首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The subject of the wave–seabed–structure interaction is important for civil engineers regarding stability analysis of foundations for offshore installations. Most previous investigations have been concerned with such a problem in the vicinity of a simple structure such as a vertical wall. For more complicated structures such as a pipeline, the phenomenon of the wave–seabed–structure has not been fully understood. This paper proposes a finite-difference model in a curvilinear coordinate system to investigate the wave-induced seabed response in a porous seabed around a pipeline. Based on the present numerical model, mechanism of the wave-induced soil response is examined. Employing Mohr–Coulomb failure criterion, the wave-induced seabed instability is also estimated. The numerical results indicate the importance of the effect of pipeline on the seabed response.  相似文献   

2.
In this study, a mathematical integrated model is developed to investigate the wave-induced sloping seabed response in the vicinity of breakwater. In the present model, the wave model is based on the Volume-Averaged/Reynolds Averaged Navier–Stokes (VARANS) equations, while Biot's consolidation equation is used to govern the soil model. The influence of turbulence fluctuations on the mean flow with respect to the complicated interaction between wave, sloping seabed and breakwater are obtained by solving the Volume-Averaged k  ϵ model. Unlike previous investigations, the phase-resolved absolute shear stress is used as the source of accumulation of residual pore pressure, which can link the oscillatory and residual mechanisms simultaneously. Based on the proposed model, parametric studies regarding the effects of wave and soil characteristics as well as bed slopes on the wave-induced soil response in the vicinity of breakwater are investigated. Numerical results indicate that wave-induced seabed instability is more likely to occur in a steep slope in the case of soil with low relative density and low permeability under large wave loadings. It is also found that, the permeability of breakwater significantly affect the potential for liquefaction, especially in the region below the breakwater.  相似文献   

3.
Wave-induced seabed instability in front of a breakwater   总被引:2,自引:0,他引:2  
D.S. Jeng 《Ocean Engineering》1997,24(10):887-917
The wave-induced soil response in a porous seabed has become an important factor for the stability of offshore facilities, because many marine structures may have failed due to seabed instability and concomitant subsidence. An analytical solution is presented for the wave-induced soil response under the action of a three-dimensional wave system. Based on this general solution, the mechanism of seabed instability is then investigated. The general solutions for pore pressure and effective stresses are readily reducible to two dimensions for progressive waves, and are compared to theoretical and experimental work available. Some dominant factors affecting the wave-induced seabed instability are discussed; including permeability, seabed thickness and degree of saturation.  相似文献   

4.
Wave-induced seabed instability, either momentary liquefaction or shear failure, is an important topic in ocean and coastal engineering. Many factors, such as seabed properties and wave parameters, affect the seabed instability. A non-dimensional parameter is proposed in this paper to evaluate the occurrence of momentary liquefaction. This parameter includes the properties of the soil and the wave. The determination of the wave-induced liquefaction depth is also suggested based on this non-dimensional parameter. As an example, a two-dimensional seabed with finite thickness is numerically treated with the EFGM meshless method developed early for wave-induced seabed responses. Parametric study is carried out to investigate the effect of wavelength, compressibility of pore fluid, permeability and stiffness of porous media, and variable stiffness with depth on the seabed response with three criteria for liquefaction. It is found that this non-dimensional parameter is a good index for identifying the momentary liquefaction qualitatively, and the criterion of liquefaction with seepage force can be used to predict the deepest liquefaction depth.  相似文献   

5.
In engineering practice, a cover layer of coarser material has been used to protect a buried marine pipeline from wave-induced seabed instability. However, most previous investigations of the wave–seabed–pipe interaction problem have been concerned only with such a problem either in an isotropic single layer or a rigid pipe. This paper proposes a two-dimensional finite element model by employing the principle of repeatability to investigate the wave-induced soil response around a buried pipeline. The elastic anisotropic soil bahavior and geometry of cover layer are included in the present model, while the pipe is considered to be an elastic medium. This study focuses on the effects of a cover layer (including thickness B and width W of the cover layer) on the wave-induced pore pressure in the vicinity of a buried pipeline.  相似文献   

6.
The coupling numerical model of wave interaction with porous medium is used to study waveinduced pore water pressure in high permeability seabed.In the model,the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes(RANS) equations with a k-ε closure,and Forchheimer equations are adopted for flow within the porous media.By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow,a highly efficient coupling between the two flows is implemented.The numerical tests are conducted to study the effects of seabed thickness,porosity,particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response.The results indicate that,as compared with regular wave-induced,solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters.The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed.The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action.  相似文献   

