首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unbonded posttensioning anchors a rocking structural member to its foundation and produces its controlled rocking response when the member undergoes seismic action. Unlike rocking of free-standing bodies, little attention has been given to the dynamic behavior of these controlled rocking members. This paper utilizes experiments of concrete structural members with unbonded posttensioning, varying member geometries, and levels of initial posttensioning force to (a) characterize the associated impact energy loss and (b) improve modeling of controlled rocking motions. Experimental results show that impact energy loss in controlled rocking members can be captured accurately using the coefficient of restitution (r) approach of the modified simple rocking model (MSRM). Based on the MSRM, a controlled rocking model (CRM) is developed that additionally accounts for the variations in contact length at the member-to-foundation (rocking) interface. The CRM reproduces the experimental responses of controlled rocking members with good accuracy and is used to investigate controlled rocking motions under horizontal base excitations.  相似文献   

2.
Precast concrete walls with unbonded post‐tensioning provide a simple self‐centering system. Yet, its application in seismic regions is not permitted as it is assumed to have no energy dissipation through a hysteretic mechanism. These walls, however, dissipate energy imparted to them because of the wall impacting the foundation during rocking and limited hysteretic action resulting from concrete nonlinearity. The energy dissipated due to rocking was ignored in previous experimental studies because they were conducted primarily using quasi‐static loading. Relying only on limited energy dissipation, a shake table study was conducted on four single rocking walls (SRWs) using multiple‐level earthquake input motions. All walls generally performed satisfactorily up to the design‐level earthquakes when their performance was assessed in terms of the maximum transient drift, maximum absolute acceleration, and residual drift. However, for the maximum considered earthquakes, the walls experienced peak lateral drifts greater than the permissible limits. Combining the experimental results with an analytical investigation, it is shown that SRWs can be designed as earthquake force‐resisting elements to produce satisfactory performance under design‐level and higher‐intensity earthquake motions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Earthquake‐resilient steel frames, such as self‐centering frames or frames with passive energy dissipation devices, have been extensively studied during the past decade, but little attention has been paid to their column bases. The paper presents a rocking damage‐free steel column base, which uses post‐tensioned high‐strength steel bars to control rocking behavior and friction devices to dissipate seismic energy. Contrary to conventional steel column bases, the rocking column base exhibits monotonic and cyclic moment–rotation behaviors that are easily described using simple analytical equations. Analytical equations are provided for different cases including structural limit states that involve yielding or loss of post‐tensioning in the post‐tensioned bars. A step‐by‐step design procedure is presented, which ensures damage‐free behavior, self‐centering capability, and adequate energy dissipation capacity for a predefined target rotation. A 3D nonlinear finite element (FE) model of the column base is developed in abaqus . The results of the FE simulations validate the accuracy of the moment–rotation analytical equations and demonstrate the efficiency of the design procedure. Moreover, a simplified model for the column base is developed in OpenSees . Comparisons among the OpenSees and abaqus models demonstrate the efficiency of the former and its adequacy to be used in nonlinear dynamic analysis. A prototype steel building is designed as a self‐centering moment‐resisting frame with conventional or rocking column bases. Nonlinear dynamic analyses show that the rocking column base fully protects the first story columns from yielding and eliminates the first story residual drift without any detrimental effect on peak interstory drifts. The study focuses on the 2D rocking motion and, thus, ignores 3D rocking effects such as biaxial bending deformations in the friction devices. The FE models, the analytical equations, and the design procedure will be updated and validated to cover 3D rocking motion effects after forthcoming experimental tests on the column base. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Allowing flexible structures to uplift and rock during earthquakes can significantly reduce the force demands and residual displacements. However, such structures are still susceptible to large deformations and accelerations that can compromise their functionality. In this paper, we examine the dynamic response of elastic rocking oscillators and suggest that their lateral drifts and accelerations can be limited effectively by using inerter devices. To this end, we offer a detailed examination of the effects of structural flexibility on the efficiency of the proposed system. The analytical expressions governing the motion of deformable structures with base uplift are revisited to incorporate the effects of the supplemental rotational inertia. The proposed model is then used to study the structural demands of flexible rocking structures under coherent pulses as well as noncoherent real pulse-like ground motions. Our results show that combining rocking with inerters can be an efficient strategy to control the deformation and acceleration demands in uplifting flexible systems.  相似文献   

5.
