首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on velocity data of 933 GPS sites and using the methods of Ordinary Kriging interpolation and shape function derivation, this study has obtained the strain rate field of continental China in the spherical coordinates. In comparison with previous research results, it is found that such a strain rate field can be described by both the continuous deformation and block motions in the continent. The Tibetan Plateau and Tianshan region are characterized by continuous deformation which is distributed across the whole area. Within the blocks of South China, Tarim, Ordos, and Northeast China, little crustal deformation and deformation occurs primarily on the faults along their boundaries, which can be explained by the model of block motion. In other regions, such as the Yinshan-Yanshan block, North China block, and East Shandong-Yellow Sea, deformation patterns can be explained by both models. Besides, from southwest to northeast of continental China, there are three remarkable extensional zones of NW trending. These results imply that the NNE directed push of the India plate is the primary driving force accounting for the internal deformation of continental China. It produces the uplift, hori-zontal shortening and vertical thickening of the Tibetan Plateau as well as radiation-like material extru-sion. Of these extruded materials, one part accommodates the eastward "escape" of other blocks, generating convergence and compression of western China and widespread extension and local com-plicated deformation in eastern China under the joint action of the surrounding settings. The other part opens a corridor between the South China block and Tibetan Plateau, flowing toward southeast to the Myanmar range arc and filling the gap there which is produced by back-arc extension due to plate subduction.  相似文献   

2.
According to tie records of seismic station networks of China's continent and Korea Peninsula and the historical data,the complete seismicity pattern was obtained for the first time.The seismic zoning was conducted by means of the cluster analysis method.The map's spatial distribution of seismicity from 1960 to 1994 shows that there are three strong seismic zones:the first one strikes in the NE direction,from the Jiangsu plain in China to the central Korean Peninsula; the second strikes in the NW direction,from the Bohai Sea,China to the southern Korean Peninsula; the third strikes in the NW direction,from the western Liaoning Province to Pyongyang.Most of earthquakes are located along these three zones,the seismic intensity is lower than that in the mainland,and exhibited the feature of fractured crust of a marginal sea basin.  相似文献   

3.
Origin of tectonic stresses in the Chinese continent and adjacent areas   总被引:6,自引:0,他引:6  
Based on data of principal stress orientation from focal mechanism and of geological features in China, we made pseudo-3D genetic algorithm finite element (GA-FEM) inversion to investigate the main forces acting on the Chinese continent and adjacent areas which form the Chinese tectonic stress field. The results confirm that plate boundary forces play the dominant role in forming the stress field in China, as noticed by many previous researchers. However, we also find that topographic spreading forces, as well as basal drag forces of the lower crust to the upper crust, make significant contribution to stresses in regional scale. Forces acting on the Chinese continent can be outlined as follows: the collision of the India plate to the NNE is the most important action, whereby forces oriented to the NW by the Philippine plate and forces oriented to the SWW by the Pacific plate are also important. Topographic spreading forces are not negligible at high topographic gradient zones, these forces are perpendicular to edges of the Tibetan Plateau and a topographic gradient belt running in the NNE direction across Eastern China. Basal drag forces applied by the ductile flow of the lower crust to the base of upper crust affect the regional stress field in the Tibetan Plateau remarkably, producing the clockwise rotation around the eastern Himalaya syntax.  相似文献   

4.
Ancient Tethyan vestige extends from Alps, Kaebaiqn Mountain and eastward through Turkey, IranAfghanistan, and the middle and north of Tibetan Plateau, then turns to western Yunnan and Sichuan, andfinally ends at Zhongnan Peninsula. The PaleoTethyan is supposed as one eastward opened Oceanand superposed by tectonic deformation in the latestage of the late Mesozoic to Paleocene of Cenozoicand covered by Mesozoic and Cenozoic deposits. The Sanjiang region in southwestern China is in the…  相似文献   

