首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract— We report the results of an extensive study of the Fountain Hills chondritic meteorite. This meteorite is closely related to the CBa class. Mineral compositions and O‐isotopic ratios are indistinguishable from other members of this group. However, many features of Fountain Hills are distinct from the other CB chondrites. Fountain Hills contains 23 volume percent metal, significantly lower than other members of this class. In addition, Fountain Hills contains porphyritic chondrules, which are extremely rare in other CBa chondrites. Fountain Hills does not appear to have experienced the extensive shock seen in other CB chondrites. The chondrule textures and lack of fine‐grained matrix suggests that Fountain Hills formed in a dust‐poor region of the early solar system by melting of solid precursors. Refractory siderophiles and lithophile elements are present in near‐CI abundances (within a factor of two, related to the enhancement of metal). Moderately volatile and highly volatile elements are significantly depleted in Fountain Hills. The abundances of refractory siderophile trace elements in metal grains are consistent with condensation from a gas that is reduced relative to solar composition and at relatively high pressures (10?3bars). Fountain Hills experienced significant thermal metamorphism on its parent asteroid. Combining results from the chemical gradients in an isolated spinel grain with olivine‐spinel geothermometry suggests a peak temperature of metamorphism between 535 °C and 878 °C, similar to type‐4 ordinary chondrites.  相似文献   

2.
Cluster chondrites are characterized by close‐fit textures of deformed and indented chondrules, taken as evidence for hot chondrule accretion (Metzler 2012 ). We investigated seven cluster chondrite clasts from six brecciated LL3 chondrites and measured their bulk oxygen isotopic and chemical composition, including REE, Zr, and Hf. The same parameters were measured in situ on 93 chondrules and 4 interchondrule matrix areas. The CI‐normalized REE patterns of the clasts are flat, showing LL‐chondritic concentrations. The mean chemical compositions of chondrules in clasts and other LL chondrites are indistinguishable and we conclude that cluster chondrite chondrules are representative of the normal LL chondrule population. Type II chondrules are depleted in MgO, Al2O3 and refractory lithophiles (REE, Zr, Hf) by factors between 0.65 and 0.79 compared to type I chondrules. The chondrule REE patterns are basically flat with slight LREE < HREE fractionations. Many chondrules exhibit negative Eu anomalies while matrix shows a complementary pattern. Chondrules scatter along a correlation line with a slope of 0.63 in the oxygen 3‐isotope diagram, interpreted as the result of O‐isotope exchange between chondrule melts and 18O‐rich nebular components. In one clast, a distinct anticorrelation between chondrule size and δ18O is found, which may indicate a more intense oxygen isotope exchange by smaller chondrules. In some clasts the δ18O values of type I chondrules are correlated with concentrations of SiO2 and MnO and anticorrelated with MgO, possibly due to the admixture of a SiO2‐ and MnO‐rich component to chondrule melts during oxygen isotope exchange. Two chondrules with negative anomalies in Sm, Eu, and Yb were found and may relate their precursors to refractory material known from group III CAIs. Furthermore, three chondrules with strong LREE > HREE and Zr/Hf fractionations were detected, whose formation history remains to be explained.  相似文献   

3.
High‐precision oxygen three‐isotope ratios were measured for four mineral phases (olivine, low‐Ca and high‐Ca pyroxene, and plagioclase) in equilibrated ordinary chondrites (EOCs) using a secondary ion mass spectrometer. Eleven EOCs were studied that cover all groups (H, L, LL) and petrologic types (4, 5, 6), including S1–S4 shock stages, as well as unbrecciated and brecciated meteorites. SIMS analyses of multiple minerals were made in close proximity (mostly <100 μm) from several areas in each meteorite thin section, to evaluate isotope exchange among minerals. Oxygen isotope ratios in each mineral become more homogenized as petrologic type increases with the notable exception of brecciated samples. In type 4 chondrites, oxygen isotope ratios of olivine and low‐Ca pyroxene are heterogeneous in both δ18O and Δ17O, showing similar systematics to those in type 3 chondrites. In type 5 and 6 chondrites, oxygen isotope ratios of the four mineral phases plot along mass‐dependent fractionation lines that are consistent with the bulk average Δ17O of each chondrite group. The δ18O of three minerals, low‐Ca and high‐Ca pyroxene and plagioclase, are consistent with equilibrium fractionation at temperatures of 700–1000 °C. In most cases the δ18O values of olivine are higher than those expected from pyroxene and plagioclase, suggesting partial retention of premetamorphic values due to slower oxygen isotope diffusion in olivine than pyroxene during thermal metamorphism in ordinary chondrite parent bodies.  相似文献   

