the shelf‐edge rollover. This study highlights the challenge for accurate prediction of the sediment partitioning across the shelf‐edge rollover in subsurface studies.  相似文献   

16.
Models to explain alluvial system development in rift settings commonly depict fans that are sourced directly from catchments formed in newly uplifted footwalls, which leads to the development of steep-sided talus-cone fans in the actively subsiding basin depocentre. The impact of basin evolution on antecedent drainage networks orientated close to perpendicular to a rift axis, and flowing over the developing hangingwall dip slope, remains relatively poorly understood. The aim of this study is to better understand the responses to rift margin uplift and subsequent intrabasinal fault development in determining sedimentation patterns in alluvial deposits of a major antecedent drainage system. Field-acquired data from a coarse-grained alluvial syn-rift succession in the western Gulf of Corinth, Greece (sedimentological logging and mapping) has allowed analysis of the spatial distribution of facies associations, stratigraphic architectural elements and patterns of palaeoflow. During the earliest rifting phase, newly uplifted footwalls redirected a previously established fluvial system with predominantly southward drainage. Footwall uplift on the southern basin margin at an initially relatively slow rate led to the development of an overfilled basin, within which an alluvial fan prograded to the south-west, south and south-east over a hangingwall dip slope. Deposition of the alluvial system sourced from the north coincided with the establishment of small-scale alluvial fans sourced from the newly uplifted footwall in the south. Deposits of non-cohesive debris flows close to the proposed hangingwall fan apex pass gradationally downstream into predominantly bedload conglomerate deposits indicative of sedimentation via hyperconcentrated flows laden with sand- and silt-grade sediment. Subsequent normal faulting in the hangingwall resulted in the establishment of further barriers to stream drainage, blocking flow routes to the south. This culminated in the termination of sediment supply to the basin depocentre from the north, and the onset of underfilled basin conditions as signified by an associated lacustrine transgression. The evolution of the fluvial system described in this study records transitions between three possible end-member types of interaction between active rifting and antecedent drainage systems: (a) erosion through an uplifted footwall, (b) drainage diversion away from an uplifted footwall and (c) deposition over the hangingwall dip slope. The orientation of antecedent drainage pathways at a high angle to the trend of a developing rift axis, replete with intrabasinal faulting, exerts a primary control on the timing and location of development of overfilled and underfilled basin states in evolving depocentres.  相似文献   

17.
ABSTRACT The Alkyonides half‐graben is separated from the Gerania Range to the south by active faults whose offshore traces are mapped in detail. The East Alkyonides and Psatha Faults have well‐defined, Holocene‐active tip zones and cannot be extrapolated from the onshore Skinos Fault into a single continuous surface trace. During the late Quaternary, catchments draining the step‐faulted range front have supplied sediment to alluvial fans along a subsiding marine ramp margin in the hangingwall of the Skinos Fault, to shelf ledge fans on the uplifting footwall to the East Alkyonides Fault and to the Alepochori submarine fan in the hangingwall of the latter. During late Pleistocene lowstand times (c. 70–12 ka), sediment was deposited in Lake Corinth as fan deltas on the subsiding Skinos shelf ramp which acted as a sediment trap for the adjacent 360 m deep submarine basin plain. At the same time, the uplifting eastern shelf ledge was exposed, eroded and bypassed in favour of deposition on the Alepochori submarine fan. During Holocene times, the Skinos bajada was first the site of stability and soil formation, and then of substantial deposition before modern marine erosion cut a prominent cliffline. The uplifting eastern shelf ledge has developed substantial Holocene fan lobe depositional sequences as sediment‐laden underflows have traversed it via outlet channels. We estimate mean Holocene displacement rates towards the tip of the Psatha Fault in the range 0.7–0.8 mm year?1. Raised Holocene coastal notches indicate that this may be further partitioned into about 0.2 mm year?1 of footwall uplift and hence 0.5–0.6 mm year?1 of hangingwall subsidence. Holocene displacement rates towards the tip of the active East Alkyonides Fault are in the range 0.2–0.3 mm year?1. Any uplift of the West Alkyonides Fault footwall is not keeping pace with subsidence of the Skinos Fault hangingwall, as revealed by lowstand shelf fan deltas which show internal clinoforms indicative of aggradational deposition in response to relative base‐level rise due to active hangingwall subsidence along the Skinos Fault. Total subsidence here during the last 58 kyr lowstand interval of Lake Corinth was some 20 m, indicating a reduced net displacement rate compared to estimates of late Holocene (< 2000 bp ) activity from onshore palaeoseismology. This discrepancy may be due to the competition between uplift on the West Alkyonides Fault and subsidence on the onshore Skinos Fault, or may reflect unsteady rates of Skinos Fault displacement over tens of thousands of years.  相似文献   

