首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Research studies on the damped cable system (DCS) for seismic protection of frame structures are presented in this paper and the accompanying one. This technology includes prestressed steel cables linked to pressurized fluid viscous spring‐dampers fixed to the foundation at their lower ends, and to the top floor, or one of the upper floors, at their upper ends. The cables have sliding contacts with the floor slabs, to which they are joined by steel deviators. The general characteristics of the system, as well as of the constituting spring‐dampers and cables, are initially discussed. The results of a laboratory testing campaign developed on a DCS prototype are examined, and transferred into the formulation of the finite element model of the system, conceived to be easily generated by commercial structural analysis programs. A second dynamic experimental investigation follows, concerning a pilot installation of the system on a full‐scale mock‐up building. The benefits of the protective technology are evaluated in terms of maximum displacements and accelerations, as well as of equivalent viscous damping coefficient and MDOF transmissibility ratio. Further sections of the study, including a preliminary sizing criterion of DCS, additional numerical enquiries aimed at optimizing its geometrical layout, and the application to a real case study building, are offered in the companion paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A series of large‐scale real‐time hybrid simulations (RTHSs) are conducted on a 0.6‐scale 3‐story steel frame building with magneto‐rheological (MR) dampers. The lateral force resisting system of the prototype building for the study consists of moment resisting frames and damped brace frames (DBFs). The experimental substructure for the RTHS is the DBF with the MR dampers, whereas the remaining structural components of the building including the moment resisting frame and gravity frames are modeled via a nonlinear analytical substructure. Performing RTHS with an experimental substructure that consists of the complete DBF enables the effects of member and connection component deformations on system and damper performance to be accurately accounted for. Data from these tests enable numerical simulation models to be calibrated, provide an understanding and validation of the in‐situ performance of MR dampers, and a means of experimentally validating performance‐based seismic design procedures for real structures. The details of the RTHS procedure are given, including the test setup, the integration algorithm, and actuator control. The results from a series of RTHS are presented that includes actuator control, damper behavior, and the structural response for different MR control laws. The use of the MR dampers is experimentally demonstrated to reduce the response of the structure to strong ground motions. Comparisons of the RTHS results are made with numerical simulations. Based on the results of the study, it is concluded that RTHS can be conducted on realistic structural systems with dampers to enable advancements in resilient earthquake resistant design to be achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A new type of energy‐dissipated structural system for existing buildings with story‐increased frames is presented and investigated in this paper. In this system the sliding‐friction layer between the lowest increased floor of the outer frame structure and the roof of the original building is applied, and energy‐dissipated dampers are used for the connections between the columns of the outer frame and each floor of the original building. A shaking table test is performed on the model of the system and the simplified structural model of this system is given. The theory of the non‐classical damping approach is introduced to the calculation analyses and compared with test results. The results show that friction and energy‐dissipated devices are very effective in reducing the seismic response and dissipating the input energy of the model structure. Finally, the design scheme and dynamic time‐history analyses of an existing engineering project are investigated to illustrate the application and advantages of the given method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The feasibility of using viscoelastic (VE) dampers to mitigate earthquake-induced structural response is studied in this paper. The properties of VE dampers are briefly described. A procedure for evaluating the VE damping effect when added to a structure is proposed in which the damping effect of VE dampers is incorporated into modal damping ratios through an energy approach. Computer simulation of the damped response of a multi-storey steel frame structure shows significant reduction in floor displacement levels.  相似文献   

