首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of numerical experiments on the performance of different base isolation systems for a non-uniform shear beam structure is carried out. Several base isolation systems are considered and the peak relative displacements and the maximum absolute accelerations of the base-isolated structure and its base raft under a variety of conditions are evaluated. Several sensitivity analyses for variations in properties of the base isolator and the structure are carried out. A number of different earthquake excitations are also used in the study. The results show that performances of the base isolation systems are not sensitive to small variations in their natural period, damping or friction coefficient. The presence of a frictional element in the isolators reduces their sensitivity to severe variations in frequency content and amplitude of the ground acceleration. In particular, the resilient-friction base isolators with or without sliding upper plate perform reasonably well under a variety of loading conditions. The rubber bearing type, however, leads to the lowest peak transmitted accelerations for moderate intensity earthquakes.  相似文献   

2.
Performance of High Damping Laminated Rubber Bearing (HD-LRB) base isolation system in protecting the structure and the structural content is studied. A non-uniform shear beam structural model is considered, and the generalized non-stationary Kanai–Tajimi model for the El Centro 1940 earthquake is used as excitation. The technique of equivalent linearization is utilized and the mean-square response statistics of secondary systems and primary structure are evaluated. Statistically estimated peak responses of the secondary system and the primary structure are evaluated and the results are compared with the response spectra for the actual earthquake accelerogram. Comparison of the stochastic responses for base-isolated structures with the HD-LRB and the linear Laminated Rubber Bearing (LRB) and the fixed-base structure is also carried out. It is shown that the HD-LRB system significantly reduces the mean-square, as well as the peak acceleration and deflection responses without generating large base displacements. Furthermore, the non-linear behaviour of the HD-LRB somewhat improves the performance of the bearing in reducing the peak responses of the secondary system and the primary structure when compared with the linear LRB model.  相似文献   

3.
A study of floor response spectra for a base-isolated multi-storey structure under sinusoidal and seismic ground excitations is carried out. Several base isolation systems including the laminated rubber bearing, the pure-friction, the resilient-friction, the Électricité de France and the sliding resilient-friction systems are considered. A sinusoidal ground acceleration and several earthquake accelerograms (including those of El Centro 1940, Pacoima Dam 1971 and Mexico City 1985) are used to evaluate the floor response spectra. The characteristics of the spectra generated by different base isolation systems are studied, and the results are compared with those for the fixed-base structure. It is shown that the structural contents can be protected against earthquakes by the use of properly designed base isolation systems. In particular, the laminated rubber bearing system appears to be remarkably effective in protecting the secondary systems under a variety of conditions.  相似文献   

4.
In this study friction pendulum system (FPS) bearings and precast-prestressed pile (PPP) isolators are considered as base isolation devices for a Chilean confined masonry house. The house is numerically modeled using a multiple degree-of-freedom approach that is calibrated with experimental data. Dynamic behavior of the FPS and PPP isolators is simulated using analytical formulations based on laboratory testing. Optimization of the isolators is performed using an earthquake that is generated to match the design spectrum for the house based on Chilean seismic code. A non-dominated sorting genetic algorithm (NSGA-II) is applied to carry out the optimization. Seismic response of the base-isolated structure subjected to a suite of ground motions is compared to the performance of the traditionally-constructed structure by means of several performance indices (PIs). Numerical simulations indicate that the PPP isolation system is more effective in reducing the base and structural shear, interstory drift, and floor acceleration of the structure than the FPS isolation system, although both systems result in substantial reductions of the response.  相似文献   

5.
This paper proposes an aseismic design concept in which the superstructure of a base-isolated building is divided into several segments. Each segment may comprise a few storeys and is interconnected by additional vibrational isolation systems. The dynamic characteristics of the segmental buildings are investigated. The optimum parameters of the vibration isolation systems are determined by minimizing the mean square acceleration response. The seismic response of a typical segmental building subjected to the N—S component of the 1940 El Centro earthquake input is evaluated and compared with the responses of the corresponding fixed-base and conventional base-isolated buildings. The comparisons show that, when the superstructure is segmented, while the acceleration response in the superstructure remains as small as that in the conventional base-isolated building, the displacement across the base isolation system at foundation level is substantially reduced.  相似文献   

