首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Fine-resolution regional climate simulations of tropical cyclones (TCs) are performed over the eastern Australian region. The horizontal resolution (30 km) is fine enough that a good climatological simulation of observed tropical cyclone formation is obtained using the observed tropical cyclone lower wind speed threshold (17 m s–1). This simulation is performed without the insertion of artificial vortices (bogussing). The simulated occurrence of cyclones, measured in numbers of days of cyclone activity, is slightly greater than observed. While the model-simulated distribution of central pressures resembles that observed, simulated wind speeds are generally rather lower, due to weaker than observed pressure gradients close to the centres of the simulated storms. Simulations of the effect of climate change are performed. Under enhanced greenhouse conditions, simulated numbers of TCs do not change very much compared with those simulated for the current climate, nor do regions of occurrence. There is a 56% increase in the number of simulated storms with maximum winds greater than 30 m s–1 (alternatively, a 26% increase in the number of storms with central pressures less than 970 hPa). In addition, there is an increase in the number of intense storms simulated south of 30°S. This increase in simulated maximum storm intensity is consistent with previous studies of the impact of climate change on tropical cyclone wind speeds.  相似文献   

2.
Summary The Advanced Regional Prediction System (ARPS) model developed at Center for Analysis and Prediction of Storms at Oklahoma State University, USA is used for simulation of monsoon depression and tropical cyclone over Indian region. The radiosonde data are included in the initial analyses and subsequently; the simulations are performed with 50km and 25km grid resolutions. Two sets of forecast experiments produced by two types of analyses (with radiosonde and without radiosonde data) are compared. It is found that predicted mean sea-level pressure of the depression becomes closer to mean sea level pressure reported in Indian Daily Weather Reports when initialized with analyses containing radiosonde data. The precipitation forecast also is improved when initialized with the analyses containing radiosonde data. The simulation of tropical cyclone with 25km grid resolution is able to simulate some subsynoptic scale features of the system.  相似文献   

3.
A diagnostic multi-model ensemble potential predictability study of surface air temperature is performed using data from nine models participating in the Coupled Model Intercomparison Project (CMIP1). The data are considered to be a sample of results from the population of models embodying current abilities to simulate the climate system and represent a range of numerics, resolution and of physical parametrizations. The potential predictability of pentadal, decadal, and 25-year means is analyzed. The multi-model ensemble provides a statistically stable estimate of the potential predictability variance fraction (ppvf) with a narrow confidence interval. This is not the case for individual models with modest lengths of simulation data nor, by implication, for the instrument-based observational record. Potential predictability is found predominately over the high-latitude oceans. There is evidence also for potential predictability at tropical latitudes in the Pacific and Atlantic, but not the Indian oceans, on the shorter of the time scales. The potential predictability variance fraction decreases with increasing time scale but appreciable values exist at all of the time scales considered, especially for the Southern Ocean and for the North Atlantic. Values over land, while statistically non-zero, are small. The autocorrelation structure of the data is investigated to account for its effect on the statistical estimation of the ppvf and to indicate the extent to which the data reflect simple oceanic damping of white noise atmospheric forcing. Ensemble autocorrelation structures differ between tropical and extra-tropical latitudes (at least on the time scales considered) with more oscillatory behaviour implied in tropical regions compared to high latitudes. It appears that the results are inconsistent with simple ocean damping and that higher order autocorrelation structures of temperature cannot be neglected generally or in the determination of the potential predictability. The statistical results suggest that predictability in the extratropics is associated with long ocean time scales while in the tropics it is associated with the coupled atmosphere-ocean system. Physically based analyses are required to understand this long time scale behaviour and an ensemble view is also needed in order to determine the behaviour that is robust across models and the real system.  相似文献   