In order to use rocking as a seismic response modification strategy along both directions of seismic excitation, a three‐dimensional (3D) rocking model should be developed. Since stepping or rolling rocking structural members out of their initial position is not a desirable performance, a rocking design should not involve these modes of motion. To this end, a model that takes the aforementioned constraint into account needs to be developed. This paper examines the 3D motion of a bounded rigid cylinder that is allowed to uplift and sustain rocking and wobbling (unsteady rolling) motion without sliding or rolling out of its initial position (i.e., a 3D inverted pendulum). Thus, the cylinder is constrained to zero residual displacement at the end of its 3D motion. This 3D dynamic model of the rocking rigid cylinder has two DOFs (three when damping is included), making it the simplest 3D extension of Housner's classical two‐dimensional (2D) rocking model. The development of models with and without damping is presented first. They are simple enough to perform extensive parametric analyses. Modes of motion of the cylinder are identified and presented. Then, 3D rocking and wobbling earthquake response spectra are constructed and compared with the classical 2D rocking earthquake response spectra. The 3D bounded rocking earthquake response spectra for the ground motions considered seem to have a very simple linear form. Finally, it is shown that the use of a 2D rocking model may lead to unacceptably unconservative estimates of the 3D rocking and wobbling seismic response. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
The earthquake resistance of many structures can be increased by the inclusion of special components which act as hysteretic dampers. During moderately severe earthquakes these dampers act as stiff members which reduce structural deformations, while during very severe earthquakes the dampers act as energy absorbers which limit the quasi-resonant build-up of structural deformations and forces. The hysteretic dampers are not required to withstand the main structural loads, and may therefore be optimized for their required stiffness and energy-absorbing features. On the other hand, the main structural components no longer require large energy-absorbing capacities and they may therefore be optimized for their required stiffnesses and load-bearing features. For many structures this separation of component functions should lead to increased reliability at a lower initial cost. Under earthquake attack structural damage should be reduced. Non-structural damage should be lower during moderately severe earthquakes, and for certain types of structure it should also be lower for very severe earthquakes. Various ways in which hysteretic dampers may be utilized in structures are discussed briefly. The development of several types of high-capacity, low-cost hysteretic damper, suitable for use in structures, is described. The dampers utilize solid steel beams deformed plastically in various combinations of torsional, flexural and shear deformations.  相似文献   

7.
In this paper the rocking response of slender/rigid structures stepping on a viscoelastic foundation is revisited. The study examines in depth the motion of the system with a non‐linear analysis that complements the linear analysis presented in the past by other investigators. The non‐linear formulation combines the fully non‐linear equations of motion together with the impulse‐momentum equations during impacts. The study shows that the response of the rocking block depends on the size, shape and slenderness of the block, the stiffness and damping of the foundation and the energy loss during impact. The effect of the stiffness and damping of the foundation system along with the influence of the coefficient of restitution during impact is presented in rocking spectra in which the peak values of the response are compared with those of the rigid block rocking on a monolithic base. Various trends of the response are identified. For instance, less slender and smaller blocks have a tendency to separate easier, whereas the smaller the angle of slenderness, the less sensitive the response to the flexibility, damping and coefficient of restitution of the foundation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
为了提升桥梁结构的抗震韧性,提出了一种采用超弹性形状记忆合金(SMA)拉索的摇摆自复位桥墩。首先对单根SMA拉索进行变幅循环拉伸试验,随后以SMA拉索的预张拉应力为试验参数,针对新型桥墩开展缩尺模型试验,详细考察了试件的力学行为与损伤模式,讨论了桥墩的滞回曲线和复位能力;提出了新型桥墩的初步设计建议,并利用OpenSees进行非线性时程分析验证。研究表明:得益于摇摆机制以及SMA拉索良好的可恢复变形性能,桥墩试件在4%滑移率内几乎不产生损伤;与传统梁桥相比,采用SMA拉索桥墩的新型梁桥可有效降低结构残余变形以及桥墩本身的损伤。虽然最大变形有所放大,但仍处在可控范围。  相似文献   

9.
