首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.  相似文献   

2.
This paper proposes an aseismic design concept in which the superstructure of a base-isolated building is divided into several segments. Each segment may comprise a few storeys and is interconnected by additional vibrational isolation systems. The dynamic characteristics of the segmental buildings are investigated. The optimum parameters of the vibration isolation systems are determined by minimizing the mean square acceleration response. The seismic response of a typical segmental building subjected to the N—S component of the 1940 El Centro earthquake input is evaluated and compared with the responses of the corresponding fixed-base and conventional base-isolated buildings. The comparisons show that, when the superstructure is segmented, while the acceleration response in the superstructure remains as small as that in the conventional base-isolated building, the displacement across the base isolation system at foundation level is substantially reduced.  相似文献   

3.
Base isolation has become a widely applied technique for protecting buildings located in highly seismic areas. Due to the strongly non-linear constitutive behaviour typical of many isolation devices, the seismic response of base-isolated buildings is usually evaluated through non-linear dynamic analysis. In this type of analysis a suitable set of ground motions is needed for representing the earthquake loads and for exciting the structural model. Many methods can be found in the literature for defining the ground motions. When natural accelerograms are used, the methods mainly differ from each other based on the intensity measures used for scaling the records to the defined earthquake intensity level. Investigations have been carried out for evaluating the predictive capability of the intensity measures used in these methods: while many studies focused on ordinary buildings, only a few focused on base-isolated ones. The objective of this paper is to evaluate the most commonly used intensity measures, which are currently available in the literature, with respect to their capability to predict the seismic response of base-isolated buildings. Selected for the investigation are two frame structures characterized by a different number of storeys and base-isolated with systems having different properties. Two sets of accelerograms, consisting of ordinary and pulse-like near-fault records, are used in the analyses and in the evaluation of the intensity measures. Modified versions of existing intensity measures are also proposed, with the intent of improving the correlations between the considered intensity measures and response quantities.  相似文献   

4.
基于系统耦和振动微分方程,分析了结构内摩擦摆隔震设备的响应规律和隔震效果。计算结果表明,经过合理设计的摩擦摆系统能够显著控制设备的地震绝对加速度响应从而有效提高设备的抗震可靠度。  相似文献   

5.
近断层脉冲型地震动作用下隔震结构地震反应分析   总被引:17,自引:5,他引:17  
隔震结构在远震场地减震效果良好,但是近断层地震动的明显的长周期速度和位移脉冲运动可能对隔震建筑等长周期结构的抗震性能和设计带来不利影响,需要深入探讨。本文首先讨论近断层地震动的长周期脉冲运动特征,然后以台湾集集地震8条典型近震记录和其它4条常用近震记录以及4条远震记录作为地震动输入,对两幢安装铅芯橡胶隔震支座的钢筋混凝土框架隔震结构进行非线性地震反应时程分析,通过比较探讨了算例计算结果,定量说明隔震结构的近震脉冲效应显著,是隔震设计不容忽视的问题。  相似文献   

6.
This study investigates the effect of soil–structure interaction (SSI) on the response of base-isolated buildings. The equations of motion are formulated in the frequency domain, assuming frequency-independent soil stiffness and damping constants. An equivalent fixed-base system is developed that accounts for soil compliance and damping characteristics of the base-isolated building. Closed-form expressions are derived, followed by a thorough parametric study involving the pertinent system parameters. For preliminary design, the methodology can serve as a means to assess effective use of base isolation on building structures accounting for SSI. This study concludes that the effects of SSI are more pronounced on the modal properties of the system, especially for the case of squat and stiff base-isolated structures.  相似文献   

7.
本文研究土与结构相互作用(SSI)对多层及中高层基础隔震建筑地震需求及隔震效率的影响规律,隔震层采用LRB铅芯橡胶与LNR普通橡胶隔震支座组合,就我国现行《建筑抗震设计规范》(GB50011-2010)中软土场地设置隔震层问题做探讨。提出土与基础隔震结构相互作用的简化计算模型,对不同场地及隔震设计目标下的多层及中高层基础隔震结构进行时程分析。研究表明:软土场地基础隔震建筑隔震层的有效隔震效率相对于硬土场地有所下降,必须通过设置具有一定规格的LRB支座来满足隔震目标。本文给出了铅芯橡胶支座极限变形需求随建筑层高及隔震目标变化的规律。  相似文献   

8.
Analytical solutions are derived for the dynamic characteristics of base-isolated shear buildings supported on laminated rubber bearings. The solution process takes into account the combined effects of the superstructure flexibility and the base raft inertia on the dynamic characteristics. A series of parametric studies is carried out and the effects of varying the stiffness and mass of the base-isolation system on the frequencies and mode shapes are identified. Approximate solutions for the fundamental base-isolated frequency and mode shape are obtained, which are suitable for use in the preliminary design of non-rigid base-isolated buildings.  相似文献   

