首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper describes methods and results of research for incorporating four different parameterized wave breaking and dissipation formulas in a coastal wave prediction model. Two formulations assume the breaking energy dissipation to be limited by the Rayleigh distribution, whereas the other two represent the breaking wave energy by a bore model. These four formulations have been implemented in WABED, a directional spectral wave model based on the wave action balance equation with diffraction, reflection, and wave–current interaction capabilities. Four parameterized wave breaking formulations are evaluated in the present study using two high-quality laboratory data sets. The first data set is from a wave transformation experiment at an idealized inlet entrance, representing four incident irregular waves in a slack tide and two steady-state ebb current conditions. The second data set is from a laboratory study of wave propagation over a complex bathymetry with strong wave-induced currents. Numerical simulation results show that with a proper breaking formulation the wave model can reproduce laboratory data for waves propagating over idealized or complicated bathymetries with ambient currents. The extended Goda wave breaking formulation with a truncated Rayleigh distribution, and the Battjes and Janssen formulation with a bore model produced the best agreement between model and data.  相似文献   

2.
In many ecosystem models based on empirical formulations, parameters generally are calibrated in order to achieve the best fit between measured and simulated chlorophyll a standing stocks. An accurate calibration of rate processes as primary production rarely is taken into account. In this paper, we test the usefulness of calibration of phytoplankton photosynthetic processes in an ecosystem model using field primary production data. We used 18 months of photosynthetic process data from the Baie des Veys ecosystem (Normandy, France). Five empirical formulations of photosynthesis–irradiance curve models amongst the most widely used were tested. In each formulation, the variability of photosynthetic parameters (i.e. the light-saturated rate of photosynthesis (PmaxB) and the initial slope of the photosynthesis–light curve (αB)) was considered depending on environmental factors (temperature and nutrient availability). The fit of the five equations as well as the calibration of parameters on field measurements (i.e. the light-saturated rate of photosynthesis (PrefB), the initial slope of the photosynthesis–light curve (αrefB), the half-saturation constant for nitrogen (KN) and silicates uptake (KSi), and the coefficient in the exponential thermal effect (KT)) was performed using the whole available data set of P vs. E curves (n = 143, P vs. E curves). Then, the Smith formulation allowing the best simulation of the Baie des Veys primary production and corresponding parameters were introduced in an ecosystem box model. This formulation led directly to a satisfactory representation of the Baie des Veys phytoplankton dynamics without additional calibration. Results obtained were compared with a more classical approach in which ecosystem models were calibrated using published values of parameters. This comparison showed that for the two years studied, annual primary production estimated through the ecosystem model was 13% and 26% higher with our approach than with the more classical approach. This work emphasizes the importance of accurately representing rate processes in ecosystem models in order to adequately simulate production as well as standing stocks.  相似文献   

3.
Climate change, reduced sea ice and increased ice-free waters over extended areas for longer summer periods potentially lead to increased wave energy in the Beaufort Sea (Wang et al., 2015; Khon et al., 2014) [1], [2], which is a major concern for coastal and offshore engineering activities. We compare two spectral wave models SWAN (Simulating WAves Nearshore) and MIKE 21 SW (hereafter MIKE21) in simulations of storm-generated waves in the Mackenzie Delta region of the southern Beaufort Sea. SWAN model simulations are performed using two nested grids system, whereas MIKE21 uses an unstructured grid system. Forcing fields are defined by hourly hindcast winds. Moving ice edge boundaries are incorporated during storm simulations. Modelled wave spectra from four storms are shown to compare well with field observations. Two established whitecapping formulations in SWAN are investigated: one dependent on mean spectral wave steepness, and the other on local spectral steepness. For the Beaufort Sea study area, we suggest that SWAN wave simulations using the latter local spectral steepness formulation are better than those using the former mean spectral steepness formulation. MIKE21 simulations also tend to agree with SWAN results using the latter whitecapping formulation.  相似文献   