18.
Because salt can decouple sub‐ and supra‐salt deformation, the structural style and evolution of salt‐influenced rifts differs from those developed in megoscopically homogenous and brittle crust. Our understanding of the structural style and evolution of salt‐influenced rifts comes from scaled physical models, or subsurface‐based studies that have utilised moderate‐quality 2D seismic reflection data. Relatively few studies have used high‐quality 3D seismic reflection data, constrained by borehole data, to explicitly focus on the role that along‐strike displacement variations on sub‐salt fault systems, or changes in salt composition and thickness, play in controlling the four‐dimensional evolution of supra‐salt structural styles. In this study, we use 3D seismic reflection and borehole data from the Sele High Fault System (SHFS), offshore Norway to determine how rift‐related relief controlled the thickness and lithology of an Upper Permian salt‐bearing layer (Zechstein Supergroup), and how the associated variations in the mechanical properties of this unit influenced the degree of coupling between sub‐ and supra‐salt deformation during subsequent extension. Seismic and borehole data indicate that the Zechstein Supergroup is thin, carbonate‐dominated and immobile at the footwall apex, but thick, halite‐dominated and relatively mobile in high accommodation areas, such as near the lateral fault tips and in the immediate hangingwall of the fault system. We infer that these variations reflect bathymetric changes related to either syn‐depositional (i.e. Late Permian) growth of the SHFS or underfilled, fault scarp‐related relief inherited from a preceding (i.e. Early Permian) rift phase. After a period of tectonic quiescence in the Early Triassic, regional extension during the Late Triassic triggered halokinesis and growth of a fault‐parallel salt wall, which was followed by mild extension in the Jurassic and forced folding of Triassic overburden above the fault systems upper tip. During the Early Cretaceous, basement‐involved extension resulted in noncoaxial tilting of the footwall, and the development of an supra‐salt normal fault array, which was restricted to footwall areas underlain by relatively thick mobile salt; in contrast, at the footwall apex, no deformation occurred because salt was thin and immobile. The results of our study demonstrate close coupling between tectonics, salt deposition and the style of overburden deformation for >180 Myr of the rift history. Furthermore, we show that rift basin tectono‐stratigraphic models based on relatively megascopically homogeneous and brittle crust do not appropriately describe the range of structural styles that occur in salt‐influenced rifts.  相似文献   

19.
The Corinth rift (Greece) is one of the world's most active rifts. The early Plio‐Pleistocene rift is preserved in the northern Peloponnese peninsula, south of the active Corinth rift. Although chronostratigraphic resolution is limited, new structural, stratigraphic and sedimentological data for an area >400 km2 record early rift evolution in three phases separated by distinct episodes of extension rate acceleration and northward fault migration associated with major erosion. Minimum total N–S extension is estimated at 6.4–7.7 km. The earliest asymmetrical, broad rift accommodated slow extension (0.6–1 mm a?1) over >3 Myrs and closed to the west. North‐dipping faults with throws of 1000–2200 m defined narrow blocks (4–7 km) with little footwall relief. A N‐NE flowing antecedent river system infilled significant inherited relief (Lower group). In the earliest Pleistocene, significant fluvial incision coincided with a 15 km northward rift margin migration. Extension rates increased to 2–2.5 mm a?1. The antecedent rivers then built giant Gilbert‐type fan deltas (Middle group) north into a deepening lacustrine/marine basin. N‐dipping, basin margin faults accommodated throws <1500 m. Delta architecture records initiation, growth and death of this fault system over ca. 800 ka. In the Middle Pleistocene, the rift margin again migrated 5 km north. Extension rate increased to 3.4–4.8 mm a?1. This transition may correspond to an unconformity in offshore lithostratigraphy. Middle group deltas were uplifted and incised as new hangingwall deltas built into the Gulf (Upper group). A final increase to present‐day extension rates (11–16 mm a?1) probably occurred in the Holocene. Fault and fault block dimensions did not change significantly with time suggesting control by crustal rheological layering. Extension rate acceleration may be due to strain softening or to regional tectonic factors.  相似文献   

20.
The stratigraphic development of an Upper Jurassic syn‐rift succession exposed at outcrop in the Inner Moray Firth Basin has been investigated using high‐resolution biostratigraphy and sedimentology. A continuous 970 m thick section, exposed in the hangingwall of the Helmsdale Fault was logged in detail. The succession spans 8 Ma and contains eight lithofacies types, which indicate deposition in a deep marine setting. Boulder beds contain large, angular clasts, with bed thicknesses typically >2 m and poor sorting suggesting deposition by debris flows. An inverse clast stratigraphy is observed; the oldest boulder beds contain sandstone clasts of Upper Old Red Sandstone (ORS) with younger debris flows containing clasts of Middle ORS calcareous siltstone. A marked change from siliciclastic to carbonate dominated sedimentation occurred during the Early Tithonian, interpreted primarily as a result of change in lithologies in the footwall catchment from sandstone to calcareous siltstone, which reduced supply of siliciclastic sediment. Secondary factors are identified as increased aridity in the Early Tithonian, which reduced sand supply from the hinterland and a third‐order Early Tithonian eustatic sea‐level rise, which trapped coarser clastic sediment within the hinterland. Biostratigraphy allows calculation of variations in sedimentation rates with recognition of: (1) an early rift phase characterised by sandy turbidite deposition, when sedimentation rates averaged 0.08 m/ky, (2) a rift climax phase from the Early Kimmeridgian where sedimentation rates increased steadily to a maximum of 0.64 m/ky in the Early Tithonian, with strata dominated by boulder scale clast‐supported debris flows and (3) a late stage of rifting from the mid Tithonian, where sedimentation rates decreased to 0.07 m/ky. Overall sedimentation rates are comparable to those of other deep marine rift basins. Unroofing a resistant lithology on the footwall of a rift has important implications for siliciclastic sediment supply in rift basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号