首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Organic Geochemistry》2012,42(12):1277-1284
Compound-specific isotope measurements of organic compounds are increasingly important in palaeoclimate reconstruction. Searching for more accurate peat-based palaeoenvironmental proxies, compound-specific fractionation of stable C, H and O isotopes of organic compounds synthesized by Sphagnum were determined in a greenhouse study. Three Sphagnum species were grown under controlled climate conditions. Stable isotope ratios of cellulose, bulk organic matter (OM) and C21–C25 n-alkanes were measured to explore whether fractionation in Sphagnum is species-specific, as a result of either environmental conditions or genetic variation. The oxygen isotopic composition (δ18O) of cellulose was equal for all species and all treatments. The hydrogen isotopic composition (δD) of the n-alkanes displayed an unexpected variation among the species, with values between −154‰ for Sphagnum rubellum and −184‰ for Sphagnum fallax for the C23 n-alkane, irrespective of groundwater level. The stable carbon isotopic composition (δ13C) of the latter also showed a species-specific pattern. The pattern was similar for the carbon isotope fractionation of bulk OM, although the C23 n-alkane was >10‰ more depleted than the bulk OM. The variation in H fractionation may originate in the lipid biosynthesis, whereas C fractionation is also related to humidity conditions. Our findings clearly emphasize the importance of species identification in palaeoclimate studies based on stable isotopes from peat cores.  相似文献   

2.
《Organic Geochemistry》2012,42(12):1269-1276
This study sought to characterize hydrogen isotopic fractionation during biosynthesis of leaf wax n-alkanes in succulent plants capable of crassulacean acid metabolism (CAM). The metabolic and physiological features of CAM represent crucial strategies for survival in hot and dry climates and have been hypothesized to impact hydrogen isotope fractionation. We measured the stable carbon and hydrogen isotopic compositions (δ13C and δD, respectively) of individual n-alkanes in 20 species of succulent plants from a global collection of the Huntington Botanical Gardens, San Marino, California. Greenhouse conditions and irrigation with water of constant δD value enabled determination of interspecies differences in net D/H fractionation between source water and leaf wax products. Carbon isotope ratios provide constraints on the extent of CAM vs. C3 photosynthesis and indicate a wide range of CAM use, with δ13C values ranging from −33.01‰ to −18.54‰ (C27–C33 n-alkanes) and −26.66‰ to −17.64‰ (bulk tissue). Despite the controlled growth environment, we observed ca. 90‰ interspecies range in δD values from −193‰ to −107‰. A positive correlation between δ13Cbulk and δDC31 values with R2 = 0.60 (δ13CC31 and δDC31 values with R2 = 0.41) implicates a metabolic isotope effect as the dominant cause of interspecies variation in the hydrogen isotopic composition of leaf wax n-alkanes in CAM-intermediate plants.  相似文献   

3.
This study was conducted on recent desert samples—including (1) soils, (2) plants, (3) the shell, and (4) organic matter from modern specimens of the land snail Eremina desertorum—which were collected at several altitudes (316–360 m above sea level) from a site in the New Cairo Petrified Forest. The soils and shellE. desertorum were analyzed for carbonate composition and isotopic composition (δ18O, δ13C). The plants and organic matterE. desertorum were analyzed for organic carbon content and δ13C. The soil carbonate, consisting of calcite plus minor dolomite, has δ18O values from −3.19 to −1.78‰ and δ13C values −1.79 to −0.27‰; covariance between the two values accords with arid climatic conditions. The local plants include C3 and C4 types, with the latter being dominant. Each type has distinctive bulk organic carbon δ13C values: −26.51 to −25.36‰ for C3-type, and −13.74 to −12.43‰ for C4-type plants.The carbonate of the shellE. desertorum is composed of aragonite plus minor calcite, with relatively homogenous isotopic compositions (δ18Omean = −0.28 ± 0.22‰; δ13Cmean = −4.46 ± 0.58‰). Most of the δ18O values (based on a model for oxygen isotope fractionation in an aragonite-water system) are consistent with evaporated water signatures. The organic matterE. desertorum varies only slightly in bulk organic carbon δ13C values (−21.78 ± 1.20‰) and these values suggest that the snail consumed more of C3-type than C4-type plants. The overall offset in δ13C values (−17.32‰) observed between shellE. desertorum carbonate and organic matterE. desertorum exceeds the value expected for vegetation input, and implies that 30% of carbon in the shellE. desertorum carbonate comes from the consumption of limestone material.  相似文献   