4.
To examine the iron (Fe) isotopic heterogeneities of CI and ordinary chondrites, we have analyzed several large chips (approximately 1 g) from three CI chondrites and three ordinary chondrites (LL5, L5, and H5). The Fe isotope compositions of five different samples of Orgueil, one from Ivuna and one from Alais (CI chondrites), are highly homogeneous. This new dataset provides a δ56Fe average of 0.02 ± 0.04‰ (2SE, n = 7), which represents the best available value for the Fe isotopic composition of CI chondrites and probably the best estimate of the bulk solar system. We conclude that the homogeneity of CI chondrites reflects the initial Fe isotopic homogeneity of the well‐mixed solar nebula. In contrast, larger (up to 0.26‰ in δ56Fe) isotopic variations have been found between separate approximately 1 g pieces of the same ordinary chondrite sample. The Fe isotope heterogeneities in ordinary chondrites appear to be controlled by the abundances of chondritic components, specifically chondrules, whose Fe isotope compositions have been fractionated by evaporation and recondensation during multiple heating events.  相似文献   

5.
Volatile elements play a key role in the dynamics of planetary evolution. Extensive work has been carried out to determine the abundance, distribution, and source(s) of volatiles in planetary bodies such as the Earth, Moon, and Mars. A recent study showed that the water in apatite from eucrites has similar hydrogen isotopic compositions compared to water in terrestrial rocks and carbonaceous chondrites, suggesting that water accreted very early in the inner solar system given the ancient crystallization ages (~4.5 Ga) of eucrites. Here, the measurements of water (reported as equivalent H2O abundances) and the hydrogen isotopic composition (δD) of apatite from five basaltic eucrites and one cumulate eucrite are reported. Apatite H2O abundances range from ~30 to ~3500 ppm and are associated with a weighted average δD value of ?34 ± 67‰. No systematic variations or correlations are observed in H2O abundance or δD value with eucrite geochemical trend or metamorphic grade. These results extend the range of previously published hydrogen isotope data for eucrites and confirm the striking homogeneity in the H‐isotopic composition of water in eucrites, which is consistent with a common source for water in the inner solar system.  相似文献   

6.
We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are δ13C ≈ 25–75‰ and δ18O ≈ 15–35‰, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0–130 °C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (δ18O ≈ 5‰) and the C isotopes were controlled by equilibrium with CO and/or CH413C ≈ ?33‰ or ?20‰ for CO‐ or CH4‐dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (δ18O ≈ ?5.5‰, and δ13C ≈ ?31‰ or ?17‰ for CO‐ or CH4‐dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10–40 °C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (δ13C ≈ 65–80‰) and less altered samples (δ13C ≈ 30–40‰). This bimodality can still be explained by precipitation from fluids with the same isotopic composition (δ18O ≈ ?9.25‰, and δ13C ≈ ?21‰ or ?8‰ for CO‐ or CH4‐dominated systems, respectively) if the less altered CRs had higher mole fractions of CO2 in their fluids. Semarkona and Kaba carbonates have some of the lightest C isotopic compositions of the meteorites studied here, probably because they formed at higher temperatures and/or from more CO2‐rich fluids. The fluids responsible for the alteration of chondrites and from which the carbonates formed were almost certainly accreted as ices. By analogy with cometary ices, CO2 and/or CO would have dominated the trapped volatile species in the ices. The chondrites studied are too oxidized for CO‐dominated fluids to have formed in their parent bodies. If CH4 was the dominant C species in the fluids during carbonate formation, it would have to have been generated in the parent bodies from CO and/or CO2 when oxidation of metal by water created high partial pressures of H2. The fact that the chondrite carbonate C/H2O mole ratios are of the order predicted for CO/CO2‐H2O ices that experienced temperatures of >50–100 K suggests that the chondrites formed at radial distances of <4–15 AU.  相似文献   