4.
《Coastal Engineering》2006,53(1):39-48
This paper describes a simple method for modelling wave breaking over submerged structures, with the view of using such modelling approach in a coastal area morphodynamic modelling system.A dominant mechanism for dissipating wave energy over a submerged breakwater is depth-limited wave breaking. Available models for energy dissipation due to wave breaking are developed for beaches (gentle slopes) and require further modifications to model wave breaking over submerged breakwaters.In this paper, wave breaking is split into two parts, namely: 1) depth-limited breaking modelled using Battjes and Janssen's (1978) theory [Battjes, J.A. and Jannsen, J.P.F.M. (1978). Energy loss and setup due to breaking of random waves. Proceedings of the 16th Int. Conf. Coast. Eng., Hamburg, Germany, pp. 569-587.] and 2) steepness limited breaking modelled using an integrated form of the Hasselmann's whitecapping dissipation term, commonly used in fully spectral wind–wave models. The parameter γ2, governing the maximum wave height at incipient breaking (Hmax = γ2d) is used as calibration factor to tune numerical model results to selected laboratory measurements. It is found that γ2 varies mainly with the relative submergence depth (ratio of submergence depth at breakwater crest to significant wave height), and a simple relationship is proposed. It is shown that the transmission coefficients obtained using this approach compare favourably with those calculated using published empirical expressions.  相似文献   

5.
We describe experiments with multi-directional focused waves interacted with a vertical circular cylinder in a 3D wave basin. The focus of this study is on the run-up of multi-directional focused waves, wave forces, and wave pressures on the cylinder. Part I, the study on wave run-up, has already been presented by Li et al. (2012). In this paper, the analysis of the wave force on the vertical cylinder is presented.In this experiment, a cylinder with 0.25 m in diameter was adopted and different wave parameters, such as focused wave amplitude, peak frequency, frequency bandwidth and directional spreading index, are considered. The model scale kpa (kp is the wave number corresponding to peak frequency, a is the radium of the cylinder) varies from 0.32 to 0.65. The maximum forces of multi-directional focused wave on cylinder were measured and investigated. The results showed that the wave parameters have a significant influence on the wave force, and that the spatial profile of the surface of multi-directional focused wave can also affect its force on the cylinder, which is different from two-dimensional wave. In addition, the ‘secondary loading cycle’ phenomenon was also observed and discussed. In our experiments, the ‘secondary loading cycles’ occur when kA > 0.36 for all cases. While in some referred small scale experiments, the secondary load cycles are observed even for kA = 0.2, when the waves are longer enough. To larger model scale, the pronounced secondary load cycle occurs with larger wave steepness waves.  相似文献   

6.
Results of drag coefficient(CD) from field observations and laboratory wave tank experiments indicate that the operational wave model can overestimate wind energy input under high wind conditions. The wind-wave interaction source term in WAVEWATCH Ⅲ has been modified to examine its behavior with tropical cyclone wind forcing. Using high resolution wind input,numerical experiments under idealized wind field and tropical cyclone Bonnie(1998) were designed to evaluate performance of the modified models. Both experiments indicate that the modified models with reduced CD significantly decrease wind energy input into the wave model and then simulate lower significant wave height(SWH) than the original model. However,the effects on spatial distribution of SWH,mean wavelength,mean wave direction,and directional wave spectra are insignificant. Due to the reduced wind energy input,the idealized experiment shows that the modified models simulate lower SWH than the original model in all four quadrants. The decrease in the front quadrants is significantly larger than that in the rear quadrants;it is larger under higher winds than lower winds. The realistic experiment on tropical cyclone Bonnie shows that the modified model with the various downward trends of CD in high winds creates a simulation that agrees best with scanning radar altimeter observations.  相似文献   