4.
Carbon isotope compositions of both sedimentary carbonate and organic matter can be used as key proxies of the global carbon cycle and of its evolution through time,as long as they are acquired from waters where the dissolved inorganic carbon(DIC)is in isotope equilibrium with the atmospheric CO2.However,in shallow water platforms and epeiric settings,the influence of local to regional parameters on carbon cycling may lead to DIG isotope variations unrelated to the global carbon cycle.This may be especially true for the terminal Neoproterozoic,when Gondwana assembly isolated waters masses from the global ocean,and extreme positive and negative carbon isotope excursions are recorded,potentially decoupled from global signals.To improve our understanding on the type of information recorded by these excursions,we investigate the pairedδ^13Ccarb andδ^13Corg evolution for an increasingly restricted late Ediacaran-Cambrian foreland system in the West Gondwana interior:the basal Bambui Group.This succession represents a 1~(st)-order sedimentary sequence and records two majorδ^13Ccarb excursions in its two lowermost lower-rank sequences.The basal cap carbonate interval at the base of the first sequence,deposited when the basin was connected to the ocean,hosts antithetical negative and positive excursions forδ^13Ccarb andδ^13Corg,respectively,resulting inΔ^13C values lower than 25‰.From the top of the basal sequence upwards,an extremely positiveδ^13Ccarb excursion is coupled toδ^13Corg,reaching values of+14‰and-14‰,respectively.This positive excursion represents a remarkable basin-wide carbon isotope feature of the Bambui Group that occurs with only minor changes inΔ^13C values,suggesting change in the DIC isotope composition.We argue that this regional isotopic excursion is related to a disconnection between the intrabasinal and the global carbon cycles.This extreme carbon isotope excursion may have been a product of a disequilibria between the basin DIC and atmospheric CO2 induced by an active methanogenesis,favored by the basin restriction.The drawdown of sulfate reservoir by microbial sulfate reduction in a poorly ventilated and dominantly anoxic basin would have triggered methanogenesis and ultimately methane escape to the atmosphere,resulting in a^13C-enriched DIC influenced by methanogenic CO2.Isolated basins in the interior of the Gondwana supercontinent may have represented a significant source of methane inputs to the atmosphere,potentially affecting both the global carbon cycle and the climate.  相似文献   

5.
《China Geology》2020,3(4):602-610
Thirty-nine crude oils and twenty-one rock samples from Niger Delta Basin, Nigeria have been characterized based on their isotope compositions by elemental analysis-isotope ratio mass spectrometry and gas chromatography-isotope ratio mass spectrometry. The bulk carbon isotopic values of the whole rock extracts, saturate and aromatic fractions range from –28.7‰ to –26.8‰, –29.2‰ to –27.2 ‰ and –28.5 ‰ to –26.7 ‰, respectively while the bulk carbon isotopic values of the whole oils, saturate and aromatic fractions range from –25.4 ‰ to –27.8 ‰, –25.9 ‰ to –28.4 ‰ and –23.5 ‰ to –26.9 ‰, respectively. The average carbon isotopic compositions of individual alkanes (nC12-nC33) in the rock samples range from –34.9‰ to –28.2‰ whereas the average isotopic values of individual n-alkanes in the oils range from –31.1‰ to –23.8‰. The δ13C isotope ratios of pristane and phytane in the rock samples range from –29.2 ‰ to –28.2 ‰ and –30.2 ‰ to –27.4 ‰ respectively while the pristane and phytane isotopic values range from –32.1‰ to –21.9‰ and –30.5‰ to –26.9‰, respectively. The isotopic values recorded for the samples indicated that the crude oils were formed from the mixed input of terrigenous and marine organic matter and deposited under oxic to sub-oxic condition in lacustrine-fluvial/deltaic environments. The stable carbon isotopic compositions were found to be effective in assessing the origin and depositional environments of crude oils in the Niger Delta Basin.  相似文献   