7.
Models based on the theoretical framework of soil mechanics are presented to evaluate storm wave-induced silty seabed instability and geo-hazards through a case study in the Yellow River delta. First, the transient and residual mechanisms of wave-induced pore pressure are analyzed. Three typical models (i.e., elastic model, pore pressure development mode and elasto-plastic model) are proposed to calculate wave-induced stresses in the seabed. Next, mechanisms and calculation methods of wave-induced seabed instability modes such as scour, liquefaction, seepage instability and shear slide are proposed. Typical results of storm wave-induced excess pore pressure and seabed instability are given and relevant discussions are made. At last, the formation mechanism of geo-hazards in the Yellow River delta is analyzed based on the proposed mechanism and calculated results. Results and analysis indicate that both transient and residual mechanisms are important to storm wave-induced response of silty seabed and hence the elasto-plastic model is more appropriate. Complete liquefaction does not happen, while other types of instability occur mostly within 2–6 m under the seabed surface. Wave-induced scour, seepage instability and shear slide are all possible instability modes under the 1-year storm waves, and scour is predominant for the 50-year storm waves. The formation mechanism of geo-hazards such as shallow slide and storm wave reactivation, pockmarks, silt flow and gully, disturbed stratum and hard crust in the Yellow River are well explained based on the proposed mechanisms and calculated results of storm wave-induced silty seabed instability.  相似文献   

8.
To simplify the complicated mathematical process, most previous investigations for the water waves-seabed interaction problem have assumed a porous seabed with isotropic soil behavior, even though strong evidence of anisotropic soil behavior has been reported in soil-mechanics literature. This paper proposes an analytical solution of the short-crested wave-induced soil response in a cross-anisotropic seabed. As shown in the numerical results presented, the wave-induced seabed response, including pore pressure, effective stresses and soil displacements, is affected significantly by the cross-anisotropic elastic constants. A parametric study is performed to clarify the relative differences in pore pressure between isotropic and cross-anisotropic solutions.  相似文献   

9.
A plane strain analysis based on the generalized Biot's equation is utilized to investigate the wave-induced response of a poro-elastic seabed with variable shear modulus.By employing integral transform and Frobenius methods,the transient and steady solutions for the wave-induced pore water pressure,effective stresses and displacements are analytically derived in detail.Verification is available through the reduction to the simple case of homogeneous seabed.The numerical results indicate that the inclusion of variable shear modulus significantly affects the wave-induced seabed response.  相似文献   

10.
The soil permeability of many natural marine sediments decreases with depth because of consolidation under overburden pressure. This is accompanied by a decrease in porosity and void ratio that also affect the permeability. Conventional theories for wave-induced soil response have assumed a homogeneous porous seabed. This paper presents a new approach for the wave-induced response in a soil matrix, with variable permeability as a function of burial depth. The soil matrix considered is unsaturated and anisotropic, and is subject to a three-dimensional wave system. The pore pressure and effective stresses induced by such a system are obtained from a set of equations incorporating a variable permeability. Verification is available through reduction to the simple case of uniform permeability. The results indicate that the effect of variable soil permeability on pore pressure and vertical effective stress may be significant, especially in a gravelled seabed and for unsaturated sandy soils.  相似文献   

11.
Research on the response of random wave on offshore structures has received great deal of attention of many researchers and engineers in the design of marine structures. Most previous investigations have been limited to the regular waves. In this paper, based on Longuet–Higgins random wave theory and finite element method, a numerical model for random wave-induced seabed response is established. The seabed is treated as poroelastic medium and characterized by Biot’s partly dynamic equations (u–p model). The JONSWAP spectrum is adopted in Longuet–Higgins model, which is based on the cumulative superposition of linear diffraction solution. Based on the numerical results, the effects of random wave on seabed response are investigated by comparing with the corresponding Stokes wave and cnoidal wave. Then, a parametric study is conducted to examine the effect of wave and soil characteristic on the seabed.  相似文献   