7.
《Coastal Engineering》1998,35(3):185-209
Two depth inversion algorithms (DIA) applicable to coastal waters are developed, calibrated, and validated based on results of computations of periodic waves shoaling over mild slopes, in a two-dimensional numerical wave tank based on fully nonlinear potential flow (FNPF) theory. In actual field situations, these algorithms would be used to predict the cross-shore depth variation h based on sets of values of wave celerity c and length L, and either wave height H or left–right asymmetry s2/s1, simultaneously measured at a number of locations in the direction of wave propagation, e.g., using video or radar remote sensing techniques. In these DIAs, an empirical relationship, calibrated for a series of computations in the numerical wave tank, is used to express c as a function of relative depth koh and deep water steepness koHo. To carry out depth inversion, wave period is first predicted as the mean of observed L/c values, and Ho is then predicted, either based on observed H or s2/s1 values. The celerity relationship is finally inverted to predict depth h. The algorithms are validated by applying them to results of computations for cases with more complex bottom topography and different incident waves than in the original calibration computations. In all cases, root-mean-square (rms)-errors for the depth predictions are found to be less than a few percent, whereas depth predictions based on the linear dispersion relationship—which is still the basis for many state-of-the-art DIAs—have rms-errors 5 to 10 times larger.  相似文献   

8.
To provide coastal engineers and scientists with a detailed inter-comparison of widely used parametric wave transformation models, several models are tested and calibrated with extensive observations from six field experiments on barred and unbarred beaches. Using previously calibrated (“default”) values of a free parameter γ, all models predict the observations reasonably well (median root-mean-square wave height errors are between 10% and 20%) at all field sites. Model errors can be reduced by roughly 50% by tuning γ for each data record. No tuned or default model provides the best predictions for all data records or at all experiments. Tuned γ differ for the different models and experiments, but in all cases γ increases as the hyperbolic tangent of the deep-water wave height, Ho. Data from two experiments are used to estimate empirical, universal curves for γ based on Ho. Using the new parameterization, all models have similar accuracy, and usually show increased skill relative to using default γ.  相似文献   

9.
Using data from the European remote sensing scatterometer(ERS-2) from July 1997 to August 1998,global distributions of the air-sea CO2 transfer velocity and flux are retrieved.A new model of the air-sea CO2 transfer velocity with surface wind speed and wave steepness is proposed.The wave steepness(5) is retrieved using a neural network(NN) model from ERS-2 scatterometer data,while the wind speed is directly derived by the ERS-2 scatterometer.The new model agrees well with the formulations based on the wind speed and the variation in the wind speed dependent relationships presented in many previous studies can be explained by this proposed relation with variation in wave steepness effect.Seasonally global maps of gas transfer velocity and llux are shown on the basis of the new model and the seasonal variations of the transfer velocity and llux during the 1 a period.The global mean gas transfer velocity is 30 cm/h after area-weighting and Schmidt number correction and its accuracy remains calculation with in situ data.The highest transfer velocity occurs around 60°N and 60°S,while the lowest on the equator.The total air to sea CO2 llux(calculated by carbon) in that year is 1.77 Pg.The strongest source of CO2 is in the equatorial east Pacific Ocean, while the strongest sink is in the 68°N.Full exploration of the uncertainty of this estimate awaits further data.An effectual method is provided to calculate the effect of waves on the determination of air-sea CO2 transfer velocity and fluxes with ERS-2 scatterometer data.  相似文献   

10.
We have employed laboratory and numerical experiments in order to investigate propagation of waves in both long and short-crested wave fields in deep water. For long-crested waves with steepness, ϵ = kcac = 0.1 (a fairly extreme case), reliable prediction can be performed with the modified nonlinear Schrödinger equation up to about 40 characteristic wavelengths. For short-crested waves the accuracy of prediction is strongly reduced with increasing directional spread.  相似文献   

11.
Wave growth in slanting fetch (with wind blowing obliquely off a coast) is investigated with 7 years worth of routine wave measurements in Lake IJssel in The Netherlands and with the SWAN wave model. Two aspects are considered in particular for this case: the validity of the concept of effective fetch and the role of the non-linear four-wave interactions. For slanting and parallel fetch conditions, we found some significant deviations from the effective fetch assumption, leading to 20–35% mismatch in either the peak period Tp or the significant wave height Hm0 respectively. However, the effect of discrepancies between various widely accepted wave growth formulas turned out to be even more important. The wave directions during slanting fetch are significantly ‘steered’ by the coastline, especially in the first kilometre(s) off the coast. The role of the non-linear four-wave interactions is investigated by running the SWAN (version 40.41) wave model with three different quadruplet formulations. Exact quadruplet methods (Xnl) yielded relatively strong wave steering, despite the four-wave interactions being relatively weak. Application of Xnl did not lead to better overall agreement with measurements — improvements for the mean wave period Tm01 were offset by some deterioration for the wave height Hm0.  相似文献   