6.
Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated.Compared with the carbon isotopic composition of the source methane (δ13C1 = −39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff −δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed.The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous “semi-infinite” shale caprock over a period of 10 Ma.In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas.The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.  相似文献   

7.
The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ13CDIC) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO3-rich, SO42−-rich and Cl-rich. The HCO3-rich groundwater is undergoing closed system carbonate evolution from soil CO2(g) and weathering of aquifer carbonates. The SO42−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ13CDIC of the HCO3-rich groundwater was controlled by nearly equal contribution of carbon from soil CO2(g) and the aquifer carbonates, such that the δ13C of carbon added to the groundwater was −11.6‰. In the SO42−-rich groundwater, gypsum induced dedolomitization increased the 13C such that the δ13C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl-rich groundwater, common ion induced precipitation of calcite depleted the 13C such that the δ13C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution.  相似文献   

8.
Chemolithotrophic homoacetogenic bacteria apparently express a characteristic stable carbon isotope fractionation and may contribute significantly to acetate production in anoxic environments. However, fractionation factors (ε) in bacterial cultures have rarely been determined and the effect of substrate availability has not been assessed. We therefore studied the kinetic carbon isotope effect in cultures of Thermoanaerobacter kivui grown at 55 °C. The fractionation factor in HCO3 buffered medium was ca. 15‰ more negative than that in PO43− buffered medium. To test whether the difference was caused by the initial substrate ratio of H2 and total inorganic carbon (TIC; 0.5 in HCO3 vs. 4.0 in PO43− buffered medium), T. kivui was grown in either [3-(N-morpholino) propanesulfonic acid, MOPS] buffered or PO43− buffered media with different HCO3 concentration. Indeed, the fractionation factor became more negative with increasing HCO3 concentration and decreasing H2/TIC ratio. While pH had only a small effect, the fractionation was generally more negative in MOPS buffered than in phosphate buffered media, indicating that the buffer system also affected fractionation. Collectively, the results show that substrate availability and other environmental factors affect the magnitude of isotope fractionation during acetate production by chemolithotrophic homoacetogenesis.  相似文献   

9.
We investigated the distribution of lipids in Lower Triassic sedimentary rocks (252–247 myr) from South China, including a shallow water microbialite in the uppermost section of the outcrop. Archaeal derived hydrocarbons were the major constituents of the microbialite from the latest Early Triassic. Among these, we detected (i) abundant C40 acyclic and monocyclic biphytanes (possibly derived from glycerol dialkyl glycerol tetraether lipids) and their degradation products, C30–39 pseudohomologues and (ii) a C25 head-to-tail linked (regular) isoprenoid hydrocarbon [possibly derived from dialkyl glycerol diether lipids (DGDs)] and its degradation products, C21–24 pseudohomologues and abundant pristane and phytane. Through combination of compound-specific stable carbon isotope analysis of isoprenoid hydrocarbons, which had average δ13C values of −35‰ to −30‰, and their molecular distribution, it was not possible to unambiguously define the archaeal source for the biphytanes in the microbialite. The δ13C values for pristane and phytane were similar to those for head-to-tail linked C21–25 isoprenoids; potential source organisms for these compounds were halophilic archaea. Except for methane seep microbialites, no other ancient or recent phototrophic microbialites have been reported to contain predominantly archaeal isoprenoid hydrocarbons. Our findings suggest the presence of a new type of microbialite.  相似文献   