The non‐stationary rocking response of liquid storage tanks under seismic base excitations including soil interaction has been developed based on the wavelet domain random vibration theory. The ground motion has been characterized through statistical functionals of wavelet coefficients of the ground acceleration history. The tank–liquid–foundation system is modelled as a multi‐degree‐of‐freedom (MDOF) system with both lateral and rocking motions of vibration of the foundation. The impulsive and convective modes of vibration of the liquid in the tank have been considered. The wavelet domain coupled dynamic equations are formulated and then solved to get the expressions of instantaneous power spectral density function (PSDF) in terms of functionals of input wavelet coefficients. The moments of the instantaneous PSDF are used to obtain the stochastic responses of the tank in the form of coefficients of hydrodynamic pressure, base shear and overturning base moment for the largest expected peak responses. Parametric variations are carried out to study the effects of various governing parameters like height of liquid in the tank, height–radius ratio of the tank, ratio of total liquid mass to mass of foundation, and shear wave velocity in the soil medium, on the responses of the tank. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Hysteretic cyclic response of concrete columns reinforced with smooth bars   总被引:1,自引:1,他引:0  
The application of smooth (plain) bars in reinforced concrete (RC) construction has been abandoned since the 1970s; however, there are many old reinforced concrete buildings in the world whose construction is based on this old style that are now in need of structural seismic rehabilitation according to the requirements of present day seismic rehabilitation codes. The focus of this study concerns the investigation of the hysteretic cyclic response of RC columns with smooth bars. The results of six column specimens having a variety of details for overlapping splices of longitudinal bars while experiencing two different levels of axial loads under cyclic loading reversals are presented. Through analysis of test observations and the obtained experimental results, it is attempted to clarify major aspects of hysteretic response for RC columns with smooth bars, from a seismic assessment point of view. The hysteretic force–drift responses of columns are deeply investigated and a new concept explaining the flag shape form of the hysteretic response is presented. Furthermore, the rocking response of columns is predicted with a new formulation that assumes an internal compression strut inside the column body as a consequence of rocking that originated from high base rotations. Finally, a simple hysteresis rule is proposed which is the result of considering the combination of two springs in parallel to provide the total hysteretic response as the summation of rocking hysteretic and bottom anchor (smooth bar) hysteretic responses.  相似文献   

11.
Some spread footing foundations from real retrofitting practices in Taiwan were extended to be uneconomically large due to the restriction of foundation uplift regulated in the design code. Although rocking mode of spread footings induced from foundation uplift is not favorable in current design code, recent studies have shown that the rocking of a spread footing may have a beneficial effect on the dynamic performance of piers by reducing the earthquake forces that can be transmitted to the pier base. This implies that the plastic deformation that occurs at the pier's plastic zone can be decreased and as a result the ductility demand of piers can possibly be reduced. In order to gain a better understanding of the structural behavior related to rocking and to clarify that if the widening and strengthening of the foundations to limit the rocking mechanism of spread footing is necessary for the retrofitting work, a series of preliminary rocking experiments were performed. A total of three circular reinforced concrete columns with spread footing foundations were tested. Using pseudo‐dynamic tests and a cyclic loading test, these columns were subjected to different levels of earthquake accelerations, including a near field ground motion. The results of the tests and the rocking behavior of the footings are discussed in this paper. From the benchmark test, the difference between the response behavior of a rocking base and a fixed base foundation was highlighted. By comparing the experimental responses of the retrofitted column with the responses of the original one, the effect of the rocking mechanism on the ductility demand and strength demand of the columns was also identified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Numerous structures uplift under the influence of strong ground motion. Although many researchers have investigated the effects of base uplift on very stiff (ideally rigid) structures, the rocking response of flexible structures has received less attention. Related practical analysis methods treat these structures with simplified ‘equivalent’ oscillators without directly