首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seasonal variations in the picoplankton community were investigated from June 2002 to March 2004 within the photic zone of Sagami Bay, Japan. The study area was mostly dominated by coastal waters during the warm period (mixed layer water temperature ≥ 18°C). During the cold period (mixed layer water temperature ≤ 18°C), the water mass was characterized by low temperature and high saline waters indicative of the North Pacific Subtropical Mode Water (NPSTMW). Occasionally, a third type of water mass characterized by high temperature and low saline properties was observed, which could be evidence of the intrusion of warm Kuroshio waters. Synechococcus was the dominant picophytoplankton (5−28 × 1011 cells m−2) followed by Prochlorococcus (1−5 × 1011 cells m−2) and picoeukaryotes during the warm period. Heterotrophic bacteria dominated the picoplankton community throughout the year, especially in the warm period. During the Kuroshio Current advection, cyanobacterial abundance was high whereas that of picoeukaryotes and heterotrophic bacteria was low. During the cold period, homogeneously distributed, lower picophytoplankton cell densities were observed. The dominance of Synechococcus in the warm period reflects the importance of high temperature, low salinity and high Photosynthetically Active Radiation (PAR) on its distribution. Cyanobacterial and heterotrophic bacterial abundance showed a positive correlation with temperature. Prochlorococcus and picoeukaryotes showed a positive correlation with nutrients. Picoeukaryotes were the major contributors to the picophytoplankton carbon biomass. The annual picophytoplankton contribution to the photosynthetic biomass was 32 ± 4%. These observations suggest that the environmental conditions, combined with the seasonal variability in the source of the water mass, determines the community structure of picoplankton, which contributes substantially to the phytoplankton biomass and can play a very important role in the food web dynamics of Sagami Bay.  相似文献   

2.
Picoeukaryotes are important members of the surface ocean microbial community with high diversity and significant temporal and spatial variations in community composition. Little is known about the picoeukaryotic biodiversity and community in the Yellow Sea, where hydrologic conditions are very different with the influence of the Yellow Sea Warm Current (YSWC). Using Illumina high throughput sequencing targeting 18S rDNA, we investigated the composition of picoeukaryotes at a permanent monitoring site in the central Yellow Sea from 2011 to 2013. Alveolata, Stramenopiles, and Archaeplastida were the main super groups found. Prasinophytes were dominant in N-YSWC (not influenced by the YSWC) samples whilst YSWC (influenced by the YSWC) samples were dominated by different groups, such as MALV-II (novel marine Alveolata), MAST-3, MAST-4 (novel marine Stramenopiles), and Dictyochophyceae. N-YSWC samples were grouped together in nMDS (non-metric multidimensional scaling) using the Bray–Curtis method. Distances between each two YSWC samples were greater. Based on indicator operational taxonomic unit (OTU) analysis (IOA), indicator species of the YSWC were represented by Pseudochattonella farcimen, Florenciella parvula within the class Dictyochophyceae, and Phaeocystis cordata within the class Prymnesiophyceae. The findings in our study suggest that picoeukaryotic communities in the central Yellow Sea differ temporally in response to changes in the YSWC.  相似文献   

3.
黑潮入侵深刻影响东海生态环境,但对其如何影响浮游植物群落组成与分布仍知之甚少。为此,于2011年四季对东海(26°~33°N,121°~128°E)共164个站位进行浮游植物拖网采集和环境因子测定,分析了浮游植物丰度和优势种组成及其对黑潮入侵的响应。调查共检出浮游植物9门509种(含变种、变型和未定种),其中硅藻305种、甲藻154种,蓝藻、定鞭藻、金藻、裸藻、绿藻、隐藻和黄藻种类数较少。秋季浮游植物细胞丰度最高(30 496.91×103 cells/m3),高值区位于黑潮与长江冲淡水交汇形成的锋面处;夏季次之(28 911.28×103 cells/m3),高值区分布与秋季相似;春季较少(19 180.76×103 cells/m3),高值区位于舟山群岛东南部;冬季最低(472.36×103 cells/m3),高值区位于东海南部。冬季受黑潮表层水入侵影响,主要优势种为铁氏束毛藻(Trichodesmium thiebautii);春、夏季主要优势种为骨条藻(Skeleto...  相似文献   