10.
Three types of recent carbonate precipitates from the River Krka, Croatia, were analysed: (1) bulk tufa from four main cascades in a 34 km long section of the river flow through the Krka National Park; (2) a laminar stromatolite‐like incrustation formed in the tunnel of a hydroelectric power plant close to the lowest cascade; and (3) recent precipitates collected on artificial substrates during winter, spring and summer periods. Stable isotope compositions of carbon (δ13C) and oxygen (δ18O) in the carbonate and organic carbon (δ13Corg) were determined and compared with δ18O of water and δ13C of dissolved inorganic carbon (DIC). The source of DIC, which provides C for tufa precipitation, was determined from the slope of the line ([DIC]/[DIC0]?1) vs. (δ13C‐DIC × ([DIC]/[DIC0])) ( Sayles & Curry, 1988 ). The δ13C value of added DIC was ?13·6‰, corresponding to the dissolution of CO2 with δ13C between ?19·5 and ?23·0‰ Vienna Pee Dee Belemnite (VPDB). The observed difference between the measured and calculated equilibrium temperature of precipitation of bulk tufa barriers indicates that the higher the water temperature, the larger the error in the estimated temperature of precipitation. This implies that the climatic signals may be valid only in tufas precipitated at lower and relatively stable temperatures. The laminar crust comprising a continuous record of the last 40 years of precipitation shows a consistent trend of increasing δ13C and decreasing δ18O. The lack of covariation between δ13C and δ18O indicates that precipitation of calcite was not kinetically controlled for either of the elements. δ13C and δ18O of precipitates collected on different artificial substrates show that surface characteristics both of substrates and colonizing biota play an important role in C and O isotope fractionation during carbonate precipitation.  相似文献   

11.
《Applied Geochemistry》2005,20(3):519-527
Pleistocene vegetation history on the Chinese Loess Plateau has been traditionally investigated using palynological methods, and questions remain regarding whether an extensive broadleaf deciduous forest ever developed on the loess table under favorable climatic conditions. The authors have employed a C isotope approach to address this question by comparing δ13C values in soil organic matter from different loess ecological domains with known source vegetation to the C isotope values obtained from a paleosol section that can be dated back to 130 ka. The C isotopic compositions of modern soils from the loess table and the loess–desert transition gave δ13C values of −24.5‰ to −18.2‰ and −25.7‰ to −20.7‰, respectively. These C isotopic ratios are consistent with the standing modern vegetation that is dominated by a mixture of C3 and C4 plants and can be distinguished from that in the patchy forest areas where exclusive C3 trees yield a narrow δ13C value range from −26.9‰ to −25‰ (average −26.1‰). Obtained δ13C compositions from paleosols and loess sediments in the Lantian and the Luochuan profiles vary from −24‰ to −16.9‰, indicating a grass-dominated steppe with shifting C3 and C4 contributions controlled mainly by paleoclimatic changes during the late Pleistocene. The present results suggest no extensive forest coverage on the loess table during the past 130 ka even under the most suitable conditions for forest development. This conclusion supports the explanation of natural causes for the development of only patchy forests on the modern loess table and provides critical historical information toward the vegetation restoration project that is currently underway on the Chinese Loess Plateau.  相似文献   