4.
Summary ¶In order to better understand land-atmosphere interactions and increase the predictability of climate models, it is important to investigate the role of forest representation in climate modeling. Corresponding to the big-leaf model commonly employed in land surface schemes to represent the effects of a forest, a so called big-tree model, which uses multi-layer vegetation to represent the vertical canopy heterogeneity, was introduced and incorporated into the National Center for Atmospheric Research (NCAR) regional climate model RegCM2, to make the vegetation model more physically based. Using this augmented RegCM2 and station data for China during 1991 Meiyu season, we performed 10 experiments to investigate the effects of the application of the big-tree model on the summer monsoon climate.With the big-tree model incorporated into the regional climate model, some climate characteristics, e.g. the 3-month-mean surface temperature, circulation, and precipitation, are significantly and systematically changed over the model domain, and the change of the characteristics differs depending on the area. Due to the better representation of the shading effect in the big-tree model, the temperature of the lower layer atmosphere above the plant canopy is increased, which further influences the 850hPa temperature. In addition, there are significant decreases in the mean latent heat fluxes (within 20–30W/m2) in the three areas of the model domain.The application of the big-tree model influences not only the simulated climate of the forested area, but also that of the whole model domain, and its impact is greater on the lower atmosphere than on the upper atmosphere. The simulated rainfall and surface temperature deviate from the originally simulated result and are (or seem to be) closer to the observations, which implies that an appropriate representation of the big-tree model may improve the simulation of the summer monsoon climate.We also find that the simulated climate is sensitive to some big-tree parameter values and schemes, such as the shape, height, zero-plane displacement height and mixing-length scheme. The simulated local/grid differences may be very large although the simulated areal-average differences may be much lower. The area-average differences in the monthly-mean surface temperature and heat fluxes can amount to 0.5°C and 4W/m2, respectively, which correspond to maximum local/grid differences of 3.0°C and 40W/m2 respectively. It seems that the simulated climate is most sensitive to the parameter of the zero-plane displacement among the parameters studied.  相似文献   

5.
Summary The skill of the FSU Superensemble technique as applied to global numerical weather prediction is evaluated extensively in this paper. The global mass and motion fields for year 2000 and precipitation over the domain 55S to 55N for year 2001, as predicted by the Superensemble, the ensemble member models, and the mean of the ensemble members, are evaluated by standard statistical measures of skill to determine the performance of the Superensemble in relation to the other models. The member models are global forecast models from 5 of the worlds operational forecast centers in addition to the FSU global spectral model. For precipitation 5 additional versions of the FSU global model are utilized in the ensemble, as defined by different initial conditions provided by various physical initialization algorithms. Statistical parameters calculated for the mass and motion fields include root mean square (RMS) error, systematic error (or bias), and anomaly correlation. These are applied to the mean sea level pressure, 500hPa heights, and the wind fields at 850hPa and 200hPa. Statistical parameters that were calculated for precipitation include RMS error, correlation, equitable threat score (ETS), and a special definition of bias appropriate for the precipitation field. For the mass and motion fields the performance of the Superensemble was considered for the annual global case, as well as for each hemisphere (north and south) and for each of the four seasons. For precipitation only the annual case was considered over the domain cited above.For the mass and motion fields the RMS calculations showed the Superensemble to be superior (to have the smallest total forecast error) in all comparisons to the ensemble member models, and to be superior to the ensemble mean in the vast majority of comparisons. Performance in comparison to the other models was generally better in the Southern Hemisphere than in the Northern Hemisphere, and better in the transition seasons of fall and spring than in the extreme seasons of winter and summer. The Superensemble had the best success with mean sea level pressure, followed in order by 500hPa geopotential heights, 850hPa winds, and 200hPa winds.In the calculations of 500hPa geopotential height anomaly correlation the Superensemble had higher scores in all comparisons to the ensemble member models, as well as higher scores in the majority of comparisons to the ensemble mean. As with the RMS error results, the Superensemble performed better in the Southern Hemisphere than in the Northern Hemisphere, and better in fall than in summer, in comparison to the other models. The superior anomaly correlation scores of the Superensemble attest to the ability of the model to forecast daily perturbations from the climatological means, perturbations that are associated with transient synoptic scale features, given the horizontal resolution in the forecast models.In terms of systematic error reduction the Superensemble produces its most impressive results. Annual global mean sea-level pressure systematic errors for day 5 forecasts are generally in the range of ±1hPa (compared to errors as high as 8hPa in other models), and day 2 forecasts of 500hPa geopotential height produced systematic errors generally in the range of ±10 meters (compared to errors as high as 60 meters in other models). The Superensemble was able to reduce systematic errors in forecasts of a variety of important features in the global mass and motion fields: surface equatorial trough, wave amplitude in geopotential heights at 500hPa, trade winds and Somali Jet at 850hPa, mid-latitude westerlies, subtropical jet, and Tropical Easterly Jet (TEJ) at 200hPa.In terms of forecasting precipitation the Superensemble outperforms all ensemble member models and the ensemble mean in terms of RMS error, correlation coefficient, equitable threat score, and bias. The superior correlation scores indicate that the Superensemble is more reliable than the other models in predicting perturbations in the area distribution of precipitation, perturbations that are essentially associated with migrant synoptic scale disturbances, considering the horizontal resolution of the forecast models.The Superensemble is a valuable tool for significantly improving upon the global model forecasts of the worlds operational forecast centers. These forecasts are used daily as important guidance in making weather forecasts in all regions of the world. This paper will demonstrate that the Superensemble improves upon the ensemble member model forecasts: (1) in a statistical sense considering broad areas of the globe, (2) in a synoptic climatology sense through focus on the improved forecasts of climatological features seen in the global mass and motion fields, (3) in a synoptic sense through use of anomaly correlation and correlation coefficient where improvement is demonstrated in the forecasts of perturbations from mean fields which are essentially associated with transient synoptic scale disturbances.  相似文献   