4.
黑潮入侵对南海东北部浮游植物群落结构的影响   总被引:1,自引:0,他引:1  
To further understand the effect of Kuroshio intrusion on phytoplankton community structure in the northeastern South China Sea(NSCS, 14°–23°N, 114°–124°E), one targeted cruise was carried out from July to August, 2017. A total of 79 genera and 287 species were identified, mainly including Bacillariophyta(129 species), Pyrrophyta(150 species), Cyanophyta(4 species), Chrysophyta(3 species) and Haptophyta(1 species). The average abundance of phytoplankton was 2.14×10~3 cells/L, and Cyanobacterium was dominant species accounting for 86.84% of total phytoplankton abundance. The abundance and distribution of dominant Cyanobacterium were obviously various along the flow of the Kuroshio, indicating the Cyanobacterium was profoundly influenced by the physical process of the Kuroshio. Therefore, Cyanobacterium could be used to indicate the influence of Kuroshio intrusion. In addition, the key controlling factors of the phytoplankton community were nitrogen, silicate, phosphate and temperature, according to Canonical Correspondence Analysis. However, the variability of these chemical parameters in the study water was similarly induced by the physical process of circulations. Based on the cluster analysis, the similarity of phytoplankton community is surprisingly divided by the regional influence of the Kuroshio intrusion, which indicated Kuroshio intrusion regulates phytoplankton community in the NSCS.  相似文献   

5.
Hydrographic structure and transport of intermediate water were observed in the Kuroshio region south of Japan, focusing on the 26.6–27.5σθ density in six cruises from May 1998 through September 2001. In the section off the Boso Peninsula where the Kuroshio exfoliates eastward, the intermediate water was clearly clustered into three groups meridionally composed of the coastal water, the Kuroshio water and the offshore water. Compared with the Kuroshio water characterized by warm, salty water transported by the Kuroshio, the coastal and offshore waters significantly degenerated due to mixing with cold, fresh waters originated from the subarctic region: the former was affected by alongshore spread of the coastal Oyashio and the latter by direct intrusion of the new North Pacific Intermediate Water (NPIW) into the southern side of the Kuroshio current axis. Particularly the offshore water showed higher apparent oxygen utilization (AOU) in layers deeper than 26.9σθ while it showed lower AOU in layers shallower than 26.9σθ, which indicated that colder, fresher and higher AOU water was distributed on the southeastern side of the Kuroshio in deeper layers. In May 1998, the Oyashio-Kuroshio mixing ratio was estimated to be typically 2:8 for the offshore water on the assumption of isopycnal mixing. Moreover, northeastward volume transport of the Kuroshio water was obtained from geostrophic velocity fields adjusted to lowered acoustic Doppler current profiler (LADCP) data to yield 6.1 Sv at 26.6–26.9σθ and 11.8 Sv at 26.9–27.5 σθ. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Phyllosoma larvae collected to date in Japanese and Taiwanese waters have been classified into two genera (Linuparus, Panulirus) of the Palinuridae, four genera (Ibacus, Parribacus, Scyllarides, Scyllarus) of the Scyllaridae, and one genus (Palinurellus) of the Synaxidae. However, phyllosoma larvae of three Scyllarus species (S. bicuspidatus, S. cultrifer, S. kitanoviriosus) are absolutely dominant among the larvae collected in the waters. Scyllarus larvae are abundant in coastal waters while those of Panulirus are often collected in offshore/oceanic waters. Based on previous and ongoing studies dealing with spatial distributions of phyllosoma larvae in Japanese and Taiwanese waters, it appears that phyllosoma and nisto larvae of the Scyllarus are retained within coastal waters north of the Kuroshio Current. On the other hand, the life history of the Panulirus (particularly P. japonicus) may be completed within the Kuroshio Subgyre: their phyllosoma larvae may be flushed out from coastal waters into the Kuroshio, then transported through the Counter Current south of the Kuroshio into the water east of Ryukyu Archipelago and Taiwan where they attain the subfinal/final phyllosoma or puerulus stages, once again entering the Kuroshio and dispersing into coastal waters. This revised version was published online in July 2006 with corrections to the Cover Date. An erratum to this article is available at .  相似文献   