7.
Lithium isotope and abundance data are reported for Apollo 15 and 17 mare basalts and the LaPaz low‐Ti mare basalt meteorites, along with lithium isotope data for carbonaceous, ordinary, and enstatite chondrites, and chondrules from the Allende CV3 meteorite. Apollo 15 low‐Ti mare basalts have lower Li contents and lower δ7Li (3.8 ± 1.2‰; all uncertainties are 2 standard deviations) than Apollo 17 high‐Ti mare basalts (δ7Li = 5.2 ± 1.2‰), with evolved LaPaz mare basalts having high Li contents, but similar low δ7Li (3.7 ± 0.5‰) to Apollo 15 mare basalts. In low‐Ti mare basalt 15555, the highest concentrations of Li occur in late‐stage tridymite (>20 ppm) and plagioclase (11 ± 3 ppm), with olivine (6.1 ± 3.8 ppm), pyroxene (4.2 ± 1.6 ppm), and ilmenite (0.8 ± 0.7 ppm) having lower Li concentrations. Values of δ7Li in low‐ and high‐Ti mare basalt sources broadly correlate negatively with 18O/16O and positively with 56Fe/54Fe (low‐Ti: δ7Li ≤4‰; δ56Fe ≤0.04‰; δ18O ≥5.7‰; high‐Ti: δ7Li >6‰; δ56Fe >0.18‰; δ18O <5.4‰). Lithium does not appear to have acted as a volatile element during planetary formation, with subequal Li contents in mare basalts compared with terrestrial, martian, or vestan basaltic rocks. Observed Li isotopic fractionations in mare basalts can potentially be explained through large‐degree, high‐temperature igneous differentiation of their source regions. Progressive magma ocean crystallization led to enrichment in Li and δ7Li in late‐stage liquids, probably as a consequence of preferential retention of 7Li and Li in the melt relative to crystallizing solids. Lithium isotopic fractionation has not been observed during extensive differentiation in terrestrial magmatic systems and may only be recognizable during extensive planetary magmatic differentiation under volatile‐poor conditions, as expected for the lunar magma ocean. Our new analyses of chondrites show that they have δ7Li ranging between ?2.5‰ and 4‰. The higher δ7Li in planetary basalts than in the compilation of chondrites (2.1 ± 1.3‰) demonstrates that differentiated planetary basalts are, on average, isotopically heavier than most chondrites.  相似文献   

8.
Abstract— I have determined the composition via instrumental neutron activation analysis of a bulk pristine sample of the Tagish Lake carbonaceous chondrite fall, along with bulk samples of the CI chondrite Orgueil and of several CM chondrites. Tagish Lake has a mean of refractory lithophile element/Cr ratios like those of CM chondrites, and distinctly higher than the CI chondrite mean. Tagish Lake exhibits abundances of the moderately volatile lithophile elements Na and K that are slightly higher than those of mean CM chondrites. Refractory through moderately volatile siderophile element abundances in Tagish Lake are like those of CM chondrites. Tagish Lake is distinct from CM chondrites in abundances of the most volatile elements. Mean CI‐normalized Se/Co, Zn/Co and Cs/Co for Tagish Lake are 0.68 ± 0.01, 0.71 ± 0.07 and 0.76 ± 0.02, while for all available CM chondrite determinations, these ratios lie between 0.31 and 0.61, between 0.32 and 0.58, and between 0.39 and 0.74, respectively. Considering petrography, and oxygen isotopic and elemental compositions, Tagish Lake is an ungrouped member of the carbonaceous chondrite clan. The overall abundance pattern is similar to those of CM chondrites, indicating that Tagish Lake and CMs experienced very similar nebular fractionations. Bells is a CM chondrite with unusual petrologic characteristics. Bells has a mean CI‐normalized refractory lithophile element/Cr ratio of 0.96, lower than for any other CM chondrite, but shows CI‐normalized moderately volatile lithophile element/Cr ratios within the ranges of other CM chondrites, except for Na which is low. Iridium, Co, Ni and Fe abundances are like those of CM chondrites, but the moderately volatile siderophile elements, Au, As and Sb, have abundances below the ranges for CM chondrites. Abundances of the moderately volatile elements Se and Zn of Bells are within the CM ranges. Bells is best classified as an anomalous CM chondrite.  相似文献   