6.
The effects of damping in various laminated rubber bearings (LRB) on the seismic response of a ?‐scale isolated test structure are investigated by shaking table tests and seismic response analyses. A series of shaking table tests of the structure were performed for a fixed base design and for a base isolation design. Two different types of LRB were used: natural rubber bearings (NRB) and lead rubber bearings (LLRB). Three different designs for the LLRB were tested; each design had a different diameter of lead plug, and thus, different damping values. Artificial time histories of peak ground acceleration 0.4g were used in both the tests and the analyses. In both shaking table tests and analyses, as expected, the acceleration responses of the seismically isolated test structure were considerably reduced. However, the shear displacement at the isolators was increased. To reduce the shear displacement in the isolators, the diameter of the lead plug in the LLRB had to be enlarged to increase isolator damping by more than 24%. This caused the isolator stiffness to increase, and resulted in amplifying the floor acceleration response spectra of the isolated test structure in the higher frequency ranges with a monotonic reduction of isolator shear displacement. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
Comparative study of the inelastic response of base isolated buildings   总被引:1,自引:0,他引:1  
This article presents a numeric comparative study of the inelastic structural response of base isolated buildings. The comparative study includes the following isolation systems: laminated rubber bearings, New Zealand one, pure friction and the frictional pendulum ones. The study is based on obtaining non‐linear response spectra for various design parameters using six earthquake records. Usually the base isolation of a new building seeks to maintain the structure in the linear elastic range. The response of old weak buildings or the response of new ones subjected to extreme earthquakes may not be, necessarily, in the aforementioned ideal elastic range. Consequently, it is important to characterize the response of isolated buildings responding inelastically. A conclusion from this research is that the isolators affect significantly the structural response of weak systems. Rubber isolators seem slightly less sensitive to plastification that may occur in the structure compared to friction isolators. Ductility demands in the structure are affected significantly by friction and neoprene protected systems, in particular sliding ones where larger demands are obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, a series of shaking table tests are carried out on scaled models of two seismically isolated highway bridges to investigate the effect of rocking motion and vertical acceleration on seismic performance of resilient sliding isolators. In addition, performance of RSI is compared with system having solely natural rubber bearings. Test results show that variation of normal force on sliders due to rocking effect and vertical acceleration makes no significant difference in response of RSI systems. In addition, analytical response of prototype isolated bridge and the model used in experiments is obtained analytically by using non‐linear model for isolation systems. It is observed that for seismically isolated bridges, dynamic response of full‐scale complex structures can be predicted with acceptable accuracy by experiments using a simple model of the structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Three analytical studies of base‐isolated structures are carried out. First, six pairs of near‐fault motions oriented in directions parallel and normal to the fault were considered, and the average of the response spectra of these earthquake records was obtained. This study shows that in addition to pulse‐type displacements, these motions contain significant energy at high frequencies and that the real and pseudo‐velocity spectra are quite different. The second analysis modelled the response of a model of an isolated structure with a flexible superstructure to study the effect of isolation damping on the performance of different isolation systems under near‐fault motion. The results show that there exists a value of isolation system damping for which the superstructure acceleration for a given structural system attains a minimum value under near‐fault motion. Therefore, although increasing the bearing damping beyond a certain value may decrease the bearing displacement, it may transmit higher accelerations into the superstructure. Finally, the behaviour of four isolation systems subjected to the normal component of each of the near‐fault motions were studied, showing that EDF type isolation systems may be the optimum choice for the design of isolated structures in near‐fault locations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
This paper studies the stochastic responses of secondary systems in base-isolated shear beam structures. A number of base isolation systems such as the laminated rubber bearing (LRB), the resilient-friction base isolator (R-FBI) with or without sliding upper plate, and the EDF system are considered. The stochastic models for the El Centro 1940 and the Mexico City 1985 earthquakes which preserve the non-stationary evolutions of amplitude and frequency content of ground accelerations are used as earthquake excitations. The technique of equivalent linearization is utilized and the mean-square response statistics of secondary systems and primary structure are evaluated. The accuracy of the linearization scheme is verified by comparison with the Monte Carlo simulation results. Statistically estimated peak responses of the secondary system are evaluated and the results are compared with the response spectra for actual earthquake accelerograms. It is shown that the use of base isolation systems, generally, provides considerable protection for structural contents. In particular, the LRB system is remarkably effective in reducing responses of secondary systems. Results for the Mexico City earthquake show that the base-isolated structures are sensitive to long period ground excitations.  相似文献   