12.
《Applied Geochemistry》2000,15(2):157-169
Ground-water chemistry and the stable C isotope composition (δ13CDIC) of dissolved inorganic C (DIC) were measured in a sand aquifer contaminated with JP–4 fuel hydrocarbons. Results show that ground water in the upgradient zone was characterized by DIC content of 14–20 mg C/L and δ13CDIC values of −11.3‰ to −13.0‰. The contaminant source zone was characterized by an increase in DIC content (12.5 mg C/L to 54 mg C/L), Ca, and alkalinity, with a significant depletion of 13C in δ13CDIC (−11.9‰ to −19.2‰). The source zone of the contaminant plume was also characterized by elevated levels of aromatic hydrocarbons (0 μg/L to 1490 μg/L) and microbial metabolites (aromatic acids, 0 μg/L to 2277 μg/L), non-detectable dissolved O2, NO3 and SO4. Phospholipid ester-linked fatty acid analyses suggest the presence of viable SO4-reducing bacteria in ground water at the time of sampling. The ground-water chemistry and stable C isotope composition of ground-water DIC are interpreted using a chemical reaction model involving rainwater recharge, contributions of CO2 from soil gas and biodegradation of hydrocarbons, and carbonate dissolution. The major-ion chemistry and δ13CDIC were reconciled, and the model predictions were in good agreement with field measurements. It was concluded that stable C isotope measurements, combined with other biogeochemical measures can be a useful tool to monitor the dominant terminal electron-accepting processes in contaminated aquifers and to identify mineralogical, hydrological, and microbiological factors that affect δ13C of dissolved inorganic C.  相似文献   

13.
This study examined the distributions and stable carbon isotopic compositions of saturated fatty acids (SaFAs) in one 300 cm long sedimentary profile, which was named as Site4B in Shenhu, northern South China Sea. The concentrations of total SaFAs in sediments ranged from 1.80 to 10.16 μg/g (μg FA/g dry sediment) and showed an even-over-odd predominance in the carbon chain of C12 to C32, mostly with n-C16 and n-C18 being the two major components. The short-chain fatty acids (ScFAs; n-C12 to n-C18) mainly from marine microorganisms had average δ13C values of −26.7‰ to −28.2‰, whereas some terrigenous-sourced long-chain fatty acids (LcFAs; n-C21 to n-C32) had average δ13C values of −29.6‰ to −34.1‰. The other LcFAs (n-C24 & n-C26  n-C28; average δ13C values are −26.1‰ to −28.0‰) as well as n-C19 and n-C20 SaFAs (average δ13C values are −29.1‰ and −29.3‰, respectively) showed a mixed signal of carbon isotope compositions.The relative bioproductivity calculation (marine vs. terrigenous) demonstrated that most of organic carbon accumulation throughout the sedimentary profile was contributed by marine organism. The high marine productivity in Shenhu, South China Sea may be related to the hydrocarbon seepage which evidenced by diapiric structures. Interestingly, there is a sever fluctuation of terrigenous inputs around the depth of 97 cm below the seafloor (bsf), probably resulting from the influence of the Dansgaard–Oeschger events and the Younger Dryas event as revealed by 14C age measurements.  相似文献   