5.
A decision methodology for the management of seismic risk of a single building is presented. The decision criterion aims at minimizing the expected life‐cycle cost, including the initial cost of the design and the expected cost of damage due to future earthquakes. The expected life‐cycle cost of each design alternative is formulated using a renewal model for the occurrence of earthquakes in a seismic source, which accounts for the temporal dependence between the occurrence of ‘characteristic’ earthquakes. The formulation involves the expected damage cost from an earthquake of specified magnitude in a given source. This term is estimated by simulating the processes of fault rupture, elastic wave propagation, surface soil amplification, dynamic structural response and generation of damage costs. As an example, the methodology is applied to an actual office building in Tokyo. A simple decision problem between two design alternatives is set: a bare steel moment frame, and the same frame equipped with oil dampers. Through this case study, the installation of the oil dampers is demonstrated to be effective in reducing the life‐cycle cost of the building under consideration. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Passive energy dissipation devices are increasingly implemented in frame structures to improve their performance under seismic loading. Most guidelines for designing this type of system retain the requirements applicable to frames without dampers, and this hinders taking full advantage of the benefits of implementing dampers. Further, assessing the extent of damage suffered by the frame and by the dampers for different levels of seismic hazard is of paramount importance in the framework of performance‐based design. This paper presents an experimental investigation whose objectives are to provide empirical data on the response of reinforced concrete (RC) frames equipped with hysteretic dampers (dynamic response and damage) and to evaluate the need for the frame to form a strong column‐weak beam mechanism and dissipate large amounts of plastic strain energy. To this end, shake‐table tests were conducted on a 2/5‐scale RC frame with hysteretic dampers. The frame was designed only for gravitational loads. The dampers provided lateral strength and stiffness, respectively, three and 12 times greater than those of the frame. The test structure was subjected to a sequence of seismic simulations that represented different levels of seismic hazard. The RC frame showed a performance level of ‘immediate occupancy’, with maximum rotation demands below 20% of the ultimate capacity. The dampers dissipated most of the energy input by the earthquake. It is shown that combining hysteretic dampers with flexible reinforced concrete frames leads to structures with improved seismic performance and that requirements of conventional RC frames (without dampers) can be relieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A series of large‐scale dynamic tests was conducted on a passively controlled five‐story steel building on the E‐Defense shaking table facility in Japan to accumulate knowledge of realistic seismic behavior of passively controlled structures. The specimen was tested by repeatedly inserting and replacing each of four damper types, that is, the buckling restrained braces, viscous dampers, oil dampers, and viscoelastic dampers. Finally, the bare steel moment frame was tested after removing all dampers. A variety of excitations was applied to the specimen, including white noise, various levels of seismic motion, and shaker excitation. System identification was implemented to extract dynamic properties of the specimen from the recorded floor acceleration data. Damping characteristics of the specimen were identified. In addition, simplified estimations of the supplemental damping ratios provided by added dampers were presented to provide insight into understanding the damping characteristics of the specimen. It is shown that damping ratios for the specimen equipped with velocity‐dependent dampers decreased obviously with the increasing order of modes, exhibiting frequency dependency. Damping ratios for the specimen equipped with oil and viscoelastic dampers remained constant regardless of vibration amplitudes, whereas those for the specimen equipped with viscous dampers increased obviously with an increase in vibration amplitudes because of the viscosity nonlinearity of the dampers. In very small‐amplitude vibrations, viscous and oil dampers provided much lower supplemental damping than the standard, whereas viscoelastic dampers could be very efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In conventional modal analysis procedures, usually only a few dominant modes are required to describe the dynamic behavior of multi-degrees-of-freedom buildings. The number of modes needed in the dynamic analysis depends on the higher-mode contribution to the structural response, which is called the higher-mode effect. The modal analysis approach, however, may not be directly applied to the dynamic analysis of viscoelastically damped buildings. This is because the dynamic properties of the viscoelastic dampers depend on their vibration frequency. Therefore, the structural stiffness and damping contributed from those dampers would be different for each mode. In this study, the higher-mode effect is referred to as the response difference induced by the frequency-dependent property of viscoelastic dampers at higher modes. Modal analysis procedures for buildings with viscoelastic dampers distributed proportionally and non-proportionally to the stiffness of the buildings are developed to consider the higher-mode effect. Numerical studies on shear-type viscoelastically damped building models are conducted to examine the accuracy of the proposed procedures and to investigate the significance of the higher-mode effect on their seismic response. Two damper models are used to estimate the peak damper forces in the proposed procedures. Study results reveal that the higher-mode effect is significant for long-period viscoelastically damped buildings. The higher-mode effect on base shear is less significant than on story acceleration response. Maximum difference of the seismic response usually occurs at the top story. Also, the higher-mode effect may not be reduced by decreasing the damping ratio provided by the viscoelastic dampers. For practical application, it is realized that the linear viscous damping model without considering the higher-mode effect may predict larger damper forces and hence, is on the conservative side. Supported by: Science Council, Chinese Taipei, grant no. 88-2625-2-002-006  相似文献   