11.
The objective of this study was to investigate the effect of lead rubber isolators on the seismic response of bridges designed according to current codes for two different soil conditions: hard and medium type soils, in order to assess their applicability for the design of new bridges or retrofit of existing ones. The study was conducted for two levels of earthquake, one corresponding to a return period of 50 years and a service limit state, the other with a return period of 1,000 years and a failure limit state. Twenty one subduction earthquake records on the two types of soil were used to evaluate the linear and nonlinear dynamic response of a set of bridges designed for this purpose with and without base isolation. The response parameters evaluated are the maximum relative displacement on top of the piers, the maximum pier distortion, the maximum shear forces in the piers and the ductility demands for the isolators. The results presented are the average of these maxima for the various earthquakes. This study is an expansion of a previous one in which the seismic response of 36 bridges considering models with and without base isolators, structures with linear base isolators and bridges with nonlinear isolators. The results of this study confirm the conclusions previously obtained and show that the isolation can have beneficial effects even for bridges located in medium soil types.  相似文献   

12.
抗拔型三重摩擦摆隔震支座是一种新型隔震支座。以框架结构为例,利用ANSYS软件建立了6层和10层普通抗震结构和带该支座的基础隔震结构模型;通过模态分析,得到了结构的自振周期;通过地震响应分析,提取了6层框架隔震层和顶层的位移、加速度和剪力时程曲线,并提取了不同层数不同结构类型的各层间位移、加速度幅值。结果表明:与抗震结构相比,基础隔震结构周期显著增大;隔震结构的变形主要集中在隔震层,隔震层以上的结构基本为整体平动,结构的地震位移反应得到了有效的减小;采用抗拔型三重摩擦摆隔震支座能降低结构地震加速度反应;设置抗拔型三重摩擦摆隔震支座的多层数隔震结构的能量衰减不如低层数的隔震结构迅速。  相似文献   

13.
This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.  相似文献   

14.
The seismic response of light secondary systems in a building is dependent on the response of the primary structural system to the seismic ground motion with the result that very high accelerations can be induced in such secondary systems. This response can be reduced through the use of aseismic base isolation which is a design strategy whereby the entire building can be decoupled from the damaging horizontal components of seismic ground motion by the use of some form of isolation system. The paper presents a theoretical analysis of the response of light equipment in isolated structures and a parallel experimental programme both of which show that the use of base isolation can not only attenuate the response of the primary structural system but also reduce the response of secondary systems. Thus, the design of equipment and piping in a base-isolated building is very much simpler than that for a conventionally founded structure: inelastic response and equipment-structure interaction need not be considered and multiple support response analysis is rendered unnecessary. Although an isolation system with linear elastic bearings can reduce the acceleration of the structure, it may be accompanied by large relative displacements between the structure and the ground. A system using lead-rubber hysteretic bearings, having a force-displacement relation which is approximately a bilinear loop, can reduce these displacements. A parallel experimental programme was carried out to investigate the response of light equipment in structures isolated using lead-rubber bearings. The experimental results show that these bearings can dissipate energy and limit the displacement and acceleration of the structure but are less effective in reducing the accelerations in the internal equipment. The results of both the analysis and the tests show that base isolation is a very effective method for the seismic protection of light equipment items in buildings.  相似文献   