9.
Abstract— The trace element distributions in the matrix of primitive chondrites were examined using four least‐contaminated matrix specimens from the polished sections of the Allende (CV) meteorite. Analysis of rare earth element (REE), Ba, Sr, Rb, and K abundances by isotope dilution mass spectrometry revealed that the elemental abundances of lithophile elements except for alkali metals (K, Rb) in the specimens of the Allende matrix studied here are nearly CI (carbonaceous Orgueil) chondritic (~1 × CI). Compared to refractory elements, all the matrix samples exhibited systematic depletion of the moderately volatile elements K and Rb (0.1–0.5 × CI). We suggest that the matrix precursor material did not carry significant amounts of alkali metals or that the alkalis were removed from the matrix precursor material during the parent body process and/or before matrix formation and accretion. The matrix specimens displayed slightly fractionated REE abundance patterns with positive Ce anomalies (CI‐normalized La/Yb ratio = 1.32–1.65; Ce/Ce* = 1.16–1.28; Eu/Eu* = 0.98–1.10). The REE features of the Allende matrix do not indicate a direct relationship with chondrules or calcium‐aluminum‐rich inclusions (CAIs), which in turn suggests that the matrix was not formed from materials produced by the breakage and disaggregation of the chondrules or CAIs. Therefore, we infer that the Allende matrix retains the REE features acquired during the condensation process in the nebula gas.  相似文献   

10.
Abstract— The CR group of carbonaceous chondrites may represent some of the most primitive extraterrestrial materials available for analysis. However, in contrast to other chondrite groups, the CR organic fraction is poorly characterized. The carbonaceous chondrite literature shows that relatively anhydrous thermal processing results in a condensed, poorly alkylated, O‐poor macromolecular material, while for aqueous processing the converse is true. Such characteristics can be used to discern the alteration histories of the carbonaceous chondrites. We have performed bulk elemental and isotopic analysis and flash pyrolysis on four CR chondrites (Renazzo, Al Rais, Elephant Moraine [EET] 87770, and Yamato [Y‐] 790112) to determine the nature of their organic component. Renazzo, Al Rais, and Y‐790112 release qualitatively similar pyrolysis products, although there are some variations. Al Rais' macromolecular structure contains substantially higher relative abundances of alkylated and oxidized species and relatively lighter δ15N, suggesting that it has endured more extensive aqueous processing than the other CR chondrites. Renazzo appears relatively unprocessed, with a low degree of alkylation, a lack of detectable nitrogen‐bearing components, and low methylnaphthalene ratio. EET 87770's low abundance of alkylated species suggests its macromolecular structure may be relatively condensed, with condensation potentially assisted by a period of mild thermal alteration.  相似文献   

11.
Abstract— The N and C abundances and isotopic compositions of acid-insoluble carbonaceous material in thirteen primitive chondrites (five unequilibrated ordinary chondrites, three CM chondrites, three enstatite chondrites, a CI chondrite and a CR chondrite) have been measured by stepped combustion. While the range of C isotopic compositions observed is only ~δ13C = 30%, the N isotopes range from δ15N ' -40 to 260%. After correction for metamorphism, presolar nanodiamonds appear to have made up a fairly constant 3–4 wt% of the insoluble C in all the chondrites studied. The apparently similar initial presolar nanodiamond to organic C ratios, and the correlations of elemental and isotopic compositions with metamorphic indicators in the ordinary and enstatite chondrites, suggest that the chondrites all accreted similar organic material. This original material probably most closely resembles that now found in Renazzo and Semarkona. These two meteorites have almost M-shaped N isotope release profiles that can be explained most simply by the superposition of two components, one with a composition between δ15N = -20 and -40% and a narrow combustion interval, the other having a broader release profile and a composition of δ15N ~ 260%. Although isotopically more subdued, the CI and the three CM chondrites all appear to show vestiges of this M-shaped profile. How and where the components in the acid-insoluble organics formed remains poorly constrained. The small variation in nanodiamond to organic C ratio between the chondrite groups limits the local synthesis of organic matter in the various chondrite formation regions to at most 30%. The most 15N-rich material probably formed in the interstellar medium, and the fraction of organic N in Renazzo in this material ranges from 40 to 70%. The isotopically light component may have formed in the solar system, but the limited range in nanodiamond to total organic C ratios in the chondrite groups is consistent with most of the organic material being presolar.  相似文献   