6.
In this study the global coupled atmosphere-ocean general circulation model ECHAM2/OPYC and its performance in simulating the present-day climate is presented. The model consists of the T21-spectral atmosphere general circulation model ECHAM2 and the ocean general circulation model OPYC with a resolution corresponding to a T42 Gaussian grid, with increasing resolution towards the equator. The sea-ice is represented by a dynamic thermodynamic sea-ice model with rheology. Both models are coupled using the flux correction technique. With the coupled model ECHAM2/OPYC a 210-year integration under present-day greenhouse gas conditions has been performed. The coupled model simulates a realistic mean climate state, which is close to the observations. The model generates several ENSO events without external forcing. Using traditional and advanced (POP-technique) methods these ENSO events have been analyzed. The results are consistent with the delayed action oscillator theory. The model simulates both a tropical and an extra-tropical response to ENSO, which are in good agreement with observations.  相似文献   

7.
The primary goal of this investigation is to focus on a realistic scenario for simulating impacts on regional African climate of future deforestation in a greenhouse-warmed world. Combined effects of plausible land-cover change and greenhouse warming are assessed by time-slice simulations with an atmospheric general circulation model (AGCM) for the middle of the twenty first century. Three time-slice integrations have been performed with the ARPEGE-Climat AGCM incorporating a zooming technique to achieve a resolution of about 100 km over Africa. A control run for the current climate is forced by observed climatological sea surface temperatures (SSTs) and the observed vegetation distribution is specified from a new vegetation database, in order to improve the geographical distribution and properties of the vegetation cover. Future SST changes are derived from a transient coupled atmosphere–ocean simulation for scenario B2 of the International Panel on Climate Change (IPCC). Future vegetation changes are specified from a simulation of scenario B2 with the Integrated Model to Assess the Global Environment (IMAGE) developed at the National Institute of Public Health and the Environment in the Netherlands (RIVM). The results show that land surface processes can locally modulate greenhouse warming effects for African climate, with reductions of surface transpiration and small increases of surface temperature. Deforestation of tropical Africa has overall only a marginal effect on precipitation because of a compensatory increase in moisture convergence. Energy budget analyses show that increases in surface temperature are produced both by increases of greenhouse gases (GHG) concentration from the increase in downward atmospheric longwave radiation, and by African tropical deforestation from the resulting reduction in transpiration. This study indicates that realistic land-use changes, though of smaller amplitude than greenhouse gas forcing, may have a small regional effect in projections of future climate.  相似文献   