12.
《Coastal Engineering》1999,37(1):1-36
Seasonally open tidal inlets usually occur in microtidal, wave-dominated coastal environments where strong seasonal variations of streamflow and wave climate are experienced. These inlets are closed to the ocean for a number of months every year due to the formation of sand bars across their entrances. The annual closure of these inlets inhibits ocean access for boats and could also cause deterioration of water quality in the estuary/lagoon connected to the inlet. As these estuaries/lagoons are commonly used as harbours or recreational facilities there is increased interest in keeping the inlets permanently open. A process-based numerical model capable of simulating inlet closure is invaluable in terms of identifying the natural processes governing inlet closure. As a further step, this type of model could also be used to determine the effect of any proposed engineering solutions to keep the inlet open on the adjacent beaches. A morphodynamic model capable of simulating the seasonal closure of inlets, which includes both longshore (LST) and cross-shore transport (CST) processes, was developed in this study. Application of the model to two idealised scenarios indicated that cross-shore processes govern inlet behaviour when LST rates were low. The Dean's criterion [Dean, R.G., 1973. Heuristic models of sand transport in the surf zone. Proc. Conf. on Eng. Dynamics in the Surf Zone, Sydney, pp. 208–214.] for on–offshore transport was employed to show that, for small offshore wave incidence angles, onshore transport aided inlet closure when the offshore wave steepness (Ho/Lo) was less than the critical wave steepness (Ho/Lo)crit, while offshore transport helped to keep the inlet open when (Ho/Lo) was greater than (Ho/Lo)crit. LST was found to be the dominant process leading to inlet closure when (Ho/Lo) was much larger than (Ho/Lo)crit or when the offshore wave incidence angle was large.  相似文献   

13.
The applicability of existing nonlinear (triad) spectral models for steep slopes (0.1–0.2) characteristic of reef environments was investigated, using both deterministic (phase-resolving) and stochastic (phased-averaged) formulations. Model performance was tested using laboratory observations of unidirectional wave transformation over steep and smooth bathymetry profiles. The models, developed for mild slopes, were implemented with minimal modifications (the inclusion of breaking parametrizations and linear steep-slope corrections) required by laboratory data. The deterministic model produced typically more accurate predictions than the stochastic one, but the phase averaged formulation proved fast enough to allow for an inverse modeling search for the optimal breaking parametrization. The effects of the additional assumptions of the stochastic approach resulted in a slower than observed evolution of the infragravity band. Despite the challenge posed by the fast wave evolution and energetic breaking characteristic to the steep reef slopes, both formulations performed overall well, and should be considered as good provisional candidates for use in numerical investigation of wave–current interaction processes on steep reefs.  相似文献   

14.
Adjustment of Wind Waves to Sudden Changes of Wind Speed   总被引:1,自引:0,他引:1  
An experiment was conducted in a small wind-wave facility at the Ocean Engineering Laboratory, California, to address the following question: when the wind speed changes rapidly, how quickly and in what manner do the short wind waves respond? To answer this question we have produced a very rapid change in wind speed between U low (4.6 m s?1) and U high (7.1 m s?1). Water surface elevation and air turbulence were monitored up to a fetch of 5.5 m. The cycle of increasing and decreasing wind speed was repeated 20 times to assure statistical accuracy in the measurement by taking an ensemble mean. In this way, we were able to study in detail the processes by which the young laboratory wind waves adjust to wind speed perturbations. We found that the wind-wave response occurs over two time scales determined by local equilibrium adjustment and fetch adjustment, Δt 1/T = O(10) and Δt 2/T = O(100), respectively, in the current tank. The steady state is characterized by a constant non-dimensional wave height (H/gT 2 or equivalently, the wave steepness for linear gravity waves) depending on wind speed. This equilibrium state was found in our non-steady experiments to apply at all fetches, even during the long transition to steady state, but only after a short initial relaxation Δt 1/T of O(10) following a sudden change in wind speed. The complete transition to the new steady state takes much longer, Δt 2/T of O(100) at the largest fetch, during which time energy propagates over the entire fetch along the rays (dx/dt = c g) and grows under the influence of wind pumping. At the same time, frequency downshifts. Although the current study is limited in scale variations, we believe that the suggestion that the two adjustment time scales are related to local equilibrium adjustment and fetch adjustment is also applicable to the ocean.  相似文献   