addressing the interaction between elasticity and rocking. This paper addresses the fundamental dynamics of flexible rocking structures. The nonlinear equations of motion, derived using a Lagrangian formulation for large rotations, are presented for an idealized structural model. Particular attention is devoted to the transition between successive phases; a physically consistent classical impact framework is utilized alongside an energy approach. The fundamental dynamic properties of the flexible rocking system are compared with those of similar linear elastic oscillators and rigid rocking structures, revealing the distinct characteristics of flexible rocking structures. In particular, parametric analysis is performed to quantify the effect of elasticity on uplift, overturning instability, and harmonic response, from which an uplifted resonance emerges. The contribution of stability and strength to the collapse of flexible rocking structures is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a macroelement formulation for the prediction of the planar dynamic response of inelastic deformable rocking bodies. The formulation is based on a previous macroelement developed by the authors able to describe the cyclic response of inelastic rocking bodies, which takes into account the deformability both along the height of the member, as well as near the rocking end. Modifications of this formulation to account for other motion modes of rocking members during their dynamic response, namely, sliding and upthrow, as well as modifications to account for damping in a uniform manner during the whole motion, including impacts, are introduced. The dynamic response predicted by the macroelement for free-standing rigid and deformable rocking bodies is presented and compared with existing theoretical solutions, and the effect of deformability, damping, inelasticity, and friction on the response is discussed.  相似文献   

14.
This paper describes an experimental program to examine the dynamic response of deformable cantilevers rocking on a rigid surface. The primary goal of the tests is to verify and validate a dynamic rocking model that describes the behavior of these structures. The benchmark response data was obtained from shaking‐table tests on deformable rocking specimens with different natural vibration frequencies and different aspect ratios excited by analytical pulses and recorded ground motions. The responses computed using the model are found to be in good agreement with the benchmark test results. Widely used impact, restitution and damping assumptions are revisited based on the experiment results and the analytical model findings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Predicting the rocking response of structures to ground motion is important for assessment of existing structures, which may be vulnerable to uplift and overturning, as well as for designs which employ rocking as a means of seismic isolation. However, the majority of studies utilize a single rocking block to characterize rocking motion. In this paper, a methodology is proposed to derive equivalence between the single rocking block and various rocking mechanisms, yielding a set of fundamental rocking parameters. Specific structures that have exact dynamic equivalence with a single rocking block, are first reviewed. Subsequently, approximate equivalence between single and multiple block mechanisms is achieved through local linearization of the relevant equations of motion. The approximation error associated with linearization is quantified for three essential mechanisms, providing a measure of the confidence with which the proposed methodology can be applied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Rocking column-foundation system is a new design concept for bridges that can reduce overall seismic damage, minimize construction and repair time, and achieve lower cost in general. However, such system involves complex dynamic responses due to impacts and highly nonlinear rocking behavior. This study presents a dimensionless regression analysis to estimate the rocking and shaking responses of the flexible column-foundation system under near-fault ground motions. First, the transient drift and rocking responses of the system are solved numerically using previously established analytical models. Subsequently, the peak column drifts and uplift angles are derived as functions of ground motion characteristics and the geometric and dynamic parameters of column-foundation system in regressed dimensionless forms. The proposed response models are further examined by validating against the numerical simulations for several as-built bridge cases. It is shown that the proposed model not only physically quantifies the influences of prominent parameters, but also consistently reflects the complex dynamics of the system. The seismic demands of rocking column-foundation system can be realistically predicted directly from structural and ground motion characteristics. This can significantly benefit the design of bridges incorporating this new design concept.  相似文献   

17.