5.
The Neo-Tethys Ocean was an eastward-gaping triangular oceanic embayment between Laurasia to the north and Gondwana to the south.The Neo-Tethys Ocean was initiated from the Early Permian with mircoblocks rifted from the northern margin of Gondwana.As the microblocks drifted northwards,the Neo-Tethys Ocean was expanded.Most of these microblocks collided with the Eurasia continent in the Late Triassic,leading to the final closure of the Paleo-Tethys Ocean,followed by oceanic subduction of the Neo-Tethys oceanic slab beneath the newly formed southern margin of the Eurasia continent.As the splitting of Gondwana continued,African-Arabian,Indian and Australian continents were separated from Gondwana and moved northwards at different rates.Collision of these blocks with the Eurasia continent occurred at different time during the Cenozoic,resulting in the closure of the Neo-Tethys Ocean and building of the most significant Alps-Zagros-Himalaya orogenic belt on Earth.The tectonic evolution of the Neo-Tethys Ocean shows different characteristics from west to east:Multi-oceanic basins expansion,bidirectional subduction and microblocks collision dominate in the Mediterranean region;northward oceanic subduction and diachronous continental collision along the Zagros suture occur in the Middle East;the Tibet and Southeast Asia are characterized by multi-block riftings from Gondwana and multi-stage collisions with the Eurasia continent.The negative buoyancy of subducting oceanic slabs can be considered as the main engine for northward drifting of Gondwana-derived blocks and subduction of the Neo-Tethys Ocean.Meanwhile,mantle convection and counterclockwise rotation of Gondwana-derived blocks and the Gondwana continent around an Euler pole in West Africa in non-free boundary conditions also controlled the evolution of the Neo-Tethys Ocean.  相似文献   

6.
Although the Tibetan Plateau is widely thought as a potential dust source to the atmosphere over East Asia,little is known about the temporal changes of Tibetan dust activities and Tibetan dust source strength.In this study,we address these two issues by analyzing dust storm frequencies and aerosol index through remote sensing data and by means of numerical simulation.The findings indicate that monthly dust profiles over the Tibetan Plateau vary significantly with time.Near the surface,dust concentration increases from October,reaches its maximum in February March,and then decreases.In the middle to upper troposphere,dust concentration increases from January,reaches its maximum in May June,and decreases thereafter.Although Tibetan dust sources are important contributors to dust in the atmosphere over the Tibetan Plateau,their contribution to dust in the troposphere over eastern China is weaker.The contribution of Tibetan dust sources to dust in the atmosphere over the Tibetan Plateau decreases sharply with height,from 69% at the surface,40% in the lower troposphere,and 5% in the middle troposphere.Furthermore,the contribution shows seasonal changes,with dust sources at the surface at approximately 80% between November and May and 45% between June and September;in the middle and upper troposphere,dust sources are between 21% from February to March and less than 5% in the other months.Overall,dust aerosols originating from the Tibetan Plateau contribute to less than 10% of dust in East Asia.  相似文献   

7.
The widely distributed thick gravel deposits along the rim of the Tibetan Plateau have been long thought to be the product of rapid tectonic uplift of the plateau. However, this has been challenged by recent works that suggest these thick gravels may be the result of climate change. In this paper we carried out a detailed field measurement of gravel grain sizes from the Jiuquan and Gobi Gravel Beds in the top of the Laojunmiao section in the Jiuxi Basin in the northern margin of Qilian Mts. (northern Tibetan Plateau). The results suggest that the grain sizes of the Jiuquan and Gobi Gravel Beds over the last 0.8 Ma are characterized by nine coarse-fine cycles having strong 100-ka and 41-ka periodicities that correlate well with the loess-paleosol monsoon record and isotopic global climatic record from deep sea sediments as well as by a long trend of coarsening in gravel grain size. The coarse gravel layers were formed during the warm-humid interglaciations while the fine layers correspond to the cold-dry glaciations. Because the paleoclimate in NW China began to get dramatically drier after the mid-Pleistocene, we think the persistent coarsening of gravel grain size was most probably caused by the rapid uplift of the northern Tibetan Plateau, and that the orbital scale cyclic variations in gravel grain size were driven by orbital forcing factors that were superimposed on the tectonically-forced long-term coarsening trend in gravel size. These findings also shed new light on the interaction results of climate and tectonics in relation to the uplift of the Tibetan Plateau.  相似文献   