14.
In a semiarid climatic zone, such as the Eastern Mediterranean region, annual rainfall variations and fractionation processes in the epikarst zone exert a profound influence on the isotopic compositions of waters seeping into a cave. Consequently, the isotopic compositions of speleothems depositing from cave waters may show complex variations that need to be understood if they are to be exploited for paleoclimate studies. This is confirmed by a four-year study of the active carbonate-water system in the Soreq cave (Israel). The δ18O (SMOW) values of cave waters range from −6.3 to −3.5%.. The highest δ18O values occur at the end of the dry season in waters dripping from stalactites, and reflect evaporation processes in the epikarst zone, whereas the lowest values occur in rapidly dripping (fast-drip) waters at the peak of the rainy seasons. However, even fast-drip waters are about 1.5%. heavier than the rainfall above the cave, which is taken to reflect the mixing of fresh with residual evaporated water in the epikarst zone. δ13C (PDB) values of dissolved inorganic carbon (DIC) vary from −15.6 to −5.4%., with fast-drip waters having lower δ13C values (mostly −15.6 to −12%.) and higher DIC concentrations relative to pool and stalactite-drip water. The low δ13C values of fast-drip waters and their supersaturation with respect to calcium carbonate indicates that the seepage waters have dissolved both soil-CO2 derived from overlying C3-type vegetation and marine dolomite host rock.The δ18O (PDB) values of various types of present-day low-magnesium calcite (LMC) speleothems range from −6.5 to −4.3%. and δ13C values from −13 to −5.5%. and are not correlated with speleothem type. An analysis of δ18O values of present-day calcite rafts and pool waters shows that they form in oxygen isotope equilibrium. Similarly, the measured ranges of δ13C and δ18O values for all types of present-day speleothems are consistent with equilibrium deposition at cave temperatures. The δ13C–δ18O range of contemporary LMC thus reflects the variations in temperatures and isotopic compositions of the presentday cave waters. The 10%. variation in the δ13C values in waters can be modeled by a simple Rayleigh calculation of the carbon isotope fractionation accompanying CO2-degassing and carbonate precipitation. These variations may obscure the differences in the carbon isotopic composition of speleothems that could arise when vegetation cover changes from C3 to C4-type plants. This consideration emphasizes that it is necessary to characterize the full range of δ13C values associated with contemporaneous speleothems in order to clarify the effects of degassing from those due to differing vegetation types.Isotopic studies of a number of different types of fossil LMC speleothems show many of them to exhibit isotopic trends that are similar to those of present-day LMC, but others show both higher and lower δ18O ranges. In particular, the higher δ18O range has been shown by independent age-measurements to be associated with a period of drier conditions. The results of the study thus indicate that it is necessary to work on a well calibrated cave system in semiarid climates and that the fossil speleothem record should be obtained from different types of contemporaneous deposit in order to fully characterize the δ18O–δ13C range representative of any given climatic period.  相似文献   

15.
《Applied Geochemistry》1991,6(5):477-494
In the past decade, the isotopic compositions of C in > 600 inclusion-bearing diamonds have been determined. Such analyses have revealed the following isotopic characteristics: (1) peridotitic diamonds, which typically contain garnet, chromite, olivine and/or orthopyroxene inclusions with refractory compositions (high Mg, Cr), have δ13C values predominantly between −10 and −1‰, with a sharp peak in the distribution near −5‰; (2) eclogitic diamonds, which commonly contain inclusions of omphacitic clinopyroxene, Cr-poor pyrope, and/or eclogitic accessory minerals such as rutile, kyanite, coesite or sanidine, have δ13C values between −34 and +3‰, with a smaller peak near −5‰; (3) the isotopic compositions obtained for suites of diamonds from individual occurrences are, in general, unique and do not resemble the range and distribution obtained by amalgamating the diamond isotope data from a number of localities; (4) isotopic zoning patterns and heterogeneities are found in some diamonds; cores of coated diamonds tend to be depleted in13C relative to the rims, and within single octahedral diamonds δ13C variations of nearly 6‰ have been reported.Because expected C isotope fractionations at mantle temperatures are small, attempts to model the full range of diamond isotope values through fractionating a homogeneous mantle C source have been unsuccessful. Nevertheless, fractionation is probably responsible for some of the observed variation in δ13C values. Two other models have also been proposed to account for the diamond characteristics outlined above. The “primordial model” suggests that the range and distribution of C isotope compositions are inherited from primordial C in the mantle which has an inhomogeneous isotopic composition, such as that found in meteorites. The “subduction model” suggests that subducted, crustal C is the source of C in diamonds, as organic and inorganic C compounds in the crust exhibit a range of δ13C values similar to that observed in diamonds. This paper reviews the C isotope characteristics of diamonds and compares the models which have been proposed to explain the origins of these characteristics.  相似文献   