12.
Abstract– High‐precision Cu isotopic compositions have been measured for the metal phase of 29 iron meteorites from various groups and for four terrestrial standards. The data are reported as the δ65Cu permil deviation of the 65Cu/63Cu ratio relative to the NIST SRM 976 standard. Terrestrial mantle rocks have a very narrow range of variations and scatter around zero. In contrast, iron meteorites show δ65Cu approximately 2.3‰ variations. Different groups of iron meteorites have distinct δ65Cu values. Nonmagmatic IAB‐IIICD iron meteorites have similar δ65Cu (0.03 ± 0.08 and 0.12 ± 0.10, respectively), close to terrestrial values (approximately 0). The other group of nonmagmatic irons, IIE, is isotopically distinct (?0.69 ± 0.15). IVB is the iron meteorite group with the strongest elemental depletion in Cu and samples in this group are enriched in the lighter isotope (δ65Cu down to ?2.26‰). Evaporation should have produced an enrichment in 65Cu over 63Cu (δ65Cu >0) and can therefore be ruled out as a mechanism for volatile loss in IVB meteorites. In silicate‐bearing iron meteorites, Δ17O correlates with δ65Cu. This correlation between nonmass‐dependent and mass‐dependent parameters suggests that the Cu isotopic composition of iron meteorites has not been modified by planetary differentiation to a large extent. Therefore, Cu isotopic ratios can be used to confirm genetic links. Cu isotopes thus confirm genetic relationships between groups of iron meteorites (e.g., IAB and IIICD; IIIE and IIIAB); and between iron meteorites and chondrites (e.g., IIE and H chondrites). Several genetic connections between iron meteorites groups are confirmed by Cu isotopes, (e.g., IAB and IIICD; IIIE and IIIAB); and between iron meteorites and chondrites (e.g., IIE and H chondrites).  相似文献   

13.
Abstract— Through freeze‐thaw disaggregation of the Murchison (CM) carbonaceous chondrite, we have recovered a ?90 times 75 μm refractory inclusion that consists of corundum and hibonite with minor perovskite. Corundum occurs as small (?10 μm), rounded grains enclosed in hibonite laths (?10 μm wide and 30–40 μm long) throughout the inclusion. Perovskite predominantly occurs near the edge of the inclusion. The crystallization sequence inferred petrographically‐corundum followed by hibonite followed by perovskite‐is that predicted for the first phases to form by equilibrium condensation from a solar gas for Ptot ≤5 times 10?3 atm. In addition, the texture of the inclusion, with angular voids between subhedral hibonite laths and plates, is also consistent with formation of the inclusion by condensation. Hibonite has heavy rare earth element (REE) abundances of ?40 × CI chondrites, light REE abundances ?20 × CI chondrites, and negative Eu anomalies. The chondrite‐normalized abundance patterns, especially one for a hibonite‐perovskite spot, are quite similar to the patterns of calculated solid/gas partition coefficients for hibonite and perovskite at 10?3 atm and are not consistent with formation of the inclusion by closed‐system fractional crystallization. In contrast with the features that are consistent with a condensation origin, there are problems with any model for the formation of this inclusion that includes a molten stage, relic grains, or volatilization. If thermodynamic models of equilibrium condensation are correct, then this inclusion formed at pressures <5 times 10?3 atm, possibly with enrichments (<1000x) in CI dust relative to gas at low pressures (below 10?4 atm). Both hibonite and corundum have δ17O ? δ18O ? ?50%, indicating formation from an 16O‐rich source. The inclusion does not contain radiogenic 26Mg and apparently did not contain live 26Al when it formed. If the short‐lived radionuclides were formed in a supernova and injected into the early solar nebula, models of this process suggest that 26Al‐free refractory inclusions such as this one formed within the first ?6 times 105 years of nebular collapse.  相似文献   