Allowing structures to uplift modifies their seismic response; uplifting works as a mechanical fuse and limits the forces transmitted to the superstructure. However, engineers are generally reluctant to construct an unanchored structure because the system could overturn due to lacking redundancy. Using a safety factor for the design of a flat rocking foundation, ie, designing it wider, goes against the main idea of this seismic modification method as the force demand for the structure increases. We propose to extend the flat base of a rocking block with curved extensions to better protect the block from overturning, yet not prevent its uplifting. After investigating the seismic response of such rocking blocks, we extend the study to investigate the seismic response of rolling and rocking frames comprising columns with curved base extensions. The equations of motion are derived, time history analyses are performed, and rocking spectra are constructed. We draw two important conclusions: (a) the response of a class of rocking oscillators with curved base extensions is equivalent to the response of a flat-base rocking oscillators of the same slenderness, yet larger size; (b) the rotation demand on two negative stiffness rocking and rolling oscillators with the same uplifting acceleration and the same size is roughly the same as long as the rocking oscillators are not close to overturning. The above findings can serve as a basis for the rational seismic design of structures supported on rocking columns with curved bases, a system that has been used since the 1960s.  相似文献   

18.
Controlled rocking steel frames have been proposed as an efficient way to avoid the structural damage and residual deformations that are expected in conventional seismic force resisting systems. Although the base rocking response is intended to limit the force demands, higher mode effects can amplify member design forces, reducing the viability of the system. This paper suggests that seismic forces may be limited more effectively by providing multiple force‐limiting mechanisms. Two techniques are proposed: detailing one or more rocking joints above the base rocking joint and providing a self‐centring energy dissipative (SCED) brace at one or more levels. These concepts are applied to the design of an eight‐storey prototype structure and a shake table model at 30% scale. A simple numerical model that was used as a design tool is in good agreement with frequency characterization and low‐amplitude seismic tests of the shake table model, particularly when multiple force‐limiting mechanisms are active. These results suggest that the proposed mechanisms can enable better capacity design by reducing the variability of peak seismic force demands without causing excessive displacements. Similar results are expected for other systems that rely on a single location of concentrated nonlinearity to limit peak seismic loads. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Semi‐active dampers offer significant capability to reduce dynamic wind and seismic structural response. A novel resetable device with independent valve control laws that enables semi‐active re‐shaping of the overall structural hysteretic behaviour has been recently developed, and a one‐fifth scale prototype experimentally validated. This research statistically analyses three methods of re‐shaping structural hysteretic dynamics in a performance‐based seismic design context. Displacement, structural force, and total base‐shear response reduction factor spectra are obtained for suites of ground motions from the SAC project. Results indicate that the reduction factors are suite invariant. Resisting all motion adds damping in all four quadrants and showed 40–60% reductions in the structural force and displacement at the cost of a 20–60% increase in total base‐shear. Resisting only motion away from equilibrium adds damping in quadrants 1 and 3, and provides reductions of 20–40%, with a 20–50% increase in total base‐shear. However, only resisting motion towards equilibrium adds damping in quadrants 2 and 4 only, for which the structural responses and total base‐shear are reduced 20–40%. The spectral analysis results are used to create empirical reduction factor equations suitable for use in performance based design methods, creating an avenue for designing these devices into structural applications. Overall, the reductions in both response and base‐shear indicate the potential appeal of this semi‐active hysteresis sculpting approach for seismic retrofit applications—largely due to the reduction of the structural force and overturning demands on the foundation system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Performance-based earthquake engineering requires accurate estimation of structural response associated with different damage states because of strong ground motion. In recent work (Meza-Fajardo and Papageorgiou, 2018, EESD), we demonstrated that a significant contribution to the response of elastic soil-structure systems for high-rise buildings is attributed to base rocking associated with Rayleigh waves. The present paper presents results of a study investigating the effects of Rayleigh waves on the response of soil-structure systems with nonlinear behavior at the level of the superstructure. By introducing a rigid-elastic rotational spring at the base of the building, we take into account the stiffness reduction due to damage to the lateral load-resisting system at its root, and with it, increased displacement demands. Considering different levels of ductility and post-yield stiffness, we investigate the impact of rocking because of Rayleigh waves on maximum and residual interstory drift ratios. Our results indicate that rocking due to surface waves should be an important consideration for design and evaluation of tall buildings, as inelastic action elongates their effective natural period, and consequently, they are more prone to be damaged by resonance and excitation of extended duration because of Rayleigh waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号