16.
Natural gas in the Xujiahe Formation of the Sichuan Basin is dominated by hydrocarbon (HC) gas, with 78–79% methane and 2–19% C2+ HC. Its dryness coefficient (C1/C1–5) is mostly < 0.95. The gas in fluid inclusions, which has low contents of CH4 and heavy hydrocarbons (C2+) and higher contents of non-hydrocarbons (e.g. CO2), is a typical wet gas produced by thermal degradation of kerogen. Gas produced from the Upper Triassic Xujiahe Formation (here denoted field gas) has light carbon isotope values for methane (δ13C1: −45‰ to −36‰) and heavier values for ethane (δ13C2: −30‰ to −25‰). The case is similar for gas in fluid inclusions, but δ13C1 = −36‰ to −45‰ and δ13C2 = −24.8‰ to −28.1‰, suggesting that the gas experienced weak isotopic fractionation due to migration and water washing. The field gas has δ13CCO2 values of −15.6‰ to −5.6‰, while the gas in fluid inclusions has δ13CCO2 values of −16.6‰ to −9‰, indicating its organic origin. Geochemical comparison shows that CO2 captured in fluid inclusions mainly originated from source rock organic matter, with little contribution from abiogenic CO2. Fluid inclusions originate in a relatively closed system without fluid exchange with the outside following the gas capture process, so that there is no isotopic fractionation. They thus present the original state of gas generated from the source rocks. These research results can provide a theoretical basis for gas generation, evolution, migration and accumulation in the basin.  相似文献   

17.
Although oil cracking has been documented as one of the important sources of gas in many overmature marine sedimentary basins, the chemical and carbon isotopic signatures of gases of this origin are still open to question. In this study a Cambrian crude oil from the central Tarim basin, along with its main separated fractions (saturates, aromatics and asphaltenes), were pyrolyzed in sealed gold tubes to investigate how generated gases vary in chemical and carbon isotopic composition and how this variation would influence the genetic interpretation of oil cracking gas. The results indicate that the gases from cracking of aromatics and asphaltenes are much drier and more enriched in 13C than the gases from the cracking of saturates and crude oil at the same level of thermal maturity. In the experimental run of 20 °C/h, the dryness index of the gases (defined as the volume percentage of C1 in C1–5) from the cracking of saturates ranges from 26.2–90.6% with the methane carbon isotope change ranging from −54.8‰ to −35.5‰, whereas the dryness index is never lower than 60.6% for the gases from the cracking of aromatics with methane carbon isotope ranging from −39.9‰ to −32.2‰. Correspondingly, experimental data for the four samples plot in different areas in diagrams designed to distinguish oil cracking gas from kerogen cracking gas, such as ln(C2/C3) vs. δ13C2δ13C3 and δ13C1 vs. δ13C2δ13C3, indicating compositional variability of crude oil could assert an important influence in these diagrams. Therefore it is prudent to bring other geological constraints into consideration to avoid misinterpretation.The kinetic parameters for the bulk generation of C1–5 gas and the methane carbon isotope fractionation extrapolated to geological conditions of 2 °C/Ma and an initial temperature of 50 °C show that the temperatures of C1–5 gas generation from the aromatics and asphaltenes are lower than those from the saturates and crude oil due to their lower activation energies and frequency factors. Generation of C1–5 gases from the aromatics is modeled to be initiated about 122 °C whereas the initiation temperature for the saturates sample is 176 °C. Below 189 °C (EasyRo = 1.8%), the yields of C1–5 gases follow the order: aromatics > asphaltenes > crude oil > saturates. At similar thermal maturity levels, the methane carbon isotopic compositions are significantly different for the four samples, with an order of 13C enrichment: aromatics > asphaltenes > crude oil > saturates, however the difference in methane carbon isotopes becomes smaller with increasing temperature. This indicates that methane carbon isotopic values can be significantly different for gases cracked from oils that are compositionally diverse, especially in the early stage of methane generation.  相似文献   