8.
Progress in understanding how terrestrial ice volume is linked to Earths orbital configuration has been impeded by the cost of simulating climate system processes relevant to glaciation over orbital time scales (103–105 years). A compromise is usually made to represent the climate system by models that are averaged over one or more spatial dimensions or by three-dimensional models that are limited to simulating particular snapshots in time. We take advantage of the short equilibration time (10 years) of a climate model consisting of a three-dimensional atmosphere coupled to a simple slab ocean to derive the equilibrium climate response to accelerated variations in Earths orbital configuration over the past 165,000 years. Prominent decreases in ice melt and increases in snowfall are simulated during three time intervals near 26, 73, and 117 thousand years ago (ka) when aphelion was in late spring and obliquity was low. There were also significant decreases in ice melt and increases in snowfall near 97 and 142 ka when eccentricity was relatively large, aphelion was in late spring, and obliquity was high or near its long term mean. These glaciation-friendly time intervals correspond to prominent and secondary phases of terrestrial ice growth seen within the marine 18O record. Both dynamical and thermal effects contribute to the increases in snowfall during these periods, through increases in storm activity and the fraction of precipitation falling as snow. The majority of the mid- to high latitude response to orbital forcing is organized by the properties of sea ice, through its influence on radiative feedbacks that nearly double the size of the orbital forcing as well as its influence on the seasonal evolution of the latitudinal temperature gradient.  相似文献   

9.
Summary The aim of this study is to point to the very large improvements that are taking place in a range of modelling applications in the urban areas. The particular phenomenon chosen in this study is a supercell, but it could well have been any other aspect of urban modelling. The Sydney hailstorm of 14 April 1999 was a long-lived, high precipitation supercell that produced a massive damage bill of over 2 billion Australian dollars from its hail swath. The Sydney hailstorm was poorly forecast for a number of reasons including: the severe weather season had officially ended so there were no specialist staff on duty when the hailstorm struck Sydney; the storm proved very difficult to predict and it was expected to continue heading out to sea; and the forecast guidance from all available operational numerical models was inadequate at the resolution required for a supercell simulation. Here, our interest is on the last of the problems, namely, the quality of the operational numerical model guidance, especially given the impact it had on a densely populated urban region.In this study, we compare the numerical guidance available at the time with current modeling capability which, although in research mode at present, will soon be available in real-time mode. The operational models were hydrostatic models run at horizontal resolutions of 25km at best, compared with 1km horizontal resolution for the non-hydrostatic research model. The research model also had a high-order differencing scheme and a sophisticated six phase cloud physics scheme compared with the much simpler parameterized convection in the operational models. The operational model produced very little convective precipitation and it was displaced well to the north of Sydney. The research model generated a supercell with a track and a hail size distribution that was encouragingly close to the observed.  相似文献   