7.
Measurements of sub-surface light attenuation (Kd), Secchi depth and suspended particulate material (SPM) were made at 382 locations in transitional, coastal and offshore waters around the United Kingdom (hereafter UK) between August 2004 and December 2005. Data were analysed statistically in relation to a marine water typology characterised by differences in tidal range, mixing and salinity. There was a strong statistically significant linear relationship between SPM and Kd for the full data set. We show that slightly better results are obtained by fitting separate models to data from transitional waters and coastal and offshore waters combined. These linear models were used to predict Kd from SPM. Using a statistic (D) to quantify the error of prediction of Kd from SPM, we found an overall prediction error rate of 23.1%. Statistically significant linear relationships were also evident between the log of Secchi depth and the log of Kd in waters around the UK. Again, statistically significant improvements were obtained by fitting separate models to estuarine and combined coastal/offshore data – however, the prediction error was improved only marginally, from 31.6% to 29.7%. Prediction was poor in transitional waters (D = 39.5%) but relatively good in coastal/offshore waters (D = 26.9%).SPM data were extracted from long term monitoring data sites held by the UK Environment Agency. The appropriate linear models (estuarine or combined coastal/offshore) were applied to the SPM data to obtain representative Kd values from estuarine, coastal and offshore sites. Estuarine waters typically had higher concentrations of SPM (8.2–73.8 mg l−1) compared to coastal waters (3.0–24.1 mg l−1) and offshore waters (9.3 mg l−1). The higher SPM values in estuarine waters corresponded to higher values of Kd (0.8–5.6 m−1). Water types that were identified by large tidal ranges and exposure typically had the highest Kd ranges in both estuarine and coastal waters. In terms of susceptibility to eutrophication, large macrotidal, well mixed estuarine waters, such as the Thames embayment and the Humber estuary were identified at least risk from eutrophic conditions due to light-limiting conditions of the water type.  相似文献   

8.
为全面了解黄海典型海区微微型浮游植物的季节变化特征,于2009年7月至2010年6月在北黄海獐子岛海域和2010年1~12月在南黄海胶州湾进行逐月调查采样,利用流式细胞仪检测了表层海水中微微型浮游植物(picophytoplankton)的丰度,包括聚球藻(Synechococcus,SYN)和微微型真核浮游植物(picoeukaryotes,PEUK),并分析了其与环境因子的关系。獐子岛海域和胶州湾SYN和PEUK全年广泛分布,獐子岛海域SYN丰度范围在0.05×103~120.00×103cells/mL之间,丰度在秋季最高;胶州湾SYN丰度范围在0.02×103~61.80×103cells/mL之间,丰度在夏季最高。獐子岛海域PEUK丰度范围在0.01×103~18.76×103cells/mL之间,丰度在秋季最高;胶州湾PEUK丰度范围在0.25×103~95.57×103 cells/mL之间,丰度在春季最高。獐子岛海域微微型浮游植物丰度组成以SYN为主;而胶州湾以PEUK为主。PEUK是两海区微微型浮游植物生物量的主要贡献者。相关性分析结果表明,温度是影响两海区SYN丰度季节变化的最主要因素;影响PEUK季节分布的因素不完全一致,獐子岛海域PEUK丰度主要受温度调控;胶州湾PEUK丰度主要受温度和营养盐浓度影响。与已有研究比较,这两个海区的微微型浮游植物生物量对浮游植物生物量的贡献明显高于其他温带沿岸海域,预示微微型浮游植物在獐子岛海域和胶州湾生态系统中的重要作用,值得进一步深入研究。  相似文献   

9.
Samples collected from 10 depths at 25 stations in September–October 1996 and 12 depths at 28 stations in April–May 1997 on an Atlantic Meridional Transect between the British Isles and the Falkland Islands were analysed by flow cytometry to determine the numbers and biomass of four categories of picoplankton: Prochlorococcus spp, Synechococcus spp, picoeukaryotic phytoplankton and heterotrophic bacteria. The composition of the picoplankton communities confirmed earlier findings (Zubkov, Sleigh, Tarran, Burkill & Leakey, 1998) about distinctive regions along the transect and indicated that the stations should be grouped into five provinces: northern temperate, northern Atlantic gyre, equatorial, southern Atlantic gyre and southern temperate, with an intrusion of upwelling water off the coast of Mauritania between the northern Atlantic gyre and equatorial waters. Prochlorococcus was the most numerous phototrophic organism in waters of both northern and southern gyres and in the equatorial region, at concentrations in excess of 0.1×106ml−1; it also dominated plant biomass in the gyres, but the biomass of the larger picoeukaryotic algae equalled that of Prochlorococcus in the equatorial region; higher standing stocks of both Prochlorococcus and picoeukaryotes were present in spring than in autumn in waters of both gyres. In temperate waters at both ends of the transect the numbers and biomass of picoeukaryotes and, more locally, of Synechococcus increased, and the Synechococcus, particularly, were more numerous in spring than in autumn. There was a pronounced southward shift of the main populations of both Synechococcus and Prochlorococcus in April–May in comparison to those of September–October, associated with seasonal changes in solar radiation, the abundance of Prochlorococcus dropping sharply near the 17°C contour, while Synechococcus was still present at temperatures below 10°C. Picoeukaryotes were more tolerant of low temperatures and lower light levels, often being more abundant in samples from greater depths, where they contributed to the deep chlorophyll maximum. Heterotrophic bacterial numbers and biomass tended to be highest in those samples where phototrophic biomass was greatest, with peaks in temperate and equatorial waters, which were shifted southwards in April–May compared with September–October.  相似文献   