18.
Metazoan fossils in the Gaojiashan Biota are famous for being well preserved and may provide new insights into the early evolution and skeletonization of Metazoans. We are studying the isotopic compositions of organic and carbonate carbon from a sequence of sedimentary rocks at the Gaojiashan section, northern Yangtze Platform, Shaanxi Province of China. Organic carbon isotope values display a range between –30.8‰ and –24.7‰ with clear stratigraphic variations. Carbonate carbon isotope data vary between 0.1‰ and +6‰. Positive δ13C values from sediments with Gaojiashan biota reflect temporal variations in carbon turnover, i.e. an increasing in photosynthetic carbon fixation followed by an increasing subsequent fractional organic carbon burial, and that related to bio-radiation such as increasing algae, bacteria, and original creatures productivity in biomass. These secular variations are interpreted to reflect perturbations of the regional carbon cycle, specifically changes in the fractional burial of organic carbon, and discuss the relationship between Gaojiashan biota and paleoenvrionmental variation.  相似文献   

19.
Biogeochemical processes involving acetate in sub-seafloor sediments from piston core PC23B from the Bering Sea shelf break were inferred by examining the stable carbon isotopic relationships between acetate and other relevant carbon compounds: total organic carbon (TOC) in the sediment solid phase, and dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in pore water. Throughout the core, the isotopic composition of acetate (δ13Cacetate), from −31‰ to −29‰, was 13C-depleted by ca. 7‰ vs. DOC (δ13CDOC) and its depth profile approximately paralleled that of δ13CDOC, suggesting that the principal process producing acetate was fermentation of dissolved organic compounds. However, the 13C depletion in δ13Cacetate indicates some contribution of acetogenesis to total acetate production, because acetogenesis results in 13C depletion of the acetate produced. The relative contribution of acetogenesis via the H2/CO2 reaction, calculated by using a two source isotope mixing model, increased with depth in the sulfate reduction zone from 10% to 15% and was constant at 19% in the methanogenic zone. The acetogenic contribution to acetate production in the methanogenic zone underlying the sulfate reduction zone is consistent with reported observations, whereas the occurrence of acetogenesis in the sulfate reduction zone may be related to the contribution of terrestrial organic matter (OM) to the sedimentary OM in that depth interval, because the terrestrial component likely includes precursors that favor organoautotrophic acetogenesis. The high acetate concentration (up to 81 μM) and TOC content (up to 1.4%) at the same depth (<200 cmbsf) suggest that some relationship exists between acetate production rate and TOC content, or that a temperature increase during core storage at room temperature might stimulate acetate-producing microbial activity in the high TOC sediment.  相似文献   

20.
The results of isotope-geochemical studies of carbonates of different mineral types from manganese and host rocks of the Famennian manganiferous formation of Pai-Khoi are reported. Kutnahorite ores are characterized by δ13C values from–6.6 to 1.3‰ and δ18O from 20.0 to 27.4‰. Rhodonite–rhodochrosite rocks of the Silovayakha ore occurrence have δ13C from–5.2 to–2.9 and δ18O from 25.4 to 24.3‰. Mineralogically similar rocks of the Nadeiyakha ore occurrence show the lighter carbon and oxygen isotopic compositions: δ13C from–16.4 to–13.1 and δ18O from 24.8 to 22.5‰. Similar isotopic compositions were also obtained for rhodochrosite–kutnahorite rocks of this ore occurrence: δ13C from–13.0 to–10.4‰ and δ18O from 24.6 to 21.7‰. Siderorodochrosite ores differ in the lighter oxygen and carbon isotopic compositions: δ18O from 18.7 to 17.6‰ and δ13C from–10.2 to–9.3‰, respectively. In terms of the carbon and oxygen isotopic compositions, host rocks in general correspond to marine sedimentary carbonates. Geological-mineralogical and isotope data indicate that the formation of the manganese carbonates was related to the hydrothermal ore-bearing fluids with the light isotopic composition of oxygen and carbon dissolved in CO2. The isotopic features indicate an authigenic formation of manganese carbonates under different isotopegeochemical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号