9.
Adaptive base-isolation of civil structures using variable amplification   总被引:1,自引:0,他引:1  
Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures. In the present study, a new semi-active damping system using variable amplification will be investigated for adaptive baseisolation. It uses a novel variable amplification device (VAD) connected in series with a passive damper. The VAD is capable of producing multiple amplification factors, each corresponding to a different amplification state. Forces from the damper are amplified to the structure according to the current amplification state, which is selected via a semi-active control algorithm specifically tailored to the system's tmique damping characteristics. To demonstrate the effectiveness of the VAD-damper system for adaptive base-isolation, numerical simulations are conducted for three and seven-story base-isolated buildings subject to both far and near-field ground motions. The results indicate that the system can achieve significant reductions in response compared to the base-isolated buildings with no damper. The proposed system is also found to perform well compared to a typical semi-active damper.  相似文献   

10.
A widespread approach for the prediction of the structural response as function of the ground motion intensity is based on the Cloud Analysis: once a set of points representing the engineering demand parameter (EDP) values is obtained as function of the selected seismic intensity measure (IM) for a collection of unscaled earthquake records, a regression analysis is performed by assuming a specific functional form to correlate these variables. Within this framework, many studies have been devoted so far to evaluate the effectiveness of several IMs in estimating the EDPs through intrinsically linear functional forms, but it is still unknown to what extent the use of the linear regression analysis affects the quality of the final results. This paper is intended to provide an answer to such question by means of the calibration of suitable nonlinear combinations of scalar IMs, whose statistical performances are compared with those obtained by using the functional form usually adopted for linear regression-based calibrations. Specifically, the Evolutionary Polynomial Regression technique is adopted to calibrate nonlinear regression models for the prediction of maximum inter-story drift ratio and maximum floor acceleration. The comparative analysis is performed for fixed-base and base-isolated reinforced concrete buildings subjected to ordinary or pulse-like ground motion taking into account accuracy, complexity, efficiency and sufficiency. Final results demonstrate that the linear regression analysis is suitable for fixed-base reinforced concrete buildings, but nonlinear regression models provide better estimates. On the other hand, the linear regression analysis can introduce a significant bias in the seismic response prediction of base-isolated buildings, and nonlinear regression models are deemed more appropriate.  相似文献   

11.
The stationary response of base-isolated buildings subjected to earthquake excitation is studied. The frequency content of earthquake input is described by the Clough-Penzien spectral model. The response parameters of interest are (1) the root-mean-square (RMS) displacement σx of the basement relative to the foundation (i.e. shear deformation of the isolation system) and (2) the ratio (σaa0) of the RMS value of the absolute acceleration at the roof of the isolated structure over the corresponding value when the isolation system is locked. The variation of these response parameters with the effective frequency f0 of the base-isolated structure is investigated. As input, earthquakes with moment magnitudes M = 7-3 and M = 6-0 are considered. The acceleration spectra corresponding to these two earthquake sizes have pronouncedly different frequency content over the frequency range 0–1-1–0 Hz which is of primary importance for base-isolated structures. An important conclusion that comes from these analyses is that confidence in the effectiveness of a base-isolated system should be based primarily on its capacity to absorb/dissipate energy and less on its influence in shifting the fundamental period of the structure out of the range of dominant earthquake energy.  相似文献   

12.
A three-stories, base-isolated building located in Rapolla (Potenza, Italy) was tested with a snap-back experiment. Free-field measures were performed using 3D seismometers, located at 10 and 50 m from the buildings in direction of motion and at 10 m from the building in direction transverse to the motion. At each measurement point it was possible to separate the soil amplification effects from two source terms, due to the base-isolated building and to the reaction block. The ground motion was noticeable: at 10 m in the longitudinal direction it was comparable with a small size, near-field earthquake.  相似文献   

13.
The present study describes the important factors (period, duration, and intensity) involved in evaluating input ground motion and structural response for the design of long-period structures such as high-rise buildings and base-isolated buildings. First, the fundamental dynamic properties of high-rise buildings are explained based on the results of newly introduced vibration observations programs. Next, the distribution of the predominant period and duration of seismic ground motion within the Nobi Plain, one of the largest sedimentary plains in Japan, is discussed with respect to the possibility of resonance of long-period structures. Finally, we introduce a recently developed long-stroke shaking table that is intended to convince structural engineers and building owners to take adequate countermeasures against large floor response in high-rise buildings because of resonance. Presented at the International Workshop on Long-Period Ground Motion Simulation and Velocity Structures Earthquake Research Institute, University of Tokyo, Tokyo, November 14–15, 2006.  相似文献   

14.
A comparative analytical study of several control strategies for semi-active(SA) devices installed in baseisolated buildings aiming to reduce earthquake induced vibrations is presented.Three force tracking schemes comprising a linear controller plus a "clipped" algorithm and a nonlinear output feedback controller(NOFC) are considered to tackle this problem.Linear controllers include the integral controller(I),the linear quadratic regulator(LQR) and the model predictive controller(MPC).A single degree-of-freedom system subjected to input accelerograms representative of the Portuguese seismic actions are first used to validate and evaluate the feasibility of these strategies.The obtained results show that structural systems using SA devices can in general outperform those equipped with passive devices for lower fundamental frequency structural systems,namely base-isolated buildings.The effectiveness of the proposed strategies is also evaluated on a 10 storey base-isolated dual frame-wall building.The force tracking scheme with an integral controller outperforms the other three as well as the original structure and the structure equipped with passive devices.  相似文献   