9.
Viscoelastic dampers, as supplementary energy dissipation devices, have been used in building structures under seismic excitation or wind loads. Different analytical models have been proposed to describe their dynamic force deformation characteristics. Among these analytical models, the fractional derivative models have attracted more attention as they can capture the frequency dependence of the material stiffness and damping properties observed from tests very well. In this paper, a Fourier-transform-based technique is presented to obtain the fractional unit impulse function and the response of structures with added viscoelastic dampers whose force-deformation relationship is described by a fractional derivative model. Then, a Duhamel integral-type expression is suggested for the response analysis of a fractional damped dynamic system subjected to deterministic or random excitation. Through numerical verification, it is shown that viscoelastic dampers are effective in reducing structural responses over a wide frequency range, and the proposed schemes can be used to accurately predict the stochastic seismic response of structures with added viscoelastic dampers described by a Kelvin model with fractional derivative.  相似文献   

10.
Viscoelastic–plastic (VEP) dampers are hybrid passive damping devices that combine the advantages of viscoelastic and hysteretic damping. This paper first formulates a semi‐analytical procedure for predicting the peak response of nonlinear SDOF systems equipped with VEP dampers, which forms the basis for the generation of Performance Spectra that can then be used for direct performance assessment and optimization of VEP damped structures. This procedure is first verified against extensive nonlinear time‐history analyses based on a Kelvin viscoelastic model of the dampers, and then against a more advanced evolutionary model that is calibrated to characterization tests of VEP damper specimens built from commercially available viscoelastic damping devices, and an adjustable friction device. The results show that the proposed procedure is sufficiently accurate for predicting the response of VEP systems without iterative dynamic analysis for preliminary design purposes. A design method based on the Performance Spectra framework is then proposed for systems equipped with passive VEP dampers and is applied to enhance the seismic response of a six‐storey steel moment frame. The numerical simulation results on the damped structure confirm the use of the Performance Spectra as a convenient and accurate platform for the optimization of VEP systems, particularly during the initial design stage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Previous studies have demonstrated the good performance of friction dampers in symmetric frame structures subjected to earthquake excitation. This paper examines their effectiveness in asymmetric structures where lateral-torsional coupling characterizes the behaviour. A parametric study is first performed employing an idealized single-storey structure; this is followed by the example of a three-dimensional 5-storey prototype structure equipped with friction dampers. The parametric results show that it is necessary to tune the friction damped braces with respect to both the stiffness of the braces and the slip load of the devices. For properly tuned structures, maximum response for all magnitudes of eccentricity between the centres of stiffness and mass is reduced to levels equal to or less than that of the corresponding symmetric structure. Compared to this prediction, the prototype structure with friction damped bracing exhibits the desired improvement in performance; namely, the devices slip at all storey levels while the frames remain elastic.  相似文献   

12.
A series of shake-table tests was conducted by inserting and replacing 4 different types of dampers,or by removing them in a full-scale 5-story steel frame building. The objective is to validate response-control technologies that are increasingly adopted for major Japanese buildings without being attested to-date by a major earthquake. Test results are briefly described,and good performance of the dampers and frame demonstrated. The concepts of the full-scale building tests and various contributions are discussed. The difficulty associated with full-scale dynamic testing is explained.  相似文献   

13.
A series of shake-table tests was conducted by inserting and replacing 4 different types of dampers, or by removing them in a full-scale 5-story steel frame building. The objective is to validate response-control technologies that are increasingly adopted for major Japanese buildings without being attested to-date by a major earthquake. Test results are briefly described, and good performance of the dampers and frame demonstrated. The concepts of the full-scale building tests and various contributions are discussed. The difficulty associated with full-scale dynamic testing is explained.  相似文献   