15.
This paper concerns the seismic response of structures isolated at the base by means of High Damping Rubber Bearings (HDRB). The analysis is performed by using a stochastic approach, and a Gaussian zero mean filtered non‐stationary stochastic process is used in order to model the seismic acceleration acting at the base of the structure. More precisely, the generalized Kanai–Tajimi model is adopted to describe the non‐stationary amplitude and frequency characteristics of the seismic motion. The hysteretic differential Bouc–Wen model (BWM) is adopted in order to take into account the non‐linear constitutive behaviour both of the base isolation device and of the structure. Moreover, the stochastic linearization method in the time domain is adopted to estimate the statistical moments of the non‐linear system response in the state space. The non‐linear differential equation of the response covariance matrix is then solved by using an iterative procedure which updates the coefficients of the equivalent linear system at each step and searches for the solution of the response covariance matrix equation. After the system response variance is estimated, a sensitivity analysis is carried out. The final aim of the research is to assess the real capacity of base isolation devices in order to protect the structures from seismic actions, by avoiding a non‐linear response, with associated large plastic displacements and, therefore, by limiting related damage phenomena in structural and non‐structural elements. In order to attain this objective the stochastic response of a non‐linear n‐dof shear‐type base‐isolated building is analysed; the constitutive law both of the structure and of the base devices is described, as previously reported, by adopting the BWM and by using appropriate parameters for this model, able to suitably characterize an ordinary building and the base isolators considered in the study. The protection level offered to the structure by the base isolators is then assessed by evaluating the reduction both of the displacement response and the hysteretic dissipated energy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
This study is concerned with a new isolation device called a Suspended Pendulum Isolation (SPI) system here. Particular attention is given to evaluate the dynamic behaviour of the system under substantial ground motions including the El Centro 1940, Hachinohe 1968 and Kobe 1995 earthquakes. Shaking-table tests have been carried out for a 4 25-scaled model comprising a test structure supported on the SPI system with lead damper. Several yield strengths for the lead damper are examined to investigate its properly designed dimensions. Experimental results show that the SPI system with lead damper has a substantial capability to decrease either peak acceleration or peak base (bearing) displacement responses for broad-band frequency excitations. It also confirms that maximum-storey drift index of isolated structure has been dropped to about one-sixth of its corresponding value at fixed-base condition under strong level of predominant excitation along with considerable decrease of peak acceleration. A non-linear analytical model for an MDOF shear building has been also developed by utilizing the fourth-order Runge–Kutta algorithm. Comparison of analytical and experimental time-history responses for all of the excitations indicates that there is a good agreement in both peak values and shape pattern of the results. Moreover, SPI with an appropriate yield strength of lead damper creates only a very small permanent displacement after strong excitation. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Base isolation requires a gap between the base-isolated building and its surroundings to provide space for the deformation of isolation system. Bumping against the surroundings may change the performance of the base-isolated building. In this study, the building is modelled as an elastic or inelastic shear beam and the surroundings is simplified as elastic or inelastic stops. The influence of stop stiffness, gap size and stop strength on the seismic response is studied. Numerical results indicate that the impact wave induced by the bumping can create an extremely high acceleration response in the shear beam, if the shear beam remains elastic. A non-linearly elastic stop model is observed to reduce the acceleration response. If the shear beam yields, the impact wave cannot propagate through the shear beam and the shear beam remains in the low acceleration response except for the base. Changing the stop stiffness or stop strength has little effect on the distribution of ductility demand along the shear beam. © 1997 by John Wiley & Sons, Ltd.  相似文献   

18.
组合基础隔震在建筑工程中的应用   总被引:3,自引:1,他引:2  
隔震作为一种新的抗震技术,已广泛应用于新建和加固的建筑工程,同时,许多新型式的支座得到了开发和应用。组合基础隔震是一种新的隔震设计思想,能充分应用不同类型隔震支座的特性,有效降低上部结构地震反应。本文介绍了组合基础隔震在某一工程中的应用,工程中使用的支座包括普通橡胶隔震支座、铅芯橡胶隔震支座和弹性滑板支座三种类型,对全部使用支座进行了常规检测,结构计算采用等效线性法、能量包络法和时程反应分析等方法,计算结果表明:组合基础隔震能有效降低上部结构的反应,隔震层的变形控制在安全范围之内。  相似文献   

19.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The isolation systems are usually made of rubber bearings that are sometimes coupled in hybrid combination with frictional devices; this is the case of an in-site experimental campaign, performed on a base isolated apartment building in Rapolla (south of Italy). Several dropout tests at initial displacements up to 17cm allowed to obtain in-site information on the true dynamic response of the isolation system (building and isolators). The tests carried out allow a comparison between the free vibration responses of a building, isolated by using a 28 HDRB isolation system only, or an HDRB-Friction Sliders Hybrid one. The paper highlights the main differences of the response in the superstructure (the structure over the isolation system) obtained by using only HDRB isolation system, or the Hybrid one (HDRB and Friction Sliders in parallel system). Analysis and comparisons of experimental data, show the influence of nonlinearities on structural higher modes amplification, especially observed by using the higher nonlinear Hybrid isolation system. Tests results confirm that, in the case of a regular superstructure, like the Rapolla building, the isolation system nonlinearities influence the structural response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号