15.
框架隔震建筑设计方法及应用   总被引:1,自引:0,他引:1  
基于《建筑抗震设计规范》(GB50011-2001)的有关规定,介绍了框架结构房屋的隔震设计方法。为方便工程技术人员了解和掌握隔震技术的应用,以框架结构为例,指出了采用隔震技术的设计要点和步骤,并给出实例来具体说明。  相似文献   

16.
Base isolation can be used both to protect the structure and simultaneously to reduce the response of internal equipment. The seismic response of a base-isolated structure has been studied through the shaking table test or numerical calculation before. The object of this paper is to analyse a base-isolated structure by a different analytical approach—perturbation analysis. Recognizing that the horizontal stiffness of an isolation system is much smaller than that of the superstructure, the mathematical expressions of the modal properties of base-isolated structures are derived by the perturbation method in terms of the modal properties of the superstructure and used to study the dynamic response of superstructure and attached equipment in the base-isolated building. This study shows that the first base-isolated mode not only controls the superstructural response but also dominates the response of high-frequency attachment. The contribution of higher modes to the response of base-isolated structures, which is proportional to the horizontal stiffness of isolation system, is very small.  相似文献   

17.
For super high-rise buildings,the vibration period of the basic mode is several seconds,and it is very close to the period of the fluctuating wind.The damping of super high-rise buildings is low,so super high-rise buildings are very sensitive to fluctuating wind.The wind load is one of the key loads in the design of super high-rise buildings.It is known that only the basic mode is needed in the wind-response analysis of tall buildings.However,for super high-rise buildings,especially for the acceleration response,because of the frequency amplification of the high modes,the high modes and the mode coupling may need to be considered.Three typical super high-rise projects with the SMPSS in wind tunnel tests and the random vibration theory method were used to analyze the effect of high modes on the wind-induced response.The conclusions can be drawn as follows.First,for the displacement response,the basic mode is dominant,and the high modes can be neglected.Second,for the acceleration response,the high modes and the mode coupling should be considered.Lastly,the strain energy of modes can only give the vibration energy distribution of the high-rise building,and it cannot describe the local wind-induced vibration of high-rise buildings,especially for the top acceleration response.  相似文献   

18.
Optimal control of base-isolated and non-base-isolated buildings subjected to earthquake excitation is considered. The control force at any instant is determined on-line through minimizing a quadratic time-dependent performance index based on the total energy imparted to the structure and the control effect. This control algorithm is based upon the use of discrete actuators and sensors that exert the control force and monitor the response of the building. Having constant gain matrices makes this algorithm efficient and easy to implement. The effect of time delay on the efficiency of the algorithm is investigated. Comparisons have been made to demonstrate the effectiveness of the proposed method.  相似文献   

19.
Amplification of structural response of r.c. base-isolated structures is expected under near-fault ground motions, yet there is a lack of knowledge of their behavior in the case of fire. To investigate the nonlinear seismic response following a fire, an incremental dynamic analysis is carried out on five-storey r.c. base-isolated framed buildings with fire-protected High-Damping-Laminated-Rubber Bearings (HDLRBs), designed in line with the Italian seismic code. Horizontal components of near-fault ground motions characterized by forward-directivity or fling-step pulse-type are considered. The nonlinear seismic response of base-isolated structures in a no fire situation is compared with that in the event of fire, at 45 (i.e. R45) and 60 (i.e. R60) minutes of fire resistance, assuming both damaged (i.e. DS) and repaired (i.e. RS) stiffness conditions. Five fire scenarios are considered assuming the fire compartment confined to the area of the first level (i.e. F1), the first two (i.e. F1/2) and the upper (i.e. Fi, i=3–5) levels, with the parametric temperature–time fire curve evaluated in accordance with Eurocode 1. The nonlinear seismic analysis is performed by using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial-stress-like iterative procedure. At each step of the analysis, plastic conditions are checked at the critical (end) sections of the girders and columns, where thermal mapping with reduced mechanical properties is evaluated with the 500 °C isotherm method proposed by Eurocode 2. A viscoelastic model with variable stiffness properties in the horizontal and vertical directions, depending on the axial force and lateral deformation, simulates the response of an HDLRB.  相似文献   

20.
应急指挥中心是核电厂应为紧急核事故而专设的指挥中心,本文对某核电厂应急指挥中心进行基础隔震设计,分析了隔震效果;建立了各楼层的楼层反应谱,对比分析了隔震前后结构楼层反应谱与目标反应谱的关系。结果表明,隔震后结构明显降低了应急指挥中心的地震反应,同时,其楼层反应谱也大大降低,确保核电厂应急指挥中心在应急抢险中充分发挥其功能作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号