10.
夏季南黄海主要环境因子对微微型浮游生物分布影响   总被引:2,自引:1,他引:1  
利用流式细胞技术, 获取南黄海夏季微微型浮游生物丰度数据, 分析了其组成和分布规律, 并探讨了主要的影响因子。2011年夏季, 聚球藻、微微型真核藻、异养细菌在整个调查海区的平均丰度分别在1×104、1×103、1×106 cells/mL数量级上。在全调查海区, 聚球藻和微微型真核藻受温度和光照的限制明显, 主要集中分布在温跃层及其以上水层;而营养盐的限制较小, 它们的影响只有在沿岸流影响明显的西部海区才能较为明显的体现出来。结果表明在该海域浓度较高的营养盐能够促进微微型浮游生物的生长, 但不是其限制因素;异养细菌受环境因子限制较小, 即使在深海也保持着较高的丰度。  相似文献   

11.
Abundance distribution and cellular characteristics of picophytoplankton were studied in two distinct regions of the equatorial Pacific: the western warm pool (0°, 167°E), where oligotrophic conditions prevail, and the equatorial upwelling at 150°W characterized by high-nutrient low-chlorophyll (HNLC) conditions. The study was done in September–October 1994 during abnormally warm conditions. Populations of Prochlorococcus, orange fluorescing Synechococcus and picoeukaryotes were enumerated by flow cytometry. Pigment concentrations were studied by spectrofluorometry. In the warm pool, Prochlorococcus were clearly the dominant organisms in terms of cell abundance, estimated carbon biomass and measured pigment concentration. Integrated concentrations of Prochlorococcus, Synechococcus and picoeukaryotes were 1.5×1013, 1.3×1011 and 1.5×1011 cells m−2, respectively. Integrated estimated carbon biomass of picophytoplankton was 1 g m−2, and the respective contributions of each group to the biomass were 69, 3 and 28%. In the HNLC waters, Prochlorococcus cells were slightly less numerous than in the warm pool, whereas the other groups were several times more abundant (from 3 to 5 times). Abundance of Prochlorococcus, Synechococcus and picoeukaryotes were 1.2×1013, 6.2×1011 and 5.1×1011 cells m−2, respectively. The integrated biomass was 1.9 g C m−2. Prochlorococcus was again the dominant group in terms of abundance and biomass (chlorophyll, carbon); the respective contributions of each group to the carbon biomass were 58, 7 and 35%. In the warm pool the total chlorophyll biomass was 28 mg m−2, 57% of which was divinyl chlorophyll a. In the HNLC waters, the total chlorophyll biomass was 38 mg m−2, 44% of which was divinyl chlorophyll a. Estimates of Prochlorococcus, Synechococcus and picoeukaryotes cell size were made in both hydrological conditions.  相似文献   

12.
This two-year study investigates the possible factors that determine spatial and temporal dynamics of picoplankton (heterotrophic bacteria, autotrophic picoplankton—Synechococcus spp., Prochlorococcus, and picoeukaryotes) and nanoflagellate abundance in the subtropical Ilan Bay, Taiwan, where the inner bay is affected by freshwater run-off from the Lanyang River and the eastern outer bay by the Kuroshio Current. In the inner bay, there was more rain and freshwater discharge in 2005 than in 2004 during the warm season (>24° C, June–September). The abundance of bacteria, Synechococcus spp., Prochlorococcus, and picoeukaryotes and the percentage contributions of pigmented nanoflagellate (PNF %) were two- to eight-fold greater during this period (July in 2005) than for other sampling periods. Relatively low abundance of heterotrophic nanoflagellates (HNF) in the presence of abundant picoplankton prey suggests that top-down control determined HNF abundance in the Ilan Bay, Taiwan.  相似文献   