14.
为了增强巨子型有控结构建筑的动力特性,提升其稳定性,设计双向地震波作用下建筑有控结构。采用3种磁流变阻尼器(MRD)与滑移隔震混合控制结构构成单体建筑有控结构,其包括巨结构和子结构,并建立该有控结构的动力分析模型。在动力分析模型中输入水平和竖向地震,得到模型的竖向和水平滑动状态运动微分方程,依据这两个方程采用自适应模糊神经网络优化动力分析模型,构建优化模型。从优化模型出发,通过实例实验分析得出,优化设计双向地震波作用下建筑有控结构时,在其上部结构层间和隔离层各安装一个MRD,可确保优化设计后的有控结构在不同双向地震工况下的地震反应控制效果最佳,且有控结构在双向地震工况2下,结构第一层、中间三层以及顶层的加速度和位移的时程曲线走向一致,且差距微小;同时有控结构的巨结构顶层侧移响应随着子结构刚度增加而提高,动力特性没有明显的变化,子结构随着其自身刚度增加顶层侧移响应表现稳定,子结构动力特性增强。  相似文献   

15.
复杂地基条件下桩-土-核岛结构相互作用模型研究   总被引:1,自引:1,他引:0       下载免费PDF全文
尹训强  滕浩钧  王桂萱 《地震工程学报》2019,41(6):1581-1586,1606
合理有效地模拟桩-土-结构动力相互作用是软土地基条件下核岛厂房结构抗震适应性分析及地基处理的关键环节。以某拟建核岛厂房实际工程为研究背景,结合SuperFLUSH软件平台,以Goodman单元模拟桩与桩周土间的接触效应,采用等价线性法描述近场软土地基非线性特性,并在模型底部和侧面引入黏性边界模拟半无限地基辐射阻尼效应,从而建立土质地基条件下桩-土-核岛结构相互作用分析模型。进而,通过对原状地基和嵌岩桩处理地基条件下核岛厂房的楼层反应谱、结构节点相对位移(绝对值)的对比分析,探讨考虑桩-土间接触效应的嵌岩桩基对核岛厂房结构的影响规律。研究成果可为实际工程中类似土质地基条件下核岛厂房结构的地基处理提供参考。  相似文献   

16.
本文设计实现了分层土-基础-高层框架结构相互作用体系的振动台模型试验,再现了地震动激励下上部结构和基础的震害现象和砂质粉土的液化现象。通过试验,研究了相互作用体系地震动反应的主要规律:由于动力相互作用的影响,软土地基中相互作用体系的频率小于不考虑结构-地基相互作用的结构频率,而阻尼比则大于结构材料阻尼比;体系的振型曲线与刚性地基上结构的振型曲线明显不同,基础处存在平动和转动。土层传递振动的放大或减振作用与土层性质、激励大小等因素有关,砂土层一般起放大作用,砂质粉土层一般起减振隔振作用;由于土体的隔震作用,上部结构接受的振动能量较小,各层反应均较小。上部结构顶层加速度反应组成取决于基础转动刚度、平动刚度和上部结构刚度的相对大小。  相似文献   