14.
We present high‐precision measurements of the Mg isotopic compositions of a suite of types I and II chondrules separated from the Murchison and Murray CM2 carbonaceous chondrites. These chondrules are olivine‐ and pyroxene‐rich and have low 27Al/24Mg ratios (0.012–0.316). The Mg isotopic compositions of Murray chondrules are on average lighter (δ26Mg ranging from ?0.95‰ to ?0.15‰ relative to the DSM‐3 standard) than those of Murchison (δ26Mg ranging from ?1.27‰ to +0.77‰). Taken together, the CM2 chondrules exhibit a narrower range of Mg isotopic compositions than those from CV and CB chondrites studied previously. The least‐altered CM2 chondrules are on average lighter (average δ26Mg = ?0.39 ± 0.30‰, 2SE) than the moderately to heavily altered CM2 chondrules (average δ26Mg = ?0.11 ± 0.21‰, 2SE). The compositions of CM2 chondrules are consistent with isotopic fractionation toward heavy Mg being associated with the formation of secondary silicate phases on the CM2 parent body, but were also probably affected by volatilization and recondensation processes involved in their original formation. The low‐Al CM2 chondrules analyzed here do not exhibit any mass‐independent variations in 26Mg from the decay of 26Al, with the exception of two chondrules that show only small variations just outside of the analytical error. In the case of the chondrule with the highest Al/Mg ratio (a type IAB chondrule from Murchison), the lack of resolvable 26Mg excess suggests that it either formed >1 Ma after calcium‐aluminum‐rich inclusions, or that its Al‐Mg isotope systematics were reset by secondary alteration processes on the CM2 chondrite parent body after the decay of 26Al.  相似文献   

15.
We have conducted hydration–dehydration experiments on terrestrial olivine to investigate the behavior of oxygen isotopic fractionation to test the hypothesis that multiple cycles of aqueous and thermal processing on a parent asteroid comprise a genetic relationship between CM2s and metamorphosed carbonaceous chondrites (MCCs). Two experiments were undertaken. In the first experiment, serpentine was obtained by hydrating terrestrial olivine (Fo90.9) in the laboratory. During this experiment, olivine was reacted with isotopically heavy water (δ18O 21.5‰) at T = 300 °C,  = 300 bar, for 100 days. The oxygen isotopic composition of the experimental serpentine was enriched in 18O (by 10 ‰ in δ18O) due to exchange of oxygen isotopes between olivine and the 18O‐rich water. Dehydrated serpentine was then produced during laboratory heating experiment in vacuum, at T = 930 °C, for 1 h. The oxygen isotopic composition of the dehydrated serpentine was enriched in 18O by a further 7 ‰. The net result of the hydration–dehydration process was an enrichment of 18O in the final material by approximately 17‰. The new experimental results suggest that the oxygen isotopic compositions of MCCs of the Belgica‐like group, including Dhofar 225 and Dhofar 725, could be derived from those of typical CM2 chondrites via several cycles of hydration–dehydration caused by aqueous alteration and subsequent thermal metamorphism within their parent asteroids.  相似文献   

16.
Abstract— We have determined Nb, Y, and Zr abundances in the carbonaceous chondrites Orgueil (CI), Murray (CM2), Murchison (CM2), Allende (CV3), and Karoonda (CK4), and in the eucrites, Pasamonte and Juvinas, by a recently developed spark source mass spectrometric technique using multiple ion counting (MIC‐SSMS). The abundance of Ta was determined in the same meteorites by radiochemical neutron activation analysis (RNAA). Precision of the MIC‐SSMS and RNAA techniques is ~3% and ≤ 5%, respectively. The new abundances for CI chondrites are: Nb = 0.247, Ta = 0.0142, Zr = 3.86, Y = 1.56 μg/g; or 0.699, 0.0202, 11.2, and 4.64 atoms/106 Si atoms, respectively. The values agree with earlier compilations, but they are a factor of 2 more precise than earlier analyses. Trace element concentrations in the CM, CV, and CK chondrites are higher than in the CI chondrite Orgueil by about 37, 86, and 120%, respectively, in agreement with the variable absolute contents of refractory lithophile elements in different groups of carbonaceous chondrites. Of particular interest are the chondritic Nb/Ta, Zr/Nb, and Nb/U ratios, because these ratios are important tools for interpreting the chemical evolution of planetary bodies. We obtained Nb/Ta = 17.4 ± 0.5 for the carbonaceous chondrites and the Juvinas‐type eucrites investigated. Though this value is similar to previous estimates, it is much more precise. The same is true for Zr/Nb (15.5 ± 0.2) and Zr/Y (2.32 ± 0.12). In combination with recently published MIC‐SSMS U data for carbonaceous chondrites, we obtained a chondritic Nb/U ratio of 29 ± 2. Because Nb, Ta, Zr, Y, and U are refractory lithophile elements and presumably partitioned into the silicate phase of the Earth during core formation, the elemental ratios may also be used to constrain evolution of the Earth's primitive mantle and, with the more precise determinations fractionation of Nb and Ta during magmatic processes and mantle‐crust interactions, can now be interpreted with greater confidence.  相似文献   