13.
Using manganese-impregnated fiber extraction and high-efficiency gamma counting techniques, we measured the distribution of 228Ra and 226Ra in surface waters near the coast of Japan and in the western North Pacific. There is no evidence in our data that any significant amount of 228Ra is added to open ocean surface waters from the coastal waters around Tokyo Bay. High 228Ra concentrations (> 10 dpm/103 kg), were observed along the Kuroshio Current as compared to < 2.5 dpm/103 kg between 10° and 30°N of the central gyre, and hence the major source of 228Ra in the surface water is likely to be the East Asian continental shelf zones. A simple one-dimensional eddy diffusion and advection model is used to explain the observed decrease of 228Ra from coast to the open ocean. The model results indicate two mixing regimes across the Kuroshio Current System with apparent eddy diffusion coefficients of Ky = 4 × 105 cm2 s−1 at distance y < 200 km from the coast, and Ky = 4 × 107 cm2 s−1 at y > 200 km. Along 40°N where an eastward flow of the ‘Kuroshio Extension’ prevails, an advective flow of > 0.1 knot is consistent with the observation of nearly constant 228Ra along the track.The geographical distribution pattern of 228Ra is clearly different from that of atmospherically derived 210Pb. Thus the 228Ra in surface water serves as a useful tracer that accompanies fluvially and coastally derived elements during their subsequent lateral transport toward the central gyre.  相似文献   

14.
黄海和东海是西北太平洋重要的边缘海,复杂的海洋环流和丰富的陆源物质输入共同影响着海域环境和生态系统。为了解黄、东海浮游植物群落组成、分布状况及其影响因素,本研究于2015年8—9月期间,通过流式细胞仪和形态学观察等方法,调查了该海域微型真核藻类、微微型真核藻类、聚球藻(Synechococcus)、原绿球藻(Prochlorococcus)以及浮游植物优势种的组成、丰度与分布情况,并基于浮游植物种类和丰度状况进行了聚类分析。结果表明,黄、东海浮游植物群落组成存在明显差别,黄海海域微型浮游植物丰度高于东海,而微微型浮游植物丰度低于东海,原绿球藻主要分布在东海海域。黄、东海海域浮游植物群落组成及分布状况与海域环境特征密切相关。夏季黄海海域相对封闭,受黄海冷水团控制,表层海水中高丰度的微型真核藻类主要出现在冷水团西侧边缘锋面区。东海海域受到长江冲淡水和黑潮水向岸入侵的强烈影响,在长江口邻近海域出现硅藻赤潮,而原绿球藻呈现出自外海向近岸输送的分布态势。相关结果可望为进一步探讨陆源物质输入和邻近大洋对我国近海生态系统的影响及机理提供依据。  相似文献   