15.
Experimental investigations on perforated hollow piles in two rows were conducted in a two dimensional wave flume. The influence of water depth, incident wave steepness, clear spacing between the piles and the spacing of pile rows on transmission coefficient have been studied. The effect of staggering of piles in rows is investigated. The results are also compared with the results of experiments on piles without perforations. The investigations have revealed that perforated piles attenuate more wave energy than non-perforated piles. The transmission coefficient Kt decreases as the wave steepness increases for both non-perforated and perforated piles. For non-perforated piles as relative clear spacing between the piles (b/D) decreases, for waves of higher steepness, Kt decreases while for perforated piles as b/D decreases, Kt is decreasing for all the steepness considered. As the relative clear spacing between the pile rows (B/D) increases Kt initially decreases till B/D is around one and later it starts increasing for both non-perforated and perforated piles. Staggering of piles has little effect on Kt. It is also found that water depth has insignificant influence on transmission coefficient at higher steepness for both perforated and non-perforated piles. Wave period alone does not directly influence transmission coefficient Kt.  相似文献   

16.
Coastal structures may cease to function properly due to seabed scouring. Hence, prediction of the maximum scour depth is of great importance for the protection of these structures. Since scour is the result of a complicated interaction between structure, sediment, and incoming waves, empirical equations are not as accurate as machine learning schemes, which are being widely employed for the coastal engineering modeling. In this paper, which can be regarded as an extension of Pourzangbar et al. (2016), two soft computing methods, a support vector regression (SVR), and a model tree algorithm (M5′), have been implemented to predict the maximum scour depth due to non-breaking waves. The models predict the relative scour depth (Smax/H0) on the basis of the following variables: relative water depth at the toe of the breakwater (htoe/L0), Shields parameter (θ), non-breaking wave steepness (H0/L0), and reflection coefficient (Cr). 95 laboratory data points, extracted from dedicated experimental studies, have been used for developing the models, whose performances have been assessed on the basis of statistical parameters. The results suggest that all of the developed models predict the maximum scour depth with high precision, the M5′ model performed marginally better than the SVR model and also allowed to define a set of transparent and physically sound relationships. Such relationships, which are in good agreement with the existing empirical findings, show that the relative scour depth is mainly affected by wave reflection.  相似文献   

17.
The boundary layer characteristics beneath waves transforming on a natural beach are affected by both waves and wave-induced currents, and their predictability is more difficult and challenging than for those observed over a seabed of uniform depth. In this research, a first-order boundary layer model is developed to investigate the characteristics of bottom boundary layers in a wave–current coexisting environment beneath shoaling and breaking waves. The main difference between the present modeling approach and previous methods is in the mathematical formulation for the mean horizontal pressure gradient term in the governing equations for the cross-shore wave-induced currents. This term is obtained from the wave-averaged momentum equation, and its magnitude depends on the balance between the wave excess momentum flux gradient and the hydrostatic pressure gradient due to spatial variations in the wave field of propagating waves and mean water level fluctuations. A turbulence closure scheme is used with a modified low Reynolds number k-ε model. The model was validated with two published experimental datasets for normally incident shoaling and breaking waves over a sloping seabed. For shoaling waves, model results agree well with data for the instantaneous velocity profiles, oscillatory wave amplitudes, and mean velocity profiles. For breaking waves, a good agreement is obtained between model and data for the vertical distribution of mean shear stress. In particular, the model reproduced the local onshore mean flow near the bottom beneath shoaling waves, and the vertically decreasing pattern of mean shear stress beneath breaking waves. These successful demonstrations for wave–current bottom boundary layers are attributed to a novel formulation of the mean pressure gradient incorporated in the present model. The proposed new formulation plays an important role in modeling the boundary layer characteristics beneath shoaling and breaking waves, and ensuring that the present model is applicable to nearshore sediment transport and morphology evolution.  相似文献   