10.
Influence of heterogeneous land surfaces on surface energy and mass fluxes   总被引:1,自引:0,他引:1  
Summary Land-surface heterogeneity affects surface energy fluxes. The magnitudes of selected land-surface influences are quantified by comparing observations with model simulations of the FIFE (First ISLSCP Field Experiment) domain. Several plausible heterogeneous and homogeneous initial and boundary conditions are examined, although soilmoisture variability is emphasized. It turns out that simple spatial averages of surface variation produced biased flux values. Simulated maximum latent-heat fluxes were approximately 30 to 40 W m–2 higher, and air temperatures 0.4 °C lower (at noon), when computations were initialized with spatially averaged soil-moisture and leaf-area-index fields. The planetary boundary layer (PBL) height and turbulent exchanges were lower as well. It additionally was observed that (largely due to the nonlinear relationship between initial soil-moisture availability and the evapotranspiration rate), real latent-heat flux can be substantially less than simulated latent-heat flux using models initialized with spatially averaged soil-moisture fields. Differences between real and simulated fluxes also vary with the resolution at which real soil-moisture heterogeneity is discretized.With 8 Figures  相似文献   

11.
Summary Secular series of annual precipitation over Croatia have been studied at three stations representing the different climatic regions of Croatia: Osijek (continental precipitation climate), Zagreb-Gri (continental precipitation climate with maritime influence) and Crikvenica (maritime precipitation climate).The time series analysis has been deduced by using a quick test for stationarity according to Schönwiese and Malcher, moving average filters, the Mann-Kendall rank statistic, and a progressive test for trend according to Sneyers. From this analysis, the stationarity in time series of annual precipitation totals is stated over the entire interval at all locations except for a very short interval during the first decade of the twentieth century over the continental lowland (Osijek). A generally decreasing trend is present over the entire interval, but is statistically significant only in the continental lowland (Osijek).With 4 Figures  相似文献   

12.
General circulation model experiments with surface albedo changes   总被引:1,自引:0,他引:1  
K. Laval 《Climatic change》1986,9(1-2):91-102
In 1975, Charney proposed a biogeophysical feedback mechanism to partly explain the droughts that occur in desert border areas. He showed that a perturbation of albedo (due to a natural or anthropogenic decrease of vegetation) can be unstable and lead to a variation of precipitation in the region where albedo is changed.Several numerical experiments have been achieved with general circulation models to study the sensitivity of climate to surface albedo. We compare the GLAS and LMD model results for the Sahel. For all models, rainfall decreases when albedo increases and net radiative heating of soil decreases. We show the variations of circulation simulated by the LMD model that we obtain when albedo is increased. These changes are compared to the weakening of Easterly Jet at 200 mb observed during dry years.  相似文献   

13.
Summary ¶Two cyclonic vortices close to each other, a binary cyclone or binary system, tend to rotate cyclonically relative to one another and to merge, i.e. the Fujiwhara effect. The point vortex model that represents barotropic binary cyclones predicts their rotation features as follows. The rotation rate is proportional linearly to the sum of the cyclones intensities and inversely to the square of their separation distance while the more intense cyclone rotates slower. Our earlier observational analysis of 1423 mid-latitude binary cyclones (Ziv and Alpert, 1995) showed a reasonable fit to theory, except for the absence of a correlation between individual speeds and intensities within the binary systems, and a reversal of the inverse rotation-separation relationship at the range of 1400–1800km.This study is the first attempt to describe the mid-latitude binary systems using potential vorticity concepts (PV thinking), which implies that a binary interaction takes place between the 3-D flow patterns induced by upper-PV or surface-thermal anomalies rather than by the surface cyclones alone. It is argued that the upper-anomalies dominate the rotation process, and hence the rotational speeds of the interacting surface cyclones are more closely correlated with the relative intensities of their corresponding upper-level anomalies rather than with their own intensities, as reflected in weather charts. Data analysis indicates that mid-latitude binary cyclones are normally associated with at least one upper-PV anomaly. This explains the absence of a correlation between the rotation speed and the intensity of the surface cyclones there.A unique type of a mid-latitude binary system is identified, in which one cyclone coincides with an upper major PV-anomaly and the other moves along the periphery of the former. Such a binary system is entitled here the Contact Binary System (CBS), in contrast with remote interacting systems implied by the point vortex theory.Analytical considerations yield an increase in the rotation rate with separation for CBSs of separation smaller than 1000–1500km, in contrast to the normal decrease with R 2. The contribution of CBSs is suggested here to explain the abnormal increase in rotation rate at 1400–1900km range.  相似文献   