15.
In order to examine the formation, distribution and transport of North Pacific Intermediate Water (NPIW), repeated hydrographic observations along several lines in the western North Pacific were carried out in the period from 1996 to 2001. NPIW formation can be described as follows: (1) Oyashio water extends south of the Subarctic Boundary and meets Kuroshio water in intermediate layers; (2) active mixing between Oyashio and Kuroshio waters occurs in intermediate layers; (3) the mixing of Oyashio and Kuroshio waters and salinity minimum formation around the potential density of 26.8σθ proceed to the east. It is found that Kuroshio water flows eastward even in the region north of 40°N across the 165°E line, showing that Kuroshio water extends north of the Subarctic Boundary. Volume transports of Oyashio and Kuroshio components (relative to 2000 dbar) integrated in the potential density range of 26.6–27.4σθ along the Kuroshio Extension across 152°E–165°E are estimated to be 7–8 Sv (106 m3s−1) and 9–10 Sv, respectively, which is consistent with recent work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Growth and mortality rates of larval and early juvenile Pacific saury Cololabis saira were estimated for spring and autumn spawning seasons in the Kuroshio-Oyashio transitional waters and for winter spawning season in the Kuroshio waters in 9 years from 1990–1998, based on quantitative fish sampling and otolith daily ring readings. Growth and mortality rates were more variable in the Kuroshio-Oyashio transitional waters than in the Kuroshio waters. The estimated production of 40-mm preschooling juveniles was a positive function of larval production in the hatching length class (5.9–9.9 mm) in the Kuroshio waters. In the Kuroshio-Oyashio transitional waters, rather than larval production in the hatching length class, cumulative survival through the larval and early juvenile stages determined the juvenile production. Variable growth and survival rates of saury observed in the transitional waters seem to be associated with large environmental variability in the waters, including shifts of the Kuroshio and Oyashio fronts and development of streamers and eddies between the fronts. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The biochemical effects of a cold-core eddy that was shed from the Kuroshio Current at the Luzon Strait bordering the South China Sea (SCS) were studied in late spring, a relatively unproductive season in the SCS. The extent of the eddy was determined by time-series images of SeaWiFS ocean color, AVHRR sea surface temperature, and TOPEX/Jason-1 sea surface height anomaly. Nutrient budgets, nitrate-based new production, primary production, and phytoplankton assemblages were compared between the eddy and its surrounding Kuroshio and SCS waters. The enhanced productivity in the eddy was comparable to wintertime productivity in the SCS basin, which is supported by upwelled subsurface nitrate under the prevailing Northeastern Monsoon. There were more Synechococcus, pico-eucaryotes, and diatoms, but less Trichodesmium in the surface water inside the eddy than outside. Prochlorococcus and Richelia intracellularis showed no spatial differences. Water column-integrated primary production (IPP) inside the eddy was 2–3 times that outside the eddy in the SCS (1.09 vs. 0.59 g C m−2d−1), as was nitrate-based new production (INP) (0.67 vs. 0.25 g C m−2d−1). INP in the eddy was 6 times that in the Kuroshio (0.12 g C m−2d−1). IPP and INP in the eddy were higher than the maximum production values ever measured in the SCS basin. Surface chlorophyll a concentration (0.40 mg m−3) in the eddy equaled the maximum concentration registered for the SCS basin and was higher than the wintertime average (0.29 ± 0.04 mg m−3). INP was 3.5 times as great and IPP was doubled in the eddy compared to the wintertime SCS basin. As cold core eddies form intermittently all year round as the Kuroshio invades the SCS, their effects on phytoplankton productivity and assemblages are likely to have important influences on the biogeochemical cycle of the region.  相似文献   

18.
对2018年1月在广东环雷州半岛近海海域采集的海底表层沉积物、鲬鱼(Platycephalus indicus)进行汞含量的测定,分析比较了鲬鱼不同部位汞含量的差异,并采用单因子污染指数法对沉积物和鲬鱼的汞污染状况进行了风险评价。结果表明,环雷州半岛海域表层沉积物中汞含量范围为0.005×10-6~0.359×10-6,平均值为0.081×10-6,雷州半岛东部海域表层沉积物汞含量高于南部和西部海域。鲬鱼的鳃中汞含量范围为0.032×10-6~0.034×10-6,平均值为0.033×10-6;肌肉中的汞含量范围为0.065×10-6~0.080×10-6,平均值为0.073×10-6;肝脏中的汞含量范围为0.228×10-6~0.270×10-6,平均值为0.249×10-6。鲬鱼样品的汞含量都呈现出肝脏>肌肉>鳃。单因子污染指数评价结果显示,雷州半岛海域鲬鱼受到汞的轻微污染,雷州半岛东部海域表层沉积物存在汞污染生态风险,而其南部、西部海域尚未受到汞污染的威胁。  相似文献   

19.
The relationship between Cd and PO4 in the Kuroshio and Oyashio regions and the Okhotsk Sea was examined. The resultant equations are as follows: Cd (ng l–1)=37.0 PO4 (M)+2.6; Cd(ng l–1)=32.1 PO4 (M)+1.2 and Cd (ng l–1)=34.1 PO4 (M)+7.9, respectively. These results are in good agreement with previously reported studies, and indicate that during removal from surface waters to deeper waters by biological assimilation and regeneration in deeper waters Cd and PO4 maintain the same ratio in the open ocean. The relationship between Cd and PO4 in coastal waters, however, differed from that in the open ocean.  相似文献   

20.
The concentration of thorium isotopes and the activity ratios of230Th/232Th and228Th/232Th in sea water collected in the Kuroshio region, the mixing area of Oyashio and Kuroshio, the Japan Sea and the East China Sea in the western North Pacific were determined. Thorium isotopes were analyzed by α-ray spectrometry after separating them with an anion exchange resin. The average content of thorium (232Th) of 2.2×10−9 g/l was obtained in the open Pacific waters. The ratio of230Th/232Th is in accord with that of the top layer of the sediment in the same area. The high values of228Th/232Th ratio up to 36 were observed in sea water. The excess228Th in sea water may be due to the migration of228Ra through the water-sediment interface. Thorium content in suspended matter was 10 to 20% of the total thorium content in the Pacific water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号