18.
An improved formulation to describe breaking wave energy dissipation is presented and incorporated into a previous parametric cross-shore wave transformation model [Baldock, T.E., Holmes, P., Bunker, S., Van Weert, P., 1998. Cross-shore hydrodynamics within an unsaturated surf zone. Coastal Engineering 34, 173–196]. The new formulation accounts for a term in the bore dissipation equation neglected in some previous modelling, but which is shown to be important in the inner surf zone. The only free model parameter remains the choice of γ, the ratio of wave height to water depth at initial breaking, and a well-established standard parameter is used for all model runs. The proposed model is compared to three sets of experimental data and a previous version of the model which was extensively calibrated against field and laboratory data. The model is also compared to the widely used model presented by Thornton and Guza (1983) [Thornton, E.B., Guza, R.T., 1983. Transformation of wave height distribution. Journal of Geophysical Research 88 (No.C10), 5925–5938].  相似文献   

19.
A bio-optical dataset collected during the 1998?C2007 period in the Yellow and East China Seas (YECS) was used to provide alternative empirical ocean-color algorithms in the retrieval of chlorophyll-a (Chl-a), total suspended matter (TSM), and colored dissolved organic matter (CDOM) absorption coefficients at 440 nm (ag440). Assuming that remote-sensing reflectance (Rrs) could be retrieved accurately, empirical algorithms for TChl (regionally tuned Tassan??s Chl-a algorithm) in case-1 waters (TChl2i in case-2 waters), TTSM (regionally tuned Tassan??s TSM algorithm), and Tag440 or Cag440 (regionally tuned Tassan??s or Carder??s ag440 algorithm) were able to retrieve Chl-a, TSM, and ag440 with uncertainties as high as 35, 46, and 35%, respectively. Applying the standard SeaWiFS Rrs, TChl was not viable in the eastern part of the YECS, which was associated with an inaccurate SeaWiFS Rrs retrieval because of improper atmospheric correction. TChl behaved better than other algorithms in the turbid case-2 waters, although overestimation was still observed. To retrieve more reliable Chl-a estimates with standard SeaWiFS Rrs in turbid water (a proxy for case-2 waters), we modified TChl for data with SeaWiFS normalized water-leaving radiance at 555 nm (nLw555) > 2 mW cm?2 ??m?1 sr?1 (TChl2s). Finally, with standard SeaWiFS Rrs, we recommend switching algorithms from TChl2s (for case-2 waters) to MOCChl (SeaWiFS-modified NASA OC4v4 standard algorithm for case-1 waters) for retrieving Chl-a, which resulted in uncertainties as high as 49%. To retrieve TSM and ag440 using SeaWiFS Rrs, we recommend empirical algorithms for TTSM (pre-SeaWiFS-modified form) and MTag440 or MCag440 (SeaWiFS Rrs-modified forms of Tag440 or Cag440). These could retrieve with uncertainties as high as 82 and 52%, respectively.  相似文献   

20.
In this paper, we present and evaluate three long-term wave models for application in simulation-based design of ships and marine structures. Designers and researchers often rely on historical weather data as a source for ocean area characteristics based on hindcast datasets or in-situ measurements. The limited access and size of historical datasets reduces repeatability of simulations and analyses, making it difficult to assess the sampling variability of performance and loads on marine vessels and structures. Markov, VAR and VARMA wave models, producing independent long-term time series of significant wave height (Hs) and spectral peak period (Tp), is presented as possible solutions to this problem. The models are tested and compared by addressing how the models affect interpretation of design concepts and the ability to replicate statistical and physical characteristics of the wave process. Our results show that the VAR and VARMA models perform sufficiently in describing design performance, but does not capture the physical process fully. The Markov model is found to perform worst of the tested models in the applied tests, especially for measures covering several consecutive sea states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号