8.
The Himalayan orogen consists of three major lithologic units that are separated by two major north-dipping faults: the Lesser Himalayan Sequence (LHS) below the Main Central Thrust (MCT), the Greater Himalayan Crystalline Complex (GHC) above the MCT, and the Tethyan Himalayan Sequence (THS) juxtaposed by the South Tibet Detachment fault (STD) over the GHC. Due to widespread meta-morphism and intense deformation, differentiating the above three lithologic units is often difficult. This problem has been overcome by the use of Sm-Nd isotopic analysis. The previous studies suggested that the LHS can be clearly distinguished from the GHC and THS by their Nd isotope compositions. However, the lack of detailed and systematic Sm-Nd isotopic studies of the THS across the Himalaya in general has made differentiation of this unit from the nearby GHC impossible, as the two appear to share overlapping Nd compositions and model ages. To address this problem, we systematically sam-pled and analyzed Nd isotopes of the THS in southeastern Tibet directly north of Bhutan. Our study identifies two distinctive fields in a εNd -TDM plot. The first is defined by the εNd(210 Ma) values of -3.45 to -7.34 and TDM values of 1.15 to 1.29 Ga from a Late Triassic turbidite sequence, which are broadly similar to those obtained from the Lhasa block. The second field is derived from the Early Cretaceous meta-sedimentary rocks with εNd(130 Ma) values from -15.24 to -16.61 and TDM values from 1.63 to 2.00 Ga; these values are similar to those obtained from the Greater Himalayan Crystalline Complex in Bhutan directly south of our sampling traverse, which has εNd(130 Ma) values of -10.89 to -16.32 and Nd model ages (TDM) of 1.73 to 2.20 Ga. From the above observations, we suggest that the Late Triassic strata of the southeast Tibetan THS were derived from the Lhasa block in the north, while the Early Cretaceous strata of the THS were derived from a source similar to the High Himalayan Crystalline Complex or Indian craton in the south. Our interpretation is consistent with the existing palaeocurrent data and provenance analysis of the Late Triassic strata in southeastern Tibet, which indicate the sediments derived from a northern source. Thus, we suggest that the Lhasa terrane and the Indian craton were close to one another in the Late Triassic and were separated by a rift valley across which a large submarine fan was transported southward and deposited on the future northern margin of the Indian continent.  相似文献   

9.
Southwest Yunnan, located in the southern segment of the north-south seismic belt, is one of the regions with strong tectonic movement and seismic activity in China. Study on the characteristics of tectonic setting and deep geophysical field in the region is an important issue in basic science. In 2013, we conducted a 600-km-long Menghai-Gengma-Lushui profile of deep seismic wide-angle reflection/refraction and high-resolution seismic refraction in Southwest Yunnan. In this paper, we use 6 groups of clear intracrustal P-wave phases picked from the seismic record sections of 11 shots to build a velocity structure model of basement and 2D crustal P-wave of the region by using finite difference inversion and ray travel time forward fitting technology. The results show that, from south to north, the crust gradually thickens along the profile and its basement shows a significant lateral heterogeneity. In the vicinity of the Nanting River fault, the basement structure shows the character of alternate depressions and uplifts, and the shallowest basement is about 1.0 km. In the vicinity of Tengchong and Lancang, the basement is about 5.0 km deep. The velocity of the middle and lower crust in the region generally increases with the increasing of depth. At the block boundary and beneath the fault tectonic belt, the velocity contours show apparent irregularity and the P-wave velocity changes sharply. In this region, the Moho gradually deepens from south to north with relatively large lateral undulations. The shallowest point of the Moho is located near Menghai at a depth of about 32.0 km. The deepest point of the Moho is located near Tengchong at a depth of about 40.5 km. Between Gengma and Yongde, the Moho shows significantly fast uplifting and depressing with an amplitude of about 4.0 km. Beneath the Nanting River fault, Longling-Ruili fault, Dayingjiang fault and Tengchong volcano, the basement velocity structure, 2D crustal P-wave velocity structure, distribution of average profile velocity and intracrustal interface spreading also show significant changes from the basement to the top of the Moho, indicating that the crustal velocity and medium physical properties beneath the fault tectonic belt are apparently different from the crustal materials on its both sides, which suggests that these faults should be in a certain scale and may extend to the lower crust or the top of the upper mantle. The earthquakes in the region mainly occurred at a depth of 10–20 km, and the seismic activity is related to the intracrustal medium velocity difference and fault belt distribution. The results can serve as the important data of the crust-mantle structure for the analysis of the deep tectonic setting, earthquake precise positioning, seismogenic structure modeling of the seismic activities in Southwest Yunnan, as well as the important reference for the evaluation of seismic hazard and the planning of earthquake disaster mitigation of this region.  相似文献   