14.
Summary High resolution January and July present day climatologies over the central-western Alpine region are simulated with a Regional Climate Model (RegCM) nested within a General Circulation Model (GCM). The RegCM was developed at the National Center for Atmospheric Research (NCAR) and is run at 20 km grid point spacing. The model is driven by output from a present day climate simulation performed with the GCM ECHAM3 of the Max Planck Institute for Meteorology (MPI) at T106 resolution (~ 120 km). Five January and July simulations are conducted with the nested RegCM and the results for surface air temperature and precipitation are compared with a gridded observed dataset and a dataset from 99 observing stations throughout the Swiss territory. The driving ECHAM3 simulation reproduces well the position of the northeastern Atlantic jet, but underestimates the jet intensity over the Mediterranean. Precipitation over the Alpine region in the ECHAM3 simulation is close to observed in January but lower than observed in July. Compared to the driving GCM, the nested RegCM produces more precipitation in both seasons, mostly as a result of the stronger model orographic forcing. Average RegCM temperature over the Swiss region is 2–3 degrees higher than observed, while average precipitation is within 30% of observed values. The spatial distribution of precipitation is in general agreement with available gridded observations and the model reproduces the observed elevation dependency of precipitation in the summer. In the winter the simulated elevation of maximum precipitation amounts is lower than observed. Precipitation frequencies are overestimated, while precipitation intensities show a reasonable agreement with observations, especially in the winter. Sensitivity experiments with different cumulus parameterizations, soil moisture initialization and model topography are discussed. Overall, the model performance at the high resolution used here did not deteriorate compared to previous lower resolution experiments.The National Center for Atmospheric Research is sponsored by the National Science Foundation.With 11 Figures  相似文献   

15.
ALPEX-Simulation     
Summary In a project ALPEX-Simulation, sponsored by the Österreichischer Fond zur Förderung der wissenschaftlichen Forschung (FWF), all eight cases of ALPEX-SOP cyclones were numerically simulated with a fine mesh isentropic model of the atmosphere. These numerical simulations in six-hourly intervals allow a deeper insight into the synoptics and dynamics of the cyclogeneses in the Western Mediterranean, especially into the genesis of the two basic types of cyclones: the so-called Überströmungs-type and Vorderseiten-type. In the first phase of cyclogenesis of the Überströmungs-type, the blocking and flow splitting of the cold air due to the Alps and the canalization between the Alps and the Massif Central are important. Cold air flows cyclonically around the western part of the Alps, creating a vorticity maximum at the south western edge of the Alpine, bow and leads also to an enhanced PV. In connection with warm air in the Mediterranean, a strong baroclinic zone is generated. The interaction between the arriving PV maximum in the upper troposphere and the enhanced PV at the bottom leads to cyclogenesis in the Western Mediterranean. In the case of the Vorderseiten-type warm air advection dominates with the exception of a shallow layer of cold air in the inner Po-Valley, which is shielded by the Alpine ridge. A well-pronounced PV maximum builds up and couples with the PV maximum arriving at upper levels, even before the cold air, coming from the north-west, has surrounded the Alps. The cold air only intensifies the development by raising the baroclinity. Therefore, the Vorderseiten-cyclogenesis is an orographically modified cyclogenesis, in the course of which the cyclonic development is triggered by the Alps, whereas the Überströmungs-cyclogenesis is an orographically induced cyclogenesis i.e. a true lee cyclogenesis.With 14 FiguresDied in a tragic traffic accident on June 6, 1993.  相似文献   