17.
Abstract— Redistribution or loss of batches of condensate from a cooling protosolar nebula is generally thought to have led to the formation of the chemical groups of chondrites. This demands a nebula hot enough for silicate vaporization over 1–3 AU, the region where chondrites formed. Alternatively, heating of a protosolar accretion disk may have been confined to an annular zone at its inner edge, ?0.06 AU from the protosun. Most infalling matter was accreted by the protosun, but a proportion was heated and carried outwards by an x‐wind. Shu et al. (1996, 1997) proposed that larger objects such as chondrules and calcium‐aluminum‐rich inclusions (CAIs) were returned to the disk at asteroidal distances by sedimentation from the x‐wind. Fine dust and gas were lost to space. The model implies that solids were not lost from the cold disk. The chemical compositions of the chondrite groups were produced by mixing different proportions of CAIs and chondrules with disk solids of CI composition. Heating at the inner edge of the disk was accompanied by particle irradiation, which synthesized nuclides including 26Al. The x‐wind model can produce CAIs, not chondrules, and allows survival of presolar grains >0.06 AU from the protosun. Normalization to Al and CI indicates that non‐carbonaceous chondrites may be disk material that gained a Si‐ and Mg‐enriched fraction. Carbonaceous chondrites are different; they appear to be CI that lost lithophile elements more volatile than Ca. Five carbonaceous chondrite groups also lost Ni and Fe but the CH group gained siderophiles. Elemental loss from CI is incompatible with the x‐wind model. Silicon and CI normalization confirms that the CM, CO, CK and CV groups may be CI that gained refractories as CAIs. The Si‐, Mg‐rich fraction may have formed by selective vaporization followed by precipitation on grains in the x‐wind. This fractional distillation mechanism can account for lithophile element abundances in non‐carbonaceous chondrite groups, but an additional process is required for the loss of Ca and Mn in the EL group and for fractionated siderophile abundances in the H, L and LL groups. Heated and recycled fractions were not homogenized across the disk so the chondrite groups were established in a single cycle of enhanced protosolar activity in lt;104 years, the time for a millimeter‐sized particle to drift into the Sun from 2 to 3 AU, due to gas‐drag.  相似文献   

18.
Dhofar 1671 is a relatively new meteorite that previous studies suggest belongs to the Rumuruti chondrite class. Major and REE compositions are generally in agreement with average values of the R chondrites (RCs). Moderately volatile elements such as Se and Zn abundances are lower than the R chondrite values that are similar to those in ordinary chondrites (OCs). Porphyritic olivine pyroxene (POP), radial pyroxene (RP), and barred olivine (BO) chondrules are embedded in a proportionately equal volume of matrix, one of the characteristic features of RCs. Microprobe analyses demonstrate compositional zoning in chondrule and matrix olivines showing Fa‐poor interior and Fa‐rich outer zones. Precise oxygen isotope data for chondrules and matrix obtained by laser‐assisted fluorination show a genetic isotopic relationship between OCs and RCs. On the basis of our data, we propose a strong affinity between these groups and suggest that OC chondrule precursors could have interacted with a 17O‐rich matrix to form RC chondrules (i.e., ?17O shifts from ~1‰ to ~3‰). These interactions could have occurred at the same time as “exotic” clasts in brecciated samples formed such as NWA 10214 (LL3–6), Parnallee (LL3), PCA91241 (R3.8–6), and Dhofar 1671 (R3.6). We also infer that the source of the oxidation and 17O enrichment is the matrix, which may have been enriched in 17O‐rich water. The abundance of matrix in RCs relative to OCs, ensured that these rocks would be apparently more oxidized and appreciably 17O‐enriched. In situ analysis of Dhofar 1671 is recommended to further strengthen the link between OCs and RCs.  相似文献   