10.
Seismic active faults in the northwestern Beijing by seismic tomography   总被引:1,自引:0,他引:1  
Introduction It is well known that earthquake originates from movement of active faults. According to the professional standard issued by China Earthquake Administration (2005), active fault refers to the one that has been active since the Late Quaternary, while seismic active fault refers to the one where earthquake had occurred or might occur afterwards. In city hazard mitigation, land planning, and site determination for lifeline engineering, active fault should be kept away, so it is of …  相似文献   

11.
In order to study the present crustal movement and geodynamics in China‘s continent, a countrywide GPS monitoring network consisting of 22 stations was set up evenly on major tectonic blocks in China‘s continent in the early 1990s. Three-phase observations using the network were carried out in 1992, 1994, and 1996, respectively. In this paper, the data processing and accuracy of the three-phase observations are examined and the basic characteristics of present block movement in China‘s continent are analyzed based on the data of three-phase repeated observations. The study result indicates that the accuracy of data obtained in three-phase observations on the GPS network reaches 10-8 ~ 10-9, which is adequate to the need of monitoring of crustal movement. A model for block movement in China‘s continent constructed based on the result of the three-phase observations has effectively tested the results of geological and geophysical studies. In global framework, China‘s continent as a whole shows its clear eastward motion and its regional movement relative to Siberian block is characterized by that the western China is mainly affected by northward subduction and pushing of Indian Plate. Qinghai-Xizang Plateau shows clear eastward lateral slip simultaneously with longitudinal compression. It is more favorable to the escape model for the continent. Block movement of eastern China is under the combined effect of Indian, Pacific,and Philippine plates, resulting in northeastern and eastern motions of eastern China up to southeastern coastal region where the effect of Philippine Plate strengthens.  相似文献   

12.
Deep seismic reflection profiling has been the dominant method for probing the deep structure of continental crust since the initiation of the COCORP in 1974[1,2]. Over the past few decades, this tool has been applied to diverse geologic features from the Appalachian area of the United States, to the Rhine-graben area in Western Europe and to the Tibetan Pla-teau[36]. In recent years, the Australian Geodynamic Cooperative Research Center ( AGCRC ) has applied this technique to the stu…  相似文献   

13.
Using 12 years of data from the Tropical Rainfall Measuring Mission(TRMM)-based Precipitation Radar(PR),spatial and diurnal variations of deep convective systems(DCSs)over the Asian monsoon region are analyzed.The DCSs are defined by a 20 dBZ echo top extending 14 km.The spatial distribution of DCSs genesis is also discussed,with reference to the National Centers for Environmental Prediction(NCEP)reanalysis data.The results show that DCSs occur mainly over land.They concentrate in south of 20°N during the pre-monsoon season,and then move distinctly to mid-latitude regions,with the most active region on the south slope of the Himalayas during monsoon season.DCSs over the Tibetan Plateau are more frequent than those in central-eastern China,but smaller in horizontal scale and weaker in convective intensity.DCSs in central-eastern China have more robust updrafts and generate more lightning flashes than in other Asian monsoon regions.The horizontal scale of DCSs over the ocean is larger than that over the other regions,and the corresponding minimum infrared(IR)brightness temperature is lower,whereas the convective intensity is weaker.Continental DCSs are more common from noon through midnight,and DCSs over the Tibetan Plateau are more frequently from noon through evening.Oceanic DCSs frequency has a weaker diurnal cycle with dawn maximum,and diurnal variation of DCSs over the tropical maritime continent is consistent with that over the continent.  相似文献   

14.
This paper makes a summary of status of delimitation of seismic zones and belts of China firstly in aspects of studying history,purpose,usage,delimiting principles,various presenting forms and main spectialties.Then the viewpoints are emphasized,making geographical divisions by seismicity is just the most important purpose of delimiting seismic belts and the concept of seismic belt is also quite different from that of seismic statistical zone used in CPSHA method.The concept of seismic statistical zone and its history of evolvement are introduced too.Large differences between these two concepts exist separately in their statistical property,actual meaning,gradation,required scale,and property of refusing to overlap each other,aim and usage of delimitation.But in current engineering practice,these two concepts are confused.On the one hand,it causes no fit theory for delimiting seismic statistical zone in PSHA to be set up;on the other hand,researches about delimitation of seismic belts with purposes of seismicity zoning and studying on structural environment,mechanism of earthquake generating also paues to go abead.Major conclusions are given in the end of this paper,that seismic statistical zone bases on the result of seismic belt delimiting,it only arises in and can be used in the especial PSHA method of China with considering spatially and termporally inhomogeneous seismic activities,and its concept should be clearly differentiated from the comcept of seismic belt.  相似文献   

15.
Timing of the initial collision between the Indian and Asian continents   总被引:3,自引:0,他引:3  
There exist three mainstream opinions regarding the timing of the initial collision between the Indian and Eurasian continents,namely,65±5,45±5,and 30±5 Ma.Five criteria are proposed for determining which tectonic event was related to the initial collision between India and Asia:the rapid decrease in the rate of plate motion,the cessation of magmatic activity originating from the subduction of oceanic crust,the end of sedimentation of oceanic facies,the occurrence of intracontinental deformation,and the exchange of sediments sourced from two continents.These criteria are used to constrain the nature of these tectonic events.It is proposed that the 65±5 Ma tectonic event is consistent with some of the criteria,but the upshot of this model is that the magmatic activity originating from the Tethyan subduction since the Mesozoic restarted along the southern margin of the Asian continent in this time after a brief calm,implying that the subduction of the Neotethys slab was still taking place.The magmatic activity that occurred along the southern margin of the Asian continent had a 7-Myr break during 72-65 Ma,which in this study is interpreted as having resulted from tectonic transformation from subduction to transform faulting,indicating that the convergence between the Indian and Asian continents was once dominated by strike-slip motion.The 30±5 Ma tectonic event resulted in the uplift of the Tibetan Plateau,which was related to the late stage of the convergence between these two continents,namely,a hard collision.The 45±5 Ma tectonic event is in accordance with most of the criteria,corresponding to the initial collision between these two continents.  相似文献   

16.
Based on deep geophysical detections, we have reconstructed the crustal structure from the eastern margin of the Tibetan Plateau to the Jiangnan-Xuefeng orogenic belt. The results suggest that the Yangtze Block was overthrusted by crustal materials in its NW direction from the eastern Tibetan Plateau but in its SE direction from the Jiangnan orogen. These overthrusting effects control the crustal structure from the western Sichuan to the western area of the Jiangnan orogen-Xuefeng orogenic belt. The eastward extruded materials from the eastern Tibetan Plateau were blocked by the rigid basement in the Sichuan Basin, where upper-middle crust was overthrusted whereas the lower crust was underthrusted beneath the Sichuan Basin. The underthrusted unit was absorbed by crustal folding, shortening and thickening in the Yangtze Block, forming the Xiongpo and Longquan Mountains tectonic belts and resulting in the NW-directed thrusting of the Pujiang-Chengdu-Deyang fault, and the western hillsiden fault in the Longquan Mountain. These results provide resolution to the controversy where the eastward extrusion material from the Qinghai-Tibet Plateau had gone. Overall, that Yangtze Block was subjected to thrusting of the crustal materials from the orogenic belts over its both sides. This finding has implications for the study of the intracontinental orogenic mechanism in South China, the reconstruction of tectonic evolutionary history and the kinematics processes during the lateral extrusion of the Tibet Plateau.  相似文献   