12.
Most previous investigations related to composite breakwaters have focused on the wave forces acting on the structure itself from a hydrodynamic aspect. The foundational aspects of a composite breakwater under wave-induced cyclic loading are also important in studying the stability of a composite breakwater. In this study, numerical simulations were performed to investigate the wave-induced pore water pressure and flow changes inside the rubble mound of the composite breakwater and seabed foundation. The validity and applicability of the numerical model were demonstrated by comparing numerical results with existing experimental data. Moreover, the present model clearly has shown that the instantaneous directions of pore water flow motion inside the seabed induced by surface waves are in good agreement with the general wave-induced pore water flow inside the seabed. The model is further used to discuss the stability of a composite breakwater, i.e., the interaction among nonlinear waves, composite breakwater and seabed. Numerical results suggest that the stability of a composite breakwater is affected by not only downward shear flow generating on the seaward slope face of the rubble mound but, also, a high and dense pore water pressure gradient inside the rubble mound and seabed foundation.  相似文献   

13.
波浪引起的海床不稳定性是海洋工程中需要考虑的重要问题。在对现有波致海床滑动稳定性计算方法进行分析的基础上,提出了一种波致海床滑动稳定性计算的全应力状态法,将其与现有计算方法进行了对比分析,并进一步研究了波致砂土海床和软土海床的滑动失稳特征。结果分析表明,全应力状态法在波致海床滑动稳定性分析中具有较好的适用性。对于砂土海床,其滑动稳定性受饱和度的影响较大,且当海床计算厚度约为0.2倍波长时对应的滑动深度最大。波浪作用下坡度不超过2°的均质软土海床,其最危险滑动面的位置仅与波长有关,其滑动深度约为0.21倍波长,滑动面半弦长约为0.33倍波长;海床表面的波压力数值只影响其安全系数的大小,而不影响其滑动深度。  相似文献   

14.
D.-S. Jeng  H. Zhang   《Ocean Engineering》2005,32(16):1950-1967
The evaluation of the wave-induced liquefaction potential is particularly important for coastal engineers involved in the design of marine structures. Most previous investigations of the wave-induced liquefaction have been limited to two-dimensional non-breaking waves. In this paper, the integrated three-dimensional poro-elastic model for the wave-seabed interaction proposed by [Zhang, H., Jeng, D.-S., 2005. An integrated three-dimensional model of wave-induced pore pressure and effective stresses in a porous seabed: I. A sloping seabed. Ocean Engineering 32(5/6), 701–729.] is further extended to simulate the seabed liquefaction potential with breaking wave loading. Based on the parametric study, we conclude: (1) the liquefaction depth due to breaking waves is smaller than that of due to non-breaking waves; (2) the degree of saturation significantly affects the wave-induced liquefaction depth, and no liquefaction occurs in full saturated seabed, and (3) soil permeability does not only significantly affect the pore pressure, but also the shear stresses distribution.  相似文献   

15.
Wave-induced instability of seabed may cause damage to coastal and offshore structures. This issue has been investigated mostly for mildly sloping (<5°) seabed considering uncoupled or one-way coupled response of wave and seabed interaction. However, some of the marine structures are founded on seabed with steeper slopes. In this study, the wave-induced response and instability of sloping seabed are evaluated using a coupled finite element model. The interaction between fluid and porous seabed accounting for the effect of fluid motion on the seabed response, and conversely the effect of seabed response on the fluid motion (but not on the surface wave profile) is considered. The results indicate that the system response (fluid pressure, stresses, etc.) and the extent of instantaneously liquefied zone within the sloping seabed with significant steepness are lesser than those for horizontal seabed. Moreover, for typical sediment and wave characteristics, for the flat seabed, the response obtained from fully coupled analysis is not significantly different from those obtained by uncoupled analysis. For the sloping bed, such difference is slightly greater as compared to that for the flat bed.  相似文献   

16.
Physical modeling of untrenched submarine pipeline instability   总被引:1,自引:0,他引:1  
F. P. Gao  X. Y. Gu  D. S. Jeng   《Ocean Engineering》2003,30(10):1283-1304
Wave-induced instability of untrenched pipeline on sandy seabed is a ‘wave–soil–pipeline’ coupling dynamic problem. To explore the mechanism of the pipeline instability, the hydrodynamic loading with U-shaped oscillatory flow tunnel is adopted, which is quite different from the previous experiment system. Based on dimensional analysis, the critical conditions for pipeline instability are investigated by altering pipeline submerged weight, diameter, soil parameters, etc. Based on the experimental results, different linear relationships between Froude number (Fr) and non-dimensional pipeline weight (G) are obtained for two constraint conditions. Moreover, the effects of loading history on the pipeline stability are also studied. Unlike previous experiments, sand scouring during the process of pipe’s losing stability is detected in the present experiments. In addition, the experiment results are compared with the previous experiments, based on Wake II model for the calculation of wave-induced forces upon pipeline. It shows that the results of two kinds of experiments are comparable, but the present experiments provide better physical insight of the wave–soil–pipeline coupling effects.  相似文献   