16.
This study discusses the results of comprehensive time-dependent, three-dimensional numerical modelling of the circulation in the middle atmosphere obtained with the GFDL SKYHI troposphere-stratosphere-mesosphere general circulation model (GCM). The climate in a long control simulation with an intermediate resolution version (3° in horizontal) is briefly reviewed. While many aspects of the simulation are quite realistic, the focus in this study is on remaining first-order problems with the modelled middle atmospheric general circulation, notably the very cold high latitude temperatures in the Southern Hemisphere (SH) winter/spring, and the virtual absence of a quasi-biennial oscillation (QBO) in the tropical stratosphere. These problems are shared by other extant GCMs. It was noted that the SH cold pole problem is somewhat ameliorated with increasing horizontal resolution in the model. This suggests that improved resolution increases the vertical momentum fluxes from the explicitly resolved gravity waves in the model, a point confirmed by detailed analysis of the spectrum of vertical eddy momentum flux in the winter SH extratropics. This result inspired a series of experiments with the 3° SKYHI model modified by adding a prescribed zonally-symmetric zonal drag on the SH winter westerlies. The form of the imposed momentum source was based on the simple assumption that the mean flow drag produced by unresolved waves has a spatial distribution similar to that of the Eliassen-Palm flux divergence associated with explicitly resolved gravity waves. It was found that an appropriately-chosen drag confined to the top six model levels (above 0.35 mb) can lead to quite realistic simulations of the SH winter flow (including even the stationary wave fields) through August, but that problems still remain in the late-winter/springtime simulation. While the imposed momentum source was largely confined to the extratropics, it produced considerable improvement in the simulation of the equatorial semiannual oscillation, with both the easterly and westerly phases being somewhat more intense than in the control simulation. A separate experiment was conducted in which the SKYHI model was simplified so that it had no topography and so that the seasonal cycle was frozen in perpetual equinox conditions. These changes result in a model that has much reduced interhemispheric asymmetry. This model spontaneously produces a long period mean flow oscillation of considerable amplitude in the tropical upper stratopause. The implication of this result for the general issue of obtaining a QBO in comprehensive GCMs is discussed.  相似文献   

17.
Climate change and snow-cover duration in the Australian Alps   总被引:2,自引:0,他引:2  
This study uses a model of snow-cover duration, an observed climate data set for the Australian alpine area, and a set of regional climate-change scenarios to assess quantitatively how changes in climate may affect snow cover in the Australian Alps. To begin, a regional interannual climate data set of high spatial resolution is prepared for input to the snow model and the resulting simulated interannual and spatial variations in snow-cover duration are assessed and compared with observations. The model provides a reasonable simulation of the sensitivities of snow-cover duration to changes in temperature and precipitation in the Australian Alps, although its performance is poorer at sites highly marginal for snow cover. (In a separate comparison, the model also performs well for sites in the European Alps.) The input climate data are then modified in line with scenarios of regional climate change based on the results of five global climate models run in enhanced greenhouse experiments. The scenarios are for the years 2030 and 2070 and allow for uncertainty associated with projecting future emissions of greenhouse gases and with estimating the sensitivity of the global climate system to enhanced greenhouse forcing. Attention focuses on the climate changes most favourable (best-case scenario) and least favourable (worst-case scenario) for snow cover amongst the range of climate changes in the scenarios. Under the best case scenario for 2030, simulated average snow-cover duration and the frequency of years of more than 60 days cover decline at all sites considered. However, at the higher sites (e.g., more than 1700 m) the effect is not very marked. For the worst case scenario, a much more dramatic decline in snow conditions is simulated. At higher sites, simulated average snow cover duration roughly halves by 2030 and approaches zero by 2070. At lower sites (around 1400 m), near zero average values are simulated by 2030 (compared to durations of around 60 days for current climate).These simulated changes, ranging between the best and worst case, are likely to be indicative of how climate change will affect natural snow-cover duration in the Australian Alps. However, note that the model does not allow directly for changes in the frequency and intensity of snow-bearing circulation systems, nor do the climate-change scenarios allow possible changes in interannual variability (particularly that due to the El Niño-Southern Oscillation) and local topographical effects not resolved by global climate models. The simulated changes in snow cover are worthy of further consideration in terms of their implications for the ski industry and tourism, water resources and hydroelectric power, and land-use management and planning.68 Barada Crescent, Aranda ACT 2614, Australia.  相似文献   