17.
Based on numerical experiments undertaken with nine climate models, the glacier equilibrium line altitudes(ELAs)in western China during the last glacial maximum(LGM) are investigated to deepen our understanding of the surface environment on the Tibetan Plateau. Relative to the preindustrial period, the summer surface air temperatures decrease by 4–8°C while the annual precipitation decreases by an average of 25% across the Tibetan Plateau during the LGM. Under the joint effects of reductions in summer temperature and annual precipitation, the LGM ELAs in western China are lowered by magnitudes that vary with regions. The ELAs in the southern margin and northwestern Tibetan Plateau decline by approximately 1100 m; the central hinterland, by 650–800 m; and the eastern part, by 550–800 m, with a downward trend from southwest to northeast. The reduction in ELAs is no more than 650 m in the Tian Shan Mountains within China and approximately 500–600 m in the Qilian Mountains and Altai Mountains. The high-resolution models to reproduce the low values of no more than 500 m in ELA reductions in the central Tibetan Plateau, which are consistent with the proxy records from glacier remains. The accumulation zones of the Tibetan Plateau glaciers are mainly located in the marginal mountains during the LGM and have areas 2–5 times larger than those of the modern glaciers but still do not reach the central part.  相似文献   

18.
The present continent had been assembled by the accretion of a series of terrains after their mutual colli-sions. Thus, the continental collision process plays an important role in the tectonics, the deformation and the movement in the continent. The Indo-Eurasian colli-sion had not only produced the grand geological structures and landscape, such as the Himalayan Mountain and the Tibetan Plateau, but also played a decisive role in the tectonic deformation and seismic-ity of Eastern Asia si…  相似文献   

19.
The Tianshan Mountains have undergone its initial orogeny, extension adjusting and re-orogeny since the Late Paleozoic. The re-orogeny and uplifting process of the orogeny in the Mesozoic and Cenozoic are two of most important events in the geological evolution of Euro-Asian continent, which resulted in the formation of the present range-and-basin pattern in topography of the Tianshan Mountains and its adjacent areas. Thermochronology results by the method of fission-track dating of apatite suggest three obvious uplifting stages of the Bogad Mountain Chain re-orogeny during the Cenozoic, i.e. 5.6-19 Ma, 20-30 Ma, and 42-47 Ma. The strongest uplifting stage of the mountain is the second one at 20 -30 Ma, when the mountain uplifted as a whole, and the beginning of re-orogeny was no less than 65 Ma. Furthermore, our studies also show that the uplifting types of the mountain are variable in the dif-ferent time periods, including uplifting of mountain as a whole and differential uplifting. The apparently diversified uplifting processes of the mountain chain are characterized by the migration (or transfor-mation) of the uplifting direction of the mountain from west to east and from north to south, and the main process of mountain extending is from north to south.  相似文献   

20.
The crustal and upper mantle azimuthal anisotropy of the Tibetan Plateau and adjacent areas was studied by Rayleigh wave tomography. We collected sufficient broadband digital seismograms trav-ersing the Tibetan Plateau and adjacent areas from available stations, including especially some data from the temporary stations newly deployed in Yunnan, eastern Tibet, and western Sichuan. They made an adequate path coverage in most regions to achieve a reasonable resolution for the inversion. The model resolution tests show that the anisotropic features of scope greater than 400 km and strength greater than 2% are reliable. The azimuthal anisotropy pattern inside the Tibetan Plateau was similar to the characteristic of tectonic partition. The crustal anisotropy strength is greater than 2% in most re-gions of East Tibet, and the anisotropy shows clockwise rotation surrounding the eastern Himalayan syntaxis. Vertically, the anisotropy direction indicates a coherent pattern within the upper crust, lower crust, and lithosphere mantle of the Tibetan Plateau, which also is consistent with GPS velocity field and SKS fast polarization directions. The result supports that the crust-mantle deformation beneath the Tibetan Plateau is vertically coherent. The anisotropy strength of crust and lithospheric upper mantle in Yunnan outside the Tibetan Plateau is lower than 2%, so SKS splitting from core-mantle boundary to station should largely be attributed to the anisotropy of asthenosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号