17.
In this study, unlike most previous investigations for wave-induced soil response, a simple semi-analytical model for the random wave-induced soil response is established for an unsaturated seabed of finite thickness. Two different wave spectra, the B-M and JONSWAP spectra, are considered in the new model. The influence of random wave loading on the soil response is investigated by comparing with the corresponding representative regular wave results through a parametric study, which includes the effect of the degree of saturation, soil permeability, wave height, wave period and seabed thickness. The maximum liquefaction depth under the random waves is also examined. The difference on the soil response under the two random wave types, B-M and JONSWAP frequency spectra, is also discussed in the present work.  相似文献   

18.
Cnoidal wave theory is appropriate to periodic wave progressing in water whose depth is less than 1/10 wavelength. However, the cnoidal wave theory has not been widely applied in practical engineering because the formula for wave profile involves Jacobian elliptic function. In this paper, a cnoidal wave-seabed system is modeled and discussed in detail. The seabed is treated as porous medium and characterized by Biot's partly dynamic equations (up model). A simple and useful calculating technique for Jacobian elliptic function is presented. Upon specification of water depth, wave height and wave period, Taylor's expression and precise integration method are used to estimate Jacobian elliptic function and cnoidal wave pressure. Based on the numerical results, the effects of cnoidal wave and seabed characteristics, such as water depth, wave height, wave period, permeability, elastic modulus, and degree of saturation, on the cnoidal wave-induced excess pore pressure and liquefaction phenomenon are studied.  相似文献   

19.
《Ocean Engineering》2004,31(5-6):561-585
The evaluation of the wave-induced seabed instability in the vicinity of a breakwater is particularly important for coastal and geotechnical engineers involved in the design of coastal structures. In this paper, an analytical solution for three-dimensional short-crested wave-induced seabed instability in a Coulomb-damping porous seabed is derived. The partial wave reflection and self-weight of breakwater are also considered in the new solution. Based on the analytical solution, we examine (1) the wave-induced soil response at different location; (2) the maximum liquefaction and shear failure depth in coarse and fine sand; (3) the effects of reflection coefficients; and (4) the added stresses due to the self-weight of the breakwater.  相似文献   

20.
The boundary layer characteristics beneath waves transforming on a natural beach are affected by both waves and wave-induced currents, and their predictability is more difficult and challenging than for those observed over a seabed of uniform depth. In this research, a first-order boundary layer model is developed to investigate the characteristics of bottom boundary layers in a wave–current coexisting environment beneath shoaling and breaking waves. The main difference between the present modeling approach and previous methods is in the mathematical formulation for the mean horizontal pressure gradient term in the governing equations for the cross-shore wave-induced currents. This term is obtained from the wave-averaged momentum equation, and its magnitude depends on the balance between the wave excess momentum flux gradient and the hydrostatic pressure gradient due to spatial variations in the wave field of propagating waves and mean water level fluctuations. A turbulence closure scheme is used with a modified low Reynolds number k-ε model. The model was validated with two published experimental datasets for normally incident shoaling and breaking waves over a sloping seabed. For shoaling waves, model results agree well with data for the instantaneous velocity profiles, oscillatory wave amplitudes, and mean velocity profiles. For breaking waves, a good agreement is obtained between model and data for the vertical distribution of mean shear stress. In particular, the model reproduced the local onshore mean flow near the bottom beneath shoaling waves, and the vertically decreasing pattern of mean shear stress beneath breaking waves. These successful demonstrations for wave–current bottom boundary layers are attributed to a novel formulation of the mean pressure gradient incorporated in the present model. The proposed new formulation plays an important role in modeling the boundary layer characteristics beneath shoaling and breaking waves, and ensuring that the present model is applicable to nearshore sediment transport and morphology evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号