18.
Summary ¶This study presents a numerical simulation of the bora wind as it occurs in form of a severe wind blowing down coastal mountains and over the Adriatic Sea. A typical cyclonic bora event, occurring during the period January 3–6, 1995, is simulated using a nested limited area model. An integration, with horizontal resolution of about 14km, and a nested one, with higher resolution, about 5.5km, are presented. The 1997 version of the Eta Model is used for both the lower resolution and the higher resolution runs. Numerous details of the simulation are found to be in good agreement with the understanding as well as the observational knowledge of the bora, thus supporting confidence in the realism of the results. In particular, features of the simulated flow are seen strongly indicative of some basic characteristics of the hydraulic model of the phenomenon, such as the mountain wave breaking and the upstream flow acceleration. Moreover, the increase in horizontal resolution, in combination with an improvement of the coastal SST information, led to a still improved realism of the low-level wind representation over the Adriatic Sea.Received December 31, 2001; revised March 25, 2002; accepted July 19, 2002 Published online: February 20, 2003  相似文献   

19.
Three million years of monsoon variability over the northern Sahara   总被引:8,自引:0,他引:8  
We present a 3 million year record of aeolian dust supply into the eastern Mediterranean Sea, based on hematite contents derived from magnetic properties of sediments from Ocean Drilling Program Site 967. Our record has an average temporal resolution of 400 years. Geochemical data validate this record of hematite content as a proxy for the supply of aeolian dust from the Sahara. We deduce that the aeolian hematite in eastern Mediterranean sediments derives from the eastern Algerian, Libyan, and western Egyptian lowlands located north of the central Saharan watershed (21°N). In corroboration of earlier work, we relate dust flux minima to penetration of the African summer monsoon front to the north of the central Saharan watershed. This would have enhanced soil humidity and vegetation cover in the source regions, in agreement with results from green Sahara climate models. Our results indicate that this northward monsoon penetration recurred during insolation maxima throughout the last 3 million years. As would be expected, this orbital precession-scale mechanism is modulated on both short (100-kyr) and long (400-kyr) eccentricity time scales. We also observe a strong expression of the 41-kyr (obliquity) cycle, which we discuss in terms of high- and low-latitude mechanisms that involve Southern Hemisphere meridional temperature contrasts and shifts in the latitudes of the tropics, respectively. We also observe a marked increase in sub-Milankovitch variability around the mid-Pleistocene transition (0.95 Ma), which suggests a link between millennial-scale climate variability, including monsoon dynamics, and the size of northern hemisphere ice sheets.  相似文献   

20.
Summary At the resolutions currently in use, and with the sparse oceanic data coverage, numerical analyses cannot adequately represent tropical cyclone circulations for use in numerical weather prediction models. In many cases there is no circulation present at all. Most numerical weather prediction centers therefore employ a bogussing scheme to force a tropical cyclone vortex into the numerical analysis. The standard procedure is to define a synthetic data distribution based on an analytically prescribed vortex, which is passed to the analysis scheme as a set of high quality observations.In this study, four commonly used bogus vortices are examined by comparing resultant forecast tracks in an environment at rest, and in a background flow that simulates a typical monsoon trough-subtropical ridge structure. There are three main findings, each of which has significance for operational tropical cyclone track prediction. First, great care is needed in the choice of the characteristics of the bogus vortex, such as the radius and magnitude of the maximum wind. Second, the tropical cyclone trajectories can be very sensitive to their initial position in the idealised environment. Third, the bogus vortex can substantially influence the environment, especially over longer time periods and for vortices of larger size.With 9 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号