19.
The petrologic and oxygen isotopic characteristics of calcium‐aluminum‐rich inclusions (CAIs) in CO chondrites were further constrained by studying CAIs from six primitive CO3.0‐3.1 chondrites, including two Antarctic meteorites (DOM 08006 and MIL 090010), three hot desert meteorites (NWA 10493, NWA 10498, and NWA 7892), and the Colony meteorite. The CAIs can be divided into hibonite‐bearing inclusions (spinel‐hibonite spherules, monomineralic grains, hibonite‐pyroxene microspherules, and irregular/nodular objects), grossite‐bearing inclusions (monomineralic grains, grossite‐melilite microspherules, and irregular/nodular objects), melilite‐rich inclusions (fluffy Type A, compact type A, monomineralic grains, and igneous fragments), spinel‐pyroxene inclusions (fluffy objects resembling fine‐grained spinel‐rich inclusions in CV chondrites and nodular/banded objects resembling those in CM chondrites), and pyroxene‐anorthite inclusions. They are typically small (98.4 ± 54.4 µm, 1SD) and comprise 1.54 ± 0.43 (1SD) area% of the host chondrites. Melilite in the hot desert and Colony meteorites was extensively replaced by a hydrated Ca‐Al‐silicate during terrestrial weathering and converted melilite‐rich inclusions into spinel‐pyroxene inclusions. The CAI populations of the weathered COs are very similar to those in CM chondrites, suggesting that complete replacement of melilite by terrestrial weathering, and possibly parent body aqueous alteration, would make the CO CAIs CM‐like, supporting the hypothesis that CO and CM chondrites derive from similar nebular materials. Within the CO3.0‐3.1 chondrites, asteroidal alteration significantly resets oxygen isotopic compositions of CAIs in CO3.1 chondrites (?17O: ?25 to ?2‰) but left those in CO3.0‐3.05 chondrites mostly unchanged (?17O: ?25 to ?20‰), further supporting the model whereby thermal metamorphism became evident in CO chondrites of petrologic type ≥3.1. The resistance of CAI minerals to oxygen isotope exchange during thermal metamorphism follows in the order: melilite + grossite < hibonite + anorthite < spinel + diopside + forsterite. Meanwhile, terrestrial weathering destroys melilite without changing the chemical and isotopic compositions of melilite and other CAI minerals.  相似文献   

20.
Rhenium is an important element with which to test hypotheses of isotope variation. Historically, it has been difficult to precisely correct the instrumental mass bias in thermal ionization mass spectrometry. We used W as an internal standard to correct mass bias on the MC‐ICP‐MS, and obtained the first precise δ187Re values (~±0.02‰, 2SE) for iron meteorites and chondritic metal. Relative to metal from H chondrites, IVB irons are systematically higher in δ187Re by ~0.14 ‰. δ187Re for other irons are similar to H chondritic metal, although some individual samples show significant isotope fractionation. Since 185Re has a high neutron capture cross section, the effect of galactic cosmic‐ray (GCR) irradiation on δ187Re was examined using correlations with Pt isotopes. The pre‐GCR irradiation δ187Re for IVB irons is lower, but the difference in δ187Re between IVB irons and other meteoritic metal remains. Nuclear volume‐dependent fractionation for Re is about the right magnitude near the melting point of iron, but because of the refractory and compatible character of Re, a compelling explanation in terms of mass‐dependent fractionation is elusive. The magnitude of a nucleosynthetic s‐process deficit for Re estimated from Mo and Ru isotopes is essentially unresolvable. Since thermal processing reduced nucleosynthetic effects in Pd, it is conceivable that Re isotopic variations larger than those in Mo and Ru may be present in IVBs since Re is more refractory than Mo and Ru. Thus, the Re isotopic difference between IVBs and other irons or chondritic metal remains unexplained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号