17.
The complementary sections of the studies carried out on the damped cable system, whose experimental and numerical characterization and assessment analyses are described in the companion paper, are presented herein. The first section includes a criterion for a preliminary evaluation of the section area of cables, the second branch stiffness of spring‐dampers and the mutual installation preload, and suggestions for a simplified nonlinear dynamic computation of the damping coefficient of dissipaters. A second section follows, aimed at evaluating the influence of cable layout on damped cable system performance. A numerical enquiry is developed on a four‐story and an eight‐story RC plane frame, to assess their seismic response for several shapes of cables, and determine what geometrical configurations are the best performing ones. In the third section, a demonstrative application of the protective system, represented by the seismic retrofit of a hospital building with RC structure, is offered. The characteristics of the system designed for this case study, including locations, dimensions, layouts, and technical installation details of cables and spring‐dampers, are illustrated, and the improvement of seismic performance as compared with the original conditions, is finally assessed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Post‐tensioned (PT) self‐centering moment‐resisting frames (MRFs) have recently been developed as an alternative to welded moment frames. The first generation of these systems incorporated yielding energy dissipation mechanisms, whereas more recently, PT self‐centering friction damped (SCFR) moment‐resistant connections have been proposed and experimentally validated. Although all of these systems exhibited good stiffness, strength and ductility properties and stable dissipation of energy under cyclic loading, questions concerning their ultimate response still remained and a complete design methodology to allow engineers to conceive structures using these systems was also needed. In this paper, the mechanics of SCFR frames are first described and a comprehensive design procedure that accounts for the frame behavior and the nonlinear dynamics of self‐centering frames is then elaborated. A strategy for the response of these systems at ultimate deformation stages is then proposed and detailing requirements on the beams in order to achieve this response are outlined. The proposed procedure aims to achieve designs where the interstory drifts for SCFR frames are similar to those of special steel welded moment‐resisting frames (WMRFs). Furthermore, this procedure is adapted from current seismic design practices and can be extended to any other PT self‐centering steel frame system. A six‐story building incorporating WMRFs was designed and a similar building incorporating SCFR frames were re‐designed by the proposed seismic design procedure. Time‐history analyses showed that the maximum interstory drifts and maximum floor accelerations of the SCFR frame were similar to those of the WMRF but that almost zero residual drifts were observed for the SCFR frame. The results obtained from the analyses confirmed the validity of the proposed seismic design procedure, since the peak drift values were similar to those prescribed by the seismic design codes and the SCFR frames achieved the intended performance level under both design and maximum considerable levels of seismic loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes an analytical investigation on a reinforced concrete lateral load resisting structural system comprising a pin‐supported (base‐rocking) shear wall coupled with a moment frame on 1 or both sides of the wall. Yielding dampers are used to provide supplemental energy dissipation through the relative displacements at the vertical connections between the wall and the frames. The study extends a previous linear‐elastic model for pin‐supported wall‐frame structures by including the effects of the dampers. A closed‐form solution of the lateral load behavior of the structure is derived by approximating the discrete wall‐frame‐damper interactions with distributed (ie, continuous) properties. The validity of the model is verified by comparing the closed‐form results with computational models using OpenSees program. Then, a parametric analysis is conducted to investigate the effects of the wall, frame, and damper stiffness on the behavior of the structure. It is found that the damper stiffness significantly affects the distribution of shear forces and bending moments over the wall height. Finally, the performance‐based plastic design approach extended to the wall‐frame‐damper system is proposed. Case studies are carried out to design 2 damped pin‐supported wall‐frame structures using the proposed approach. Nonlinear dynamic time‐history analyses are conducted to verify the effectiveness of this method. Results indicate that the designed structures can achieve the performance level with the story drift ratios less than target values, and weak‐story failure mechanism is not observed. The approach can be used in engineering applications.  相似文献   

20.
This paper rigorously assesses the efficiency of viscous dampers connecting two walls to result in “viscously coupled shear walls”. This assessment also holds for viscous dampers in wall structures as they are mounted on frames parallel to the walls leading to “wall-viscous frame” systems. A continuum approach is adopted to model the structure so as to enable non-dimensional formulation of the governing equations. Those equations reveal that, under the approximations considered, the system damping ratio (defined here by 0.5 sqrt(c^2/(m*EI))) is a convenient compact single parameter controlling the response reduction w.r.t. the response of the corresponding undamped system. In contrast to coupled shear walls, this controlling parameter does not depend on the height of the building; therefore, the viscously damped system is efficient for low-rise buildings as well. The continuum approach also allows a semi-analytical solution of the eigenproblem in the complex domain followed by a complex modal spectral analysis. Those solutions reveal the efficiency of the added damping in reducing not only the displacements, inter-story drifts, and wall moments but also the absolute accelerations, wall shear, total shear, and total overturning moments. The results of the analyses and the non-dimensional tables and graphs developed for important response parameters lead to a simple method that could easily be implemented in practice for the